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Abstract

In this paper, we develop new tools and connections for exponential time approximation. In this
setting, we are given a problem instance and an integer r > 1, and the goal is to design an approximation
algorithm with the fastest possible running time. We give randomized algorithms that establish an
approximation ratio of

1. r for maximum independent set in O∗(exp(Õ(n/r log2 r + r log2 r))) time,

2. r for chromatic number in O∗(exp(Õ(n/r log r + r log2 r))) time,

3. (2 − 1/r) for minimum vertex cover in O∗(exp(n/rΩ(r))) time, and

4. (k − 1/r) for minimum k-hypergraph vertex cover in O∗(exp(n/(kr)Ω(kr))) time.

(Throughout, Õ and O∗ omit polyloglog(r) and factors polynomial in the input size, respectively.) The
best known time bounds for all problems were O∗(2n/r) [Bourgeois et al. 2009, 2011 & Cygan et al.
2008]. For maximum independent set and chromatic number, these bounds were complemented by
exp(n1−o(1)/r1+o(1)) lower bounds (under the Exponential Time Hypothesis (ETH)) [Chalermsook et al.,
2013 & Laekhanukit, 2014 (Ph.D. Thesis)]. Our results show that the naturally-looking O∗(2n/r) bounds
are not tight for all these problems. The key to these results is a sparsification procedure that reduces a
problem to a bounded-degree variant, allowing the use of approximation algorithms for bounded-degree
graphs. To obtain the first two results, we introduce a new randomized branching rule.

Finally, we show a connection between PCP parameters and exponential-time approximation algorithms.
This connection together with our independent set algorithm refute the possibility to overly reduce the
size of Chan’s PCP [Chan, 2016]. It also implies that a (significant) improvement over our result will
refute the gap-ETH conjecture [Dinur 2016 & Manurangsi and Raghavendra, 2016].

1 Introduction

The Independent Set, Vertex Cover, and Coloring problems are central problems in combinatorial optimization
and have been extensively studied. Most of the classical results concern either approximation algorithms that
run in polynomial time or exact algorithms that run in (sub)exponential-time. While these algorithms are
useful in most scenarios, they lack flexibility: Sometimes, we wish for a better approximation ratio with worse
running time (e.g., computationally powerful devices), or faster algorithms with less accuracy. In particular,
the trade-offs between the running time and approximation ratios are needed in these settings.

Algorithmic results on the trade-offs between approximation ratio have been studied already in the
literature in several settings, most notably in the context of Polynomial-time Approximation Schemes (PTAS).
For instance, in planar graphs, Baker’s celebrated approximation scheme for several NP-hard problems [2]
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gives an (1 + ε)-approximation for, e.g., Independent Set in time O∗(exp(O(1/ε))) time. In graphs of small
treewidth, Czumaj et al. [16] give an O∗(exp(tw/r)) time algorithm that given a graph along with a tree
decomposition of it of width at most tw, find an r-approximation for Independent Set. For general graphs,
approximation results for several problems have been studied in several works (see, e.g., [6, 7, 8, 15, 14, 13]).
A basic building block that lies behind many of these results is to partition the input instance in smaller parts
in which the optimal (sub)solution can be computed quickly (or at least faster than fully exponential-time).
For example, to obtain an r-approximation for Independent Set one may arbitrarily partition the vertex set in
r blocks and restrict attention to independent sets that are subsets of these blocks to get a O∗(exp(n/r))
time r-approximation algorithm.

While at first sight one might think that such a näıve algorithm should be easily improvable via more
advanced techniques, it was shown in [11, 6] that almost linear-size PCPs with sub-constant error imply that
r-approximating Independent Set [11] and Coloring [31] requires at least exp(n1−o(1)/r1+o(1)) time assuming
the popular Exponential Time Hypothesis (ETH). In the setting of the more sophisticated Baker-style
approximation schemes for planar graphs, Marx [34] showed that no (1 + ε)-approximating algorithm for
planar Independent Set can run in time O∗(exp((1/ε)1−δ)) assuming ETH, which implies that the algorithm
of Czumaj cannot be improved to run in time O∗(exp(tw/r1+ε)).

These lower bounds, despite being interesting, do not say anything about the lower order terms and by no
means answer the question whether the known approximation trade-offs can be improved significantly, and
in fact in many settings we are far from understanding the full power of exponential time approximation.
For example, until recently [10], we cannot exclude (under any plausible complexity assumption) algorithms
that 2-approximate k-Independent Set1 in time no(k) (see also [30]), nor do we know algorithms that run
asymptotically faster than the fastest exact algorithm that runs in time n0.792k time [36].

In this paper, we aim to advance this understanding and study the question of designing fast (exponential-
time) algorithms that guarantee the designated approximation ratios of r for Independent Set, Coloring and
Vertex Cover in general (hyper)graphs. Ultimately, we wish to design approximation algorithms that are as
fast as possible.

1.1 Our Results.

For Independent Set, our result is the following. Here we use Õ to omit log log factors in r.

Theorem 1. There is a randomized algorithm that given an n-vertex graph G and integer r outputs an
independent set that, with constant positive probability, has size at least α(G)/r, where α(G) denotes the
maximum independent set size of G. The algorithm runs in expected time O∗(exp(Õ(n/(r log2 r) + r log2 r))).

To prove this result, we introduce a new randomized branching rule that we will now introduce and put in
context towards previous results. This follows a sparsification technique that reduces the maximum degree to
a given number. This technique was already studied before in the setting of exponential time approximation
algorithms for Independent Set by Cygan et al. (see [13, paragraph ‘Search Tree Techniques’]) and Bourgeois
et al. (see [8, Section 2.1]), but the authors did not obtain running times sub-exponential in n/r. Specifically,
the sparsification technique is to branch (e.g., select a vertex and try to both include v in an independent set
or discard and recurse for both possibilities) on vertices of sufficiently high degree. The key property is that
if we decide to include a vertex in the independent set, we may discard all neighbors of v. If we generate
instances by keeping branching on vertices of degree at least d until the maximum degree is smaller than d,
then at most

(
n
n/d

)
/ exp(n log(d)/d) instances are created. In each such instance, the maximum independent

set can be easily d-approximated by a greedy argument. Cygan et al. [13] note that this gives worse than
O∗(2n/r) running times.

Our algorithm works along this line but incorporates two (simple) ideas. Our first observation is that
instead of solving each leaf instance by greedy d-approximation algorithm, one can use a recent Õ( d

log2 d
)

approximation algorithm by Bansal et al. [3] for Independent Set on bounded degree graphs. If we choose

1That is, given a graph and integer k answer YES if it has an independent set of size at least 2k and NO if it has no
independent set of size at least k.

2



d ≈ r log2 r, this immediately gives an improvement, an r-approximation in time essentially exp( n
r log r ). To

improve this further, we present an additional (more innovative) idea introducing randomization. This idea
relies on the fact that in the sparsification step we have (unexploited) slack as we aim for an approximation.2

Specifically, whenever we branch, we only consider the ‘include’ branch with probability 1/r. This will lower
the expected number of produced leaf instances in the sparsification step to 2n/d ≈ exp( n

r log2 r
) and preserves

the approximation factor with good probability.
Via fairly standard methods (see, e.g., [5]) we show this also gives a faster algorithm for coloring in the

following sense:

Theorem 2. There is a randomized algorithm that, given an n-vertex graph G and an integer r > 0, outputs
with constant positive probability a proper coloring of G using at most r · χ(G) colors. The algorithm runs in
time O∗(exp(Õ(n/(r log r) + r log2 r))).

As a final indication that sparsification is a very powerful tool to obtain fast exponential time approximation
algorithms, we show that a combination of a result of Halperin [22] and the sparsification Lemma [25] gives
the following result for the Vertex Cover problem in hypergraphs with edges of size at most k (a.k.a. the Set
Cover problem with frequency at most k).

Theorem 3. For every k, there is an r0 := r(k) such that for every r ≥ r0 there is an O∗(exp( n
(kr)Ω(kr) ))

time randomized (k − 1
r )-approximation algorithm for the Vertex Cover problem in hypergraphs with edges of

size at most k.

Note that for k = 2 (e.g., vertex cover in graphs), this gives an O∗(exp( n
rΩ(r) )) running time, which gives

an exponential improvement (in the denominator of the exponent) upon the (2 − 1/r) approximation by
Bonnet et al. [8] that runs in time O∗(2n/r). It was recently brought to our attention that Williams and
Yu [38] independently have unpublished results for (hypergraph) vertex cover and independent set using
sparsification techniques similar to ours.

Connections to PCP parameters. The question of approximating the maximum independent set problem
in sub-exponential time has close connections to the trade-off between three important parameters of PCPs:
size, gap and free-bit. We discuss the implications of our algorithmic results in terms of these PCP parameters.

Roughly speaking, the gap parameter is the ratio of completeness to soundness, while the freeness
parameter is the number of “locally” distinct proofs that would cause the verifier to accept 3; the free-bit is
simply a logarithm of freeness. For convenience, we will continue our discussions in terms of freeness, instead
of freebit.

• Freebit v.s. Gap: The dependency between freeness and gap has played an important role in hardness
of approximation. Most notably, the existence of PCPs with freeness go(1) where g is a gap parameter
is “equivalent” to n1−o(1) hardness of approximating maximum independent set [23, 4]; this result is a
building block for proving other hardness of approximation for many other combinatorial problems, e.g.,
coloring [20], disjoint paths [1], induced matching [11], cycle packing [21], and pricing [11]. Arguably,
the trade-off of these PCP parameters captures the approximability of many natural combinatorial
problems.

Better parameter trade-off implies stronger hardness results. The existence of a PCP with arbitrarily
large gap, freeness 1 (lowest possible), and completeness close to 1/2, is in fact equivalent to (2− ε)
inapproximability for Vertex Cover [4]. The best known trade-off is due to Chan [12]: For any g > 0, there
is a polynomial-sized PCP with gap g (completeness close to one) and freeness O(log g), yielding the
best known NP-hardness of approximating maximum independent set in sparse graphs, i.e., Ω(d/ log4 d)
NP-hardness of approximating maximum independent set in degree-d graphs. 4

2This observation was already made by Bourgeois et al. [8], but we exploit it in a new way.
3That is, restricting ourselves to the set of variables {xi}i∈B queried by the verifier, freeness is the number of possible

assignments to these variables that cause the verifier to accept.
4Roughly speaking, the existence of a PCP with freeness F (g) (where g is a gap) implies Ω( d

F (d) log3 d
) hardness of

approximating independent set in degree-d graphs.
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• Size, Freebit, and Gap: When a polynomial-time approximation algorithm is the main concern,
polynomial size PCPs are the only thing that matter. But when it comes to exponential time
approximability, another important parameter, size of the PCPs, has come into play. The trade-off
between size, freebit, and gap tightly captures the (sub-)exponential time approximability of many
combinatorial problems. For instance, for any constant g > 0, Moshkovitz and Raz [35] construct

PCPs5 of size n1+o(1) and freeness 2O(
√

log g) and gap g; this implies that r-approximating Independent

Set requires time 2n
1−o(1)/r1+o(1)

[11].

Our exponential-time approximation result for Independent Set implies the following trade-off results.

Corollary 4. Unless the ETH fails, a freebit PCP on an n-variable SAT formula, with gap parameter g,
freeness parameter F and size parameter S must satisfy F · S = Ω(n log2 g).

In particular, this implies that (i) the size of Chan’s PCP cannot be made smaller than o(n log g) unless
ETH breaks, and (ii) in light of the equivalence between gap-amplifying freebit PCPs with freeness 1 and
(2− ε) approximation for Vertex Cover, our result shows that such a PCP must have size at least Ω(n log2 g).
We remark that no such trade-off results are known for polynomial-sized PCPs. To our knowledge, this is the
first result of its kind.

Further related results. The best known results for Independent Set in the polynomial-time regime

are an O(n(log logn)2

log3 n
)-approximation [18], and the hardness of n/exp(O(log3/4+o(1) n)) (which also holds for

Coloring) [28]. For Vertex Cover, the best known hardness of approximation is (
√

2−o(1)) NP-hardness [26, 27]
and (2− ε) hardness assuming the unique games conjecture [29]. All three problems (Independent Set, Coloring,
and Vertex Cover) do not admit exact algorithms that run in time 2o(n), unless ETH fails. Besides the
aforementioned works [8, 13] sparsification techniques for exponential time approximation were studied by
Bonnet and Paschos in [7], but mainly hardness results were obtained.

2 Preliminaries

We first formally define the three problems that we consider in this paper. Independent Set: Given a graph
G = (V,E), we say that J ⊆ V is an independent set if there is no edge with both endpoints in J . The
goal of Independent Set is to output an independent set J of maximum cardinality. Denote by α(G), the
cardinality of a maximum independent set. Vertex Cover: Given a graph G = (V,E), we say that J ⊆ V is a
vertex cover of G if every edge is incident to at least one vertex in J . The goal of Vertex Cover is to output a
vertex cover of minimum size. A generalization of vertex cover, called k-Hypergraph Vertex Cover (k-Vertex
Cover) 6, is defined as follows. Given a hypergraph G = (V, E) where each hyperedge h ∈ E has cardinality
at most k, the goal is to find a collection of vertices J ⊆ V such that each hyperedge is incident to at least
one vertex in J , while minimizing |J |. The degree ∆(H) of hypergraph H is the maximum frequency of an
element. Coloring: Given a graph G = (V,E), a proper k-coloring of G is a function f : V → [k] such that
f(u) 6= f(v) for all uv ∈ E. The goal of Coloring is to compute a minimum integer k > 0 such that G admits
a (proper) k-coloring; this number is referred to as the chromatic number, denoted χ(G).

For a graph G = (V,E), NG(v) denotes the set of neighbors of v and dG(v) denotes |NG(v)|. If X ⊆ V
we let G[X] denote the graph (X,E ∩ (X ×X)), i.e., the subgraph of G induced by X. We use exp(x) to
denote 2x in order to avoid superscripts. We use the O∗(·)-notation to suppress factors polynomial in the
input size. We use Õ and Ω̃ to suppress factors polyloglog in r in respectively upper and lower bounds and
write Θ̃ for all functions that are in both Õ and Ω̃.

5In fact, Moshkovitz and Raz give a construction of nearly linear-size 2-query PCPs with sub-constant error; this can be
composed with the results of, e.g., [23, 37, 24] to get a PCP with low freebit complexity. The above parameters are taken from
the composition with [37].

6The problem is also known under other names, such as k-Hitting Set and Hypergraph Transversal in k-uniform hypergraphs
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3 Faster Approximation via Randomized Branching and Sparsifi-
cation

3.1 Maximum Independent Set

In this section, we prove Theorem 1. Below is our key lemma.

Lemma 5. Suppose there is an approximation algorithm dIS(G, r) that runs in time T (n, r) and outputs
an independent set of G of size α(G)/r if G has maximum degree d(r), (where d(r) ≥ 2r). Then there is an

algorithm IS(G, r) running in expected time O∗
(

exp
(

n
d(r) log(4d(r)/r)

)
T (n, r)

)
that outputs an independent

set of expected size α(G)/r.

Proof. Consider the following algorithm.

Algorithm IS(G = (V,E), r)
1: if ∃v ∈ V : dG(v) ≥ d(r) then
2: Draw a random Boolean variable b such that Pr[b = true] = 1/r.
3: if b = true then
4: return the largest of IS(G[V \ {v}]) and IS(G[V \N(v)]) ∪ {v}.
5: else
6: return IS(G[V \ {v}]).
7: else
8: return dIS(G).

Figure 1: Approximation algorithm for the maximum independent set problem using an approximation
algorithm dIS that works in bounded degree graphs.

For convenience, let us fix r and d := d(r). We start by analyzing the expected running time of this
algorithm. Per recursive call the algorithm clearly uses O∗(T (n, r)) time. It remains to bound the expected
number of recursive calls R(n) made by IS(G, r) when G has n vertices. We will bound R(n) ≤ 2λn for
λ = log(4d/r)/d by induction on n. Note that here λ is chosen such that

exp(−λ · d) = r/(4d) ≤ r log(4d/r)

2d
, (1)

where we use d/r ≥ 2 for the inequality. For the base case of the induction, note that if the condition at
Line 1 does not hold, the algorithm does not use any recursive calls and the statement is trivial as λ is clearly
positive. For the inductive step, we see that

R(n) ≤ R(n− 1) + Pr[b = true] ·R(n− d)

= R(n− 1) +R(n− d)/r

= exp(λ(n− 1)) + exp(λ(n− d))/r

= exp(λn) (exp(−λ) + exp(−λd)/r) Using exp(−x) ≤ 1− x/2 for x ∈ [0, 1]

≤ exp(λn) (1− λ/2 + exp(−λd)/r) Using exp(−λ · d(r)) ≤ λr/2 from (1)

≤ exp(λn).

We continue by analyzing the output of the algorithm. It clearly returns a valid independent set as all
neighbors of v are discarded when v is included in Line 4 and an independent set is returned at Line 8. It
remains to show E[|IS(G, r)|] ≥ α(G)/r which we do by induction on n. In the base case in which no recursive
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call is made, note that on Line 8 we indeed obtain an r-approximation as G has maximum degree d(r). For
the inductive case, let X be a maximum independent set of G and let v be the vertex as picked on Line 1.
We distinguish two cases based on whether v ∈ X. If v /∈ X, then α(G) = α(G[V \ v]) and the inductive step
follows as E[|IS(G[V \ v], r)|] ≥ α(G)/r by the induction hypothesis. Otherwise, if v ∈ X, then E[|IS(G, r)|]
is at least

Pr[b = false] · E[|IS(G[V \ {v}], r)|] + Pr[b = true] · E[|IS(G[N \N(v)], r)|+ 1]

≥
(
1− 1

r

) α(G)− 1

r
+ 1

r

(
α(G)− 1

r
+ 1

)
=
α(G)− 1

r
+ 1

r = α(G)/r,

as required. Here the first inequality uses the induction hypothesis twice.

We will invoke the above lemma by using the algorithm dIS(G) by Bansal et al. [3] implied by the
following theorem:

Theorem 6 ([3], Theorem 1.3). There is an Õ(d/ log2 d) approximation algorithm dIS(G) for Independent
Set on graphs of maximum degree d running in time O∗(exp(O(d))).

Proof of Theorem 1. We apply Lemma 5. By virtue of Theorem 6, dIS(G) runs in time T (n, r) =
O∗(exp(Õ(r log2 r))), and outputs an independent set of size at least α(G)/r if G has maximum degree d(r)
for some function d(r) = Õ(r log2 r) with d(r) ≥ 2r. We obtain an O∗(exp(Õ(n/r log2 r+ r log2 r))) expected
time algorithm that outputs an independent set of expected size α(G)/r.

To obtain the required probabilistic guarantee, we apply this algorithm with r/3 instead of r. Since the
size of the output is upper bounded by α(G) we obtain an independent set of size at least α(G)/r with
probability at least 1/(3r), and we may boost this constant positive probability using O(r) repetitions.

By Markov’s inequality these repetitions together run in O∗(exp(Õ(n/r log2 r + r log2 r))) time with
probability 3/4. The theorem statement follows by a union bound as these O(r) repetitions run in the
claimed running time and simultaneously some repetition finds an independent set of size at least α(G)/r,
with probability at least 1/2.

A deterministic algorithm. An interesting question here is whether our randomized branching algorithm
can be derandomized. We show a deterministic r-approximation algorithm that has in slightly worse running
time of exp(Õ(n/r log r)). The algorithm utilizes Feige’s algorithm [18] as a blackbox, and is deferred to
Section 6.1.

3.2 Graph Coloring

Now we use the approximation algorithm for Independent Set as a subroutine for an approximation algorithm
for Coloring to prove Theorem 2 as follows:

Proof of Theorem 2. The algorithm combines the approximation algorithm IS from Section 3.1 for Independent
Set with an exact algorithm optcol for Coloring (see, e.g., [5]) as follows:
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Algorithm CHR(G = (V,E), r)
1: Let n = |V |, c = 0.
2: while |V | ≥ n/(r log r) do
3: c← c+ 1.
4: Cc ← IS+(G[V ], r/ ln(r log r)).
5: V ← V \ Cc.
6: Let (Cc+1, . . . , C`)← optcol(G[V ]) be some optimum coloring of the remaining graph G(V ).
7: return (C1, . . . , C`).

Figure 2: Approximation algorithm for the chromatic number.

In the algorithm, IS+ denote the algorithm that makes n calls to IS and outputs the maximum size
independent set found to boost the success probability. Specifically, IS+(G[V ], r/ ln(r log r)) clearly finds an
independent set of size α(G[V ]) ln(r log r)/r with probability at least 1− exp(−Ω(n)), and thus it will find
with at least constant positive probability in each of the at most n iterations an independent set of size at
least α(G[V ]) ln(r log r)/r.

We claim that CHR(G, r) returns with high probability a proper coloring of G using ` ≤ (r + 2) · χ(G)
colors. To prove the theorem, we invoke CHR(G, r − 2) which has the same asymptotic running time. First,
note that in each iteration of the while loop (Line 2 of Algorithm 2), |V | is decreased by a multiplicative factor

of at most 1− ln(r log r)
r·χ(G) because G[V ] must have an independent set of size at least n/χ(G) and therefore

|Cc| ≥ ln(r log r)n/(r · χ(G)). Before the last iteration, we have |V | ≥ n/(r ln r). Thus, the number ` of
iterations must satisfy

1/(r log r) ≤
(

1− ln(r log r)

r · χ(G)

)`−1

≤ exp

(
− ln(r log r)(`− 1)

r · χ(G)

)
.

This implies that (` − 1) ≤ r · χ(G). Consequently, the number of colors used in the first phase of the
algorithm (Line 1 to Line 5) is c ≤ rχ(G) + 1. The claimed upper bound on ` follows because the number of
colors used for G[V ] in the second phase (Line 6) is clearly upper bounded by χ(G).

To upper bound the running time, note that Line 4 runs in time

exp

(
Õ

(
n ln(r log r)

r log2(r/ ln(r log r))
+ r log2 r

))
= exp

(
Õ

(
n

r log r

)
+ r lg2 r

)
,

and implementing optcol(G = (V,E)) by using the O∗(2|V |) time algorithm from [5], Line 6 also takes
O∗(2n/(r log r)) time and the running time follows.

Let us remark that Algorithm CHR uses exp(n/r log r) space, but by using a space efficient alternative for
optcol (see, i.e., [5]) this space usage can be reduced to poly(n).

3.3 Vertex Cover and Hypergraph Vertex Cover

In this section, we show an application of the sparsification technique to Vertex Cover to obtain Theorem 3. Here
the sparsification step is not applied explicitly. Instead, we utilize the sparsification Lemma of Impagliazzo et
al. [25] as a blackbox. Subsequently, we solve each low-degree instance by using an algorithm of Halperin [22].
The sparsification lemma due to Impagliazzo et al. [25], shows that an instance of the k-Hypergraph Vertex
Cover problem can be reduced to a (sub-)exponential number of low-degree instances.7

7The original formulation is for the Set Cover problem and the most popular formulation is for CNF-SAT problem, but they
are all equivalent by direct transformation.

7



Lemma 7 (Sparsification Lemma, [25, 9]). There is an algorithm that, given a hypergraph H = (V, E) with
edges of size at most k ≥ 2, a real number ε > 0, produces set systems H1 = (V, E1), . . . ,H` = (V, E`) with
edges of size at most k in O∗(`) time such that

1. every subset X ⊆ V is a vertex cover of H if and only if X is a vertex cover of Hi for some i,

2. for every i = 1, . . . , `, the degree ∆(Hi) is at most (k/ε)3k,

3. ` is at most exp(εn).

The next tool is an approximation algorithm for the k-Hypergraph Vertex Cover problem when the input
graph has low degree due to Halperin [22].

Theorem 8 ([22]). There is a polynomial time k − (1− o(1))k(k−1) ln ln ∆
ln ∆ -approximation algorithm for the

vertex cover problem in hypergraphs with edges of size at most k in which every element has degree at most ∆,
for large enough ∆ := ∆(k). Here o(1) denotes a term that tends to 0 when ∆ tends to infinity.

Now we complete the proof of the theorem by applying Lemma 7 with parameter ε = k/(kr)kr. The

number of low-degree instances Hi produced by Lemma 7 is at most exp(εn) = exp
(
O
(

k
(kr)kr

))
. Each

graph Hi has degree at most ∆(Hi) ≤ (k/ε)3k = (kr)3k2r. Note that

ln ln ∆(Hi)

ln ∆(Hi)
≥ ln(3k2r ln(kr))

3k2r ln(kr)
≥ 1

3k2r
.

Plugging this value of ∆(Hi), Halperin’s algorithm gives the approximation factor of

k − (1− o(1))
k(k − 1) ln ln ∆

ln ∆
≤ k − 1

2

k(k − 1)

2k2r
≤ k − 1

6r
.

Thus this gives an k − 1/(6r)-approximation running in time O∗(exp(nk/(kr)kr)) which translates to an
k − 1/r-approximation running in time O∗(exp(nk/(kr/6)kr/6)).

4 PCP Parameters and Exponential-time approximation hardness

Exponential-time approximation has connections to the trade-off questions between three parameters of
PCPs: size, freebit, and gap. To formally quantify this connection, we define new terms, formally illustrating
the ideas that have been already around in the literature. We define a class of languages FGPCP which stands
for Freebit and Gap-amplifiable PCP. Let c and g be positive reals, and S, F be non-decreasing functions. A
language L is in FGPCPc(S, F ) if there is a constant g0 > 1 such that, for all constants g ≥ g0, there is a
verifier Vg that, on input x ∈ {0, 1}n, has access to a proof π : |π| = O(S(n, g)) and satisfies the properties:

• The verifier runs in 2o(n) time.

• If x ∈ L, then there is a proof π such that V πg (x) accepts with probability ≥ c.

• If x 6∈ L, then for any proof π, V πg (x) accepts with probability ≤ c/g.

• For each x and each random string r, the verifier has ≤ F (g) accepting configurations.

The parameters g, S and logF are referred to as gap, size and freebit of the PCPs respectively. For
convenience, we call F (g) the freeness of the PCP. Intuitively, ones may view FGPCP as a class of PCPs
parameterized by gap g. An interesting question in the PCPs and hardness of approximation literature has
been to find the smallest functions S and F . Roughly speaking, if one can construct a small PCP with small
freeness, this could be turned into a stronger lower bound on the running time. The following theorem made
this intuition precise.
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Theorem 9. Let r > 1 be a constant. If SAT ∈ FGPCPδ(S, F ) for some function S such that S(n,r)
n is a

non-decreasing function in n8, then an r-approximation algorithm for Independent Set, on graph G, requires
the running time of 2Ω(S−1(|V (G)|,r)/rF (r)) unless ETH fails.

Here the connection between PCP size and running time lower bound is captured by the term S−1.
When r is fixed and S is an increasing function, then S−1(·, r) is well-defined (e.g., the size function such as
S(n, r) = n log r has an inverse S−1(N, r) = N/ log r).

We prove the theorem later in this section. Meanwhile, we argue that the trade-off result follows directly.

Corollary 10. Assuming that SAT has no 2o(n)-time randomized algorithm and that SAT ∈ FGPCPδ(S, F ),

then it must be the case that S(n, g) · F (g) = Ω(n · log2 g
poly(log log g) ).

Proof. Assume otherwise that such a PCP exists with the parameters S and F such that S(n, g)F (g) =

o(n · log2 g
poly(log log g) ). Denote |V (G)| by N . Notice that S−1(N, r) = ω(N · F (r)poly(log log r)

log2 r
), and Theorem 9

would imply that there is no 2
ω(|V (G)|· poly(log log r)

r log2 r
)
, contradicting the existence of our approximation algorithm

for the maximum independent set problem.

Now let us phrase the known PCPs in our framework of FGPCP. Chan’s PCPs [12] can be stated that
SAT ∈ FGPCP1−o(1)(poly, O(log g)). Applying our results, this means that if one wants to keep the same
freebit parameters given by Chan’s PCPs, then the size must be at least Ω(n log g). Another interesting
consequence is a connection between Vertex Cover and Freebit PCPs in the polynomial time setting [4].

Theorem 11 ([4] – Section 7 on the “reverse connection”). Vertex Cover is (2− ε) hard to approximate if
and only if SAT ∈ FGPCP1/2−ε(poly, 1).

The intended PCPs in Theorem 11 have arbitrary small soundness while the freeness remains 1. Our
Corollary 10 implies that such a PCP must have size at least Ω(n log2 g).

4.1 Proof of Theorem 9

First, we define a standard terminology for dealing with constraint satisfaction problems (CSP). An input
to the general CSP is a collection of clauses C1, . . . , Cm over n variables x1, . . . , xn where each clause is a
predicate over some subset of variables. Given a CSP φ, the value of φ, denoted by val(φ) is the maximum
number of clauses that can be simultaneously satisfied by an assignment. The goal of the problem is to
compute the value of an input CSP. For each clause Ci, let Yi ⊆ {x1, . . . , xn} be the set of variables appearing
in Ci. The freeness of φ is the maximum, over all clauses Ci, of the number of ways Ci can be satisfied by
different assignments on variables in Yi.

Step 1: Creating a hard CSP. We will need the following lemma that creates a “hard” CSP from FGPCP.
This CSP will be used later to construct a hard instance of Independent Set.

Lemma 12. If SAT ∈ FGPCPδ(S, F ), then, for any g > 1, there is a randomized reduction from an n-variable
SAT φ to a CSP φ′ having the following properties (w.h.p.):

• The number of variables of φ′ is ≤ S(n).

• The number of clauses of φ′ is ≤ 10S(n)g/δ.

• The freeness of φ′ is ≤ F (g).

• If φ is satisfiable, then val(φ′) ≥ δ/2. Otherwise, val(φ′) ≤ 6δ/g.

8Since we think of r as a fixed number, the function S(n, r) should be seen as a function on a single variable n. We will
focus on the size functions S that are invertible over the domain of sufficiently large natural numbers. This is generally true for
polynomial functions and near-linear functions (such as S(n, r) = n log2 n log r).
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Proof. Let g be any number and Vg be the corresponding verifier. On input φ, we create a CSP φ′ as
follows. For each proof bit Πi, we have variable xi. The set of variables is X = {x1, . . . , xS(n)}. We perform
M = 10dS(n)g/δe iterations. In iteration j, the verifier picks a random string rj ∈ {0, 1}R where R is the
random coins used by the verifier and create a predicate Pj(xb1 , . . . , xbq ), where b1, . . . , bq are the proof bits
read by the verifier V Π

g on random string rj . This predicate is true on assignment γ if and only if the verifier
accepts the local assignment where Πbi = γ(xi) for all i ∈ [q].

First, assume that φ is satisfiable. Then there is a proof Π∗ such that the verifier V Π∗(φ) accepts with
probability δ. Let γ : X → {0, 1} be an assignment that agrees with the proof Π∗. So, γ satisfies each
predicate Pj with probability δ, and therefore, the expected number of satisfied predicates is δM . By
Chernoff’s bound, the probability that γ satisfies less than δM

2 predicates is at most 2−δM/8 ≤ 2−n.
Next, assume that φ is not satisfiable. For each assignment γ : X → {0, 1}, the fraction of random strings

satisfied by the corresponding proof Πγ is at most δ/g. When we pick a random string rj , the probability
that V Πγ (φ, rj) accepts is then at most δ/g. So, over all the choices of M strings, the expected number of
satisfied predicates is δM/g ≥ 10S(n). By Chernoff’s bound, the probability that γ satisfies more than δM/g
predicates is at most 2−10S(n). By union bound over all possible proofs of length S(n) (there are 2S(n) such
proofs), the probability that there is such a γ is at most 2S(n)2−10S(n) ≤ 2−S(n).

Step 2: FGLSS reduction. The FGLSS reduction is a standard reduction from CSP to Independent Set
introduced by Feige et al. [19]. The reduction simply lists all possible configurations (partial assignment) for
each clause as vertices and adding edges if there is a conflict between two configuration. In more detail, for
each predicate Pi and each partial assignment γ such that Pi(γ) is true, we have a vertex v(i, γ). For each pair
of vertices v(i, γ)v(i′, γ′) such that there is a variable appearing in both Pi and Pi′ for which γ(xj) 6= γ′(xj),
we have an edge between v(i, γ) and v(i′, γ′).

Lemma 13 (FGLSS Reduction [19]). There is an algorithm that, given an input CSP φ with m clauses, n
variables, and freeness F , produces a graph G = (V,E) such that (i) |V (G)| ≤ mF and (ii) α(G) = val(φ)m,
where val(φ) denotes the maximum number of predicates of φ that can be satisfied by an assignment.

Combining everything. Assume that SAT ∈ FGPCPδ(S, F ). Let g > 0 be a constant and Vg be the
verifier of SAT that gives the gap of g. By invoking Lemma 12, we have a CSP φ1 with S(n, g) variables
and 100S(n, g)g/δ clauses. Moreover, the freeness and gap of φ1 are F (g) and g, respectively. Applying
the FGLSS reduction, we have a graph G with N = |V (G)| = 100S(n, g)F (g)g/δ = O(S(n, g)F (g)g). Now

assume that we have an algorithm A that gives a g-approximation algorithm in time 2
o(S−1(N,g))

gF (g) . Notice that
S−1(N, g) ≤ O(ngF (g)) (here we used the assumption that S is at least a linearly growing function.) and
therefore algorithm A distinguishes between Yes- and No-instance in time 2o(n), a contradiction.

Hardness under Gap-ETH. Dinur [17] and Manurangsi and Raghavendra [32] made a conjecture that
SAT does not admit an approximation scheme that runs in 2o(n) time. We observe a Gap-ETH hardness of
r-approximating Independent Set in time 2n/r

c

for some constant c. The proof uses a standard amplification
technique and is deferred to Section 6.2.

5 Further Research

Our work leaves ample opportunity for exciting research. An obvious open question is to derandomize our
branching, e.g., whether Theorem 1 can be proved without randomized algorithms. While the probabilistic
approximation guarantee can be easily derandomized using splitters, it seems harder to strengthen the
expected running time bound to a worst-case running time bound.

Can we improve the running times of the other algorithms mentioned in the introduction that use
the partition argument, possibly using the randomized branching strategy? Specifically, can we (1 + ε)-
approximate Independent Set on planar graphs in time O∗(2(1/ε)/ log(1/ε)), or r-approximate Independent Set
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in time O∗(2tw/r log r)? As mentioned in the introduction, a result of Marx [34] still leaves room for such lower
order improvements. Another open question in this category is how fast we can r-approximate k-Independent
Set, where the goal is to find an independent set of size of k. Recently, Chalermsook et al. [10] showed, under
the Gap-ETH assumption, that finding a k-Independent Set always takes time nΩ(k), despite assuming the
existence of q-clique for q >> k. It remains open whether one can rule out such an algorithm under ETH.
Finally, a big open question in the area is to find or exclude a (2 − ε)-approximation for Vertex Cover in
graphs in subexponential time for some fixed constant ε > 0. We remark that the dependence on ε presented
in our paper has recently been improved by Manurangsi and Trevisan [33].

6 Omitted Results

6.1 A Deterministic Algorithm for Independent Set

In this section, we give a deterministic r-approximation algorithm that runs in time 2Õ(n/r log r). This
algorithm is a simple consequence of Feige’s algorithm [18], that we restate below in a slightly different form.

Theorem 14 ([18]). Let G be a graph with independence ratio α(G)
|V (G)| = 1/k. Then, for any parameter t ∈ N,

one can find an independent set of size t · blogk
(
n

6kt

)
c in time kO(t) · poly(n).

Feige used the above theorem with parameter k = poly log n, and t = Θ(log n/ log log n), so he obtained
an algorithm that runs in polynomial time. Here we will be using the power of his algorithm in (mildly)
exponential time.

• If α(G) < n
log2 r

, then we can enumerate all independent sets of size n/(r log2 r) (this is an r-

approximation) in time
(

n
n/(r log2 r)

)
≤ (er log2 r)

n
r log2 r ≤ 2O(n/(r log r)).

• Otherwise, the independence ratio is at least 1/k where k = log2 r. We choose t = dn/(r log r)e, so
Feige’s algorithm finds an independent set of size at least

t · logk(
n

6kt
) = Ω

(
n

r log r
· logk(r log r)

)
= Ω(n/(r log log r))

The running time of this algorithm is

kO(t)poly(n) = 2O(
n(log log r)
r log r )

If we redefine r′ = r log log r, then the algorithm is an r′-approximation algorithm that runs in time
2O(n(log log r′)2/r′ log r′).

6.2 Gap-ETH hardness of Independent Set (sketch)

We now sketch the proof. We are given an n-variable 3-CNF-SAT formula φ with perfect completeness and
soundness 1− ε for some ε > 0. We first perform standard amplification and sparsification to get φ′ with
gap parameter g, the number of clauses is ng, and freeness is gO(1/ε). Then we perform FGLSS reduction

to get a graph G such that |V (G)| = ngO(1/ε). Therefore, g-approximation in time 2o(|V (G)|/gO(1/ε)) would
lead to an algorithm that satisfies more than (1 − ε) fraction of clauses in 3-CNF-SAT formula in time
2o(n). In other words, any 2n/r

c

-time algorithm that r-approximates Independent Set can be turned into a
(1 +O(1/c))-approximation algorithm for approximating 3-CNF-SAT in sub-exponential time.
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[19] Uriel Feige, Shafi Goldwasser, László Lovász, Shmuel Safra, and Mario Szegedy. Interactive proofs and
the hardness of approximating cliques. J. ACM, 43(2):268–292, 1996.

[20] Uriel Feige and Joe Kilian. Zero knowledge and the chromatic number. J. Comput. Syst. Sci., 57(2):187–
199, 1998.

[21] Zachary Friggstad and Mohammad R Salavatipour. Approximability of packing disjoint cycles. In
International Symposium on Algorithms and Computation, pages 304–315. Springer, 2007.

[22] Eran Halperin. Improved approximation algorithms for the vertex cover problem in graphs and hyper-
graphs. SIAM J. Comput., 31(5):1608–1623, 2002.

[23] Johan H̊astad. Clique is hard to approximate within n1−ε. In 37th Annual Symposium on Foundations
of Computer Science, FOCS, pages 627–636, 1996.

[24] Johan H̊astad and Subhash Khot. Query efficient pcps with perfect completeness. Theory of Computing,
1(1):119–148, 2005. doi:10.4086/toc.2005.v001a007.

[25] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly exponential
complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001.

[26] Subhash Khot, Dor Minzer, and Muli Safra. On independent sets, 2-to-2 games and grassmann graphs.
Electronic Colloquium on Computational Complexity (ECCC), 23:124, 2016.

[27] Subhash Khot, Dor Minzer, and Muli Safra. On independent sets, 2-to-2 games, and grassmann graphs.
In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pages 576–589.
ACM, 2017.

[28] Subhash Khot and Ashok Kumar Ponnuswami. Better inapproximability results for maxclique, chromatic
number and Min-3Lin-deletion. In Automata, Languages and Programming, International Colloquium,
(ICALP), pages 226–237, 2006.

[29] Subhash Khot and Oded Regev. Vertex cover might be hard to approximate to within 2-epsilon. J.
Comput. Syst. Sci., 74(3):335–349, 2008.

[30] Subhash Khot and Igor Shinkar. On hardness of approximating the parameterized clique problem. In
Innovations in Theoretical Computer Science (ITCS), pages 37–45, New York, NY, USA, 2016. ACM.
doi:10.1145/2840728.2840733.

[31] Bundit Laekhanukit. Inapproximability of Combinatorial Problems in Subexponential-Time. PhD thesis,
McGill University, 2014.

13

https://doi.org/10.4086/toc.2005.v001a007
https://doi.org/10.1145/2840728.2840733


[32] Pasin Manurangsi and Prasad Raghavendra. A birthday repetition theorem and complexity of approxi-
mating dense CSPs. CoRR, abs/1607.02986, 2016.

[33] Pasin Manurangsi and Luca Trevisan. Mildly exponential time approximation algorithms for vertex
cover, balanced separator and uniform sparsest cut. APPROX, 2018.

[34] Dániel Marx. On the optimality of planar and geometric approximation schemes. In Foundations of
Computer Science (FOCS), pages 338–348, 2007.

[35] Dana Moshkovitz and Ran Raz. Two-query PCP with subconstant error. J. ACM, 57(5):29:1–29:29,
2010.
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