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Abstract

Optimizing parameters of Two-Prover-One-Round Game (2P1R) is an important task in PCPs litera-
ture as it would imply a smaller PCP with the same or stronger soundness. While this is a basic question
in PCPs community, the connection between the parameters of PCPs and hardness of approximations is
sometimes obscure to approximation algorithm community. In this paper, we investigate the connection
between the parameters of 2P1R and the hardness of approximating the class of so-called connectivity
problems, which includes as subclasses the survivable network design and (multi)cut problems. Based
on recent development on 2P1R by Chan (STOC 2012) and several techniques in PCPs literature, we
improve hardness results of some connectivity problems that are in the form kσ , for some (very) small
constant σ > 0, to hardness results of the form kc for some explicit constant c, where k is a connectivity
parameter. In addition, we show how to convert these hardness into hardness results of the form Dc′ ,
where D is the number of demand pairs (or the number of terminals). Our results are as follows.

1. For the rooted k-connectivity problem, we have hardness of
k1/2−ε on directed graphs.
k1/10−ε on undirected graphs.
D1/4−ε on both directed and undirected graphs.

This improves upon the best known hardness of kσ by Cheriyan et al. (SODA 2012).

2. For the vertex-connectivity survivable network design problem, we have hardness of{
k1/6−ε on undirected graphs
D1/4−ε on both directed and undirected graphs.

This improves upon the best known hardness of Ω(kσ) by Chakraborty et al. (STOC 2008).

3. For the vertex-connectivity k-route cut problem on undirected graphs, we have hardness of{
k1/6−ε

D1/4−ε

This improves upon the best known hardness of kσ by Chuzhoy et al. (SODA 2012).
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1 Introduction

Optimizing parameters of Two-Prover-One-Round Game (2P1R) is an important task in PCPs literature as it
would imply a smaller PCP with the same or stronger soundness, which will in turn tighten hardness results
for many optimization problems. While this is a basic question in PCPs community, the connection between
the parameters of PCPs and hardness of approximations is sometime obscure to approximation algorithm
community. In this paper, we investigate the connection between the parameters of 2P1R and the hardness
of approximating the class of so-called connectivity problems, which includes as subclasses the survivable
network design and (multi)cut problems.

Similar to 2P1R, a connectivity problem comes with several parameters, e.g., the number of vertices n, a
connectivity parameter k, and the number of demand pairs D. As these parameters are independent of each
other, approximation algorithms for connectivity problems are usually designed by exploiting properties of
the parameters, which means that the approximation ratios of the algorithms depend on these terms. By
way of illustration, let consider a concrete example of the rooted k-connectivity problem on undirected
graphs. In this problem, we are given an undirected graph G = (V,E), a root vertex r and a set of terminals
T ; the goal is to find a minimum-cost subgraph that has k openly (vertex) disjoint paths from the root
vertex r to each terminal t ∈ T . For arbitrary k, the best known approximation ratio of this problem
is O(k log k) by Nutov [24], and it was shown by Cheriyan, Laekhanukit, Naves and Vetta [7] that the
dependence on k cannot be taken out because the problem does not admit o(kσ)-approximation, for some
(very) small constant σ > 0, unless P = NP. However, when k is larger than the number of demands (or
terminals) D, a trivial D-approximation algorithm does exist and yields a better approximation ratio than
the O(k log k)-approximation algorithm. Moreover, the hardness result of Cheriyan et al. only holds when
k is much smaller than D. Thus, the approximability of the rooted k-connectivity problem on undirected
graphs depends on two parameters: the connectivity k and the number of demands (terminals) D, e.g., k is
a constant independent of D. Thus, to prove tighter approximation hardness of connectivity problems, we
have to consider all the parameters involved.

Here two parameters of connectivity problems that we are interested in are the connectivity parameter
k, which is the main focus in this paper, and the number of demand pairs D. We consider 2P1R in its
combinatorial form – the label cover problem. In this problem, we are given a bipartite directed graph G =
(U,W,E), the set of labels (a.k.a., alphabets) L, and constraints which are functions on edges {πe : e ∈ E};
the goal is to find an assignment of labels to each vertex that satisfies all the constraints. It is known that the
hardness of the label cover problem depends on two parameters the maximum degree ∆(G) of G and the
alphabet-size |L|. Thus, our goal is to investigate relationships between k, D and ∆(G), |L|.

First, we consider the connectivity parameter k. The problems whose hardness depending on the param-
eter k are the rooted k-connectivity problem in both directed and undirected graphs, the vertex-connectivity
survivable network design problem and the vertex-connectivity k-route cut problem. These problems have
hardness of the form kσ, where σ is a small constant that has not been calculated. (See [24, 7, 3, 11]).
The common source of hardness of these problems is the label cover problem (a.k.a., 2P1R) with parallel
repetition. The σ here involved with the constant loss in the exponent when boosting the hardness gap using
parallel repetition. Estimating the value σ is not an easy task, and even if we can calculate this value, the
constant is very small [17]. By studying the constructions of all these problems, we observe that the con-
nectivity parameter k depends on the maximum degree and alphabet-size of a label cover instance. Thus,
the simplest way in proving this hardness is to find an instance of the label cover problem whose maxi-
mum degree and alphabet-size are small comparing to the inverse of its soundness. Based on the recent
developments in 2P1R [4, 22, 13, 2], we construct a label cover instance that satisfies the desired properties.
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To be precise, we take a label cover instance of Chan [4] that has alphabet-size close to the inverse of its
soundness. (Also, see the prior result by Khot and Safra [17].) Then we apply several reductions – the right
degree reduction by Moshkovitz and Raz [22] and the random sparsification technique by Austrin, Khot and
Safra [2]1 to reduce the maximum degree of the instance. Hence, we have an instance with small degree and
small alphabet-size, and we thus obtain the explicit exponent in the hardness of all the problems mentioned.

Second, we consider the parameter D, the number of demand pairs. The problems that we are interested
in are the rooted k-connectivity problem on both directed and undirected graphs, the vertex-connectivity
survivable network design problem and the vertex-connectivity k-route cut problem. By diving into the
construction of these problems, we observe that some of the demand pairs are independent and thus can be
merged. So, we have to partition the constraints (edges) of a label cover instance so that they have no conflict
after reducing to a connectivity problem. We observe that such partitioning can be done using strong edge
coloring. To be precise, the strong edge coloring is a coloring of edges ofG such that, for any two edges e, f
with the same color, e and f share no endpoint, and G has no edge joining an endpoint of e to an endpoint
of f . For example, edges {a, b} and {c, d} can have the same color if a, b, c, d are all distinct vertices, and
G has none of the edges {a, c},{a, d},{b, c} and {b, d}. It is known that a graph with maximum degree ∆
has a strong edge coloring with O(∆2) colors. Thus, we can reduce the number of demands to be close to
∆(G), which is thus close to the inverse of its soundness.

Lastly, we would like to remark that our contribution is two-fold: one is a survey that connects the
parameters of 2P1R to the hardness of connectivity problems (which are extracted from the proof of previous
works), and one is the hardness of a special case of the label cover problem that could be further used in
obtaining other hardness results. In terms of techniques, they are not and have been used many times in
literature. The right degree reduction was introduced by Moshkovitz and Raz in [22] and has been used in
[14]. The random sampling technique was used in PCPs literature by Goldreich and Sudan in [15] and was
recently used by Dinitz, Kortsarz and Raz in [13] to prove the hardness of the basic k-spanner problem.
Also, it has been used to reduced the degree of an instance of the independent set problem by Austrin, Khot
and Safra in [2]. Indeed, our work is inspired by the result of Moshkovitz and Raz [22] and the result of
Dinitz et al. [13]. The graph coloring technique has been used to obtain approximation algorithms for the
rooted k-connectivity problem in undirected graphs [9, 6, 24]. Here we show that such technique can be
used to show the converse, i.e., the hardness of approximation. (Indeed, to best of our knowledge, the strong
edge coloring has not been used in the previous literature.)

The connectivity problems considered in this paper are as belows.

The Rooted k-Connectivity Problem. In the rooted k-connectivity problem, we are given a directed or
undirected graph G = (V,E) on n vertices with cost ce on each edge e ∈ E, a root vertex r, a set of
terminals T ⊆ V − {r} and a connectivity requirement k. The goal is to find a minimum-cost subgraph
G′ = (V,E′) of G such that G′ has k openly (vertex) disjoint paths from r to each terminal t ∈ T . This
problem has been studied intensively in [3, 9, 5, 10, 24, 25, 6, 7]. The rooted k-connectivity problem is a
fundamental network design problem with vertex-connectivity requirements, and it lies at the bottom of the
complexity hierarchy of the vertex-connectivity problems. In particular, the undirected rooted k-connectivity
problem was shown to be a special case of the subset k-connectivity problem [20] and is clearly a special
case of the vertex-connectivity survivable network design problem. It can be seen that the same relationships
also apply for the case of directed graphs.

The rooted k-connectivity problem on both directed and undirected graphs admits a trivial |T |-approximation
algorithm, which can be done by applying a minimum-cost k-flow algorithm |T | times, one for each ter-

1 Indeed, we are first inspired by the result of Moshkovitz and Raz [22] and the result of Dinitz, Kortsarz and Raz [13]. However,
due to a technical issue, we require a technique in [2], which was suggested by Siu On Chan.
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minal. Non-trivial approximation algorithms for the rooted k-connectivity problem are known only for the
undirected case, and the best known approximation ratio is O(k log k) by Nutov [24]; however, the approx-
imation ratio surpasses that of the trivial algorithm only when k > |T |. On the negative side, Cheriyan,
Laekhanukit, Naves and Vetta [7] recently showed that the rooted k-connectivity problem on both directed
and undirected graphs are hard to approximate to within a factor of kσ for some fixed σ > 0 (the constants
σ are different in directed and undirected cases). However, the constants σ obtained are small and have not
been explicitly calculated.

For the case of directed graphs, we give improved hardness of k1/2−ε and D1/4−ε for the rooted k-
connectivity problem, for any constant ε > 0. (In fact, the k1/2−ε-hardness of this problem can be derived
from combining the result in [7] and [13].) For the case of undirected graphs, the hardness are k1/10−ε

and D1/4−ε, for any constant ε > 0, and this also gives the same bound for the hardness of the subset
k-connectivity problem. (Note that the number of demand pairs is D = |T | for the rooted k-connectivity
problem and D = |T |2 for the subset k-connectivity problem.)
The Vertex-Connectivity Survivable Network Design Problem. The vertex-connectivity survivable net-
work design (VC-SNDP) problem is a generalization of the rooted k-connectivity problem. In this problem,
we are given a directed or undirected graph G = (V,E) on n vertices with a cost ce on each edge e and a
connectivity requirement req(s, t) for each pair of vertices s, t ∈ V . A vertex s is called a terminal if there
is a vertex t such that req(s, t) > 0, i.e., s is a terminal if it has a positive connectivity requirement; the
set of terminals is denoted by T . The only known non-trivial approximation algorithm for this problem due
to the work of Chuzhoy and Khanna [10] has an approximation ratio of O(k3 log |T |), and the best known
hardness is kσ, for some (very) small constant σ > 0, due to Chakraborty, Chuzhoy and Khanna [3]. We
give an improved hardness of k1/6−ε and D1/4−ε for VC-SNDP, for any constant ε > 0.
The Vertex-Connectivity k-Route Cut Problem. In the vertex-connectivity k-route cut (VC-k-RC) prob-
lem, we are given an undirected graph G = (V,E) on n vertices with a cost ce on each edge e ∈ E, a set of
source-sink pairs {(s1, t1), (s2, t2), . . . , (sD, tD)} ⊆ V × V and a connectivity parameter k. The goal is to
find a minimum-cost subset E′ ⊆ E of edges such thatG−E′ has no k openly disjoint si, ti-paths for every
source-sink pairs si, ti. The best known approximation guarantee for this problem is O(D · k) due to the
work of Chuzhoy, Makarychev, Vijayaraghavan and Zhou [11], and the best known hardness is O(kσ), for
some (very) small constant σ > 0. The approximation ratio is slightly better when we turn to a bi-criteria
approximation algorithm. Chuzhoy et al. showed that there is an algorithm that guarantees to find a solution
E′ ⊆ E with cost at most O(λk log2.5D log logD) times the optimal, where λ is the maximum number of
demand pairs in which any terminal participates, and E′ cuts at least k/2-routes, i.e., G − E′ has no k/2
openly si, ti-paths for all i. In this paper, we show that at least one of the two terms k andD cannot be taken
out. Precisely, we show that it is hard to approximate VC-k-RC to within a factor of k1/6−ε and D1/4−ε, for
any constant ε > 0.

Our hardness results are summarized in Table 1.

2 Preliminaries

We use standard graph terminologies as in [12]. Let G = (V,E) be any graph. For any vertex v ∈ V , the
degree of v in G is denoted by degG(v). The maximum (resp., minimum) degree of G, denoted by ∆(G)
(resp., δ(G)), is the maximum (resp., minimum) degree over all vertices of G. If we consider more than one
graph, then we denote the set of vertices and edges of G by V (G) and E(G), respectively.

By a bipartite directed graph, we mean a directed graph G = (U,W,E) such that every arc is directed
from U to W , i.e., an arc of G is of the form (u,w), where u ∈ U and w ∈ W . We call vertices in U left
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Problem Graphs In terms of k (k < D) In terms of D (k ≥ D)
Rooted k-Connectivity Directed k1/2−ε D1/4−ε

Undirected k1/10−ε D1/4−ε

Subset k-Connectivity Undirected k1/10−ε D1/4−ε

VC-SNDP Undirected k1/6−ε D1/4−ε

VC-k-Route Cut Undirected k1/6−ε D1/4−ε

k-EC GST Undirected k1/6−ε D1/4−ε

Table 1: The table summarizes our hardness results, which hold for any ε > 0.

vertices and vertices in W right vertices. Since each left (resp., right) vertex of G has no incoming (resp.,
outgoing) arc, we abuse the term “degree” to mean indegree (resp., outdegree) of left (resp., right) vertices
of G. By the maximum (resp., minimum) left degree of G, denoted by ∆left(G) (resp., δleft(G)), we mean
the maximum (resp., minimum) degree of left vertices of G. Similar, notations are used for right vertices.
Thus, ∆right(G) (resp., δright(G)) denotes the maximum (resp., minimum) degree of right vertices ofG. We
use a similar notations for the average degree of G. The average degree of G is denoted by ∆avg(G), and
the average left and right degree of G are denoted by ∆avg

left (G) and ∆avg
right(G), respectively. We say that G

is left (resp., right) regular if every left (resp., right) vertex of G has the same degree. If G is both left and
right regular with degree d1 and d2, then we say that G is (d1, d2)-regular. If G is clear in the context, then
we will omit G, e.g., we may write degG(v) as deg(v) and write ∆(G) as ∆.

By a matching M of a (directed) graph G, we mean a set of edges (resp., arcs) such that no two edges
(resp., arcs) in M share an endpoint, and by induced matching I in G, we mean a matching such that no
edge (resp., arc) in G joins endpoints of edges (resp., arcs) in I . Thus, a subgraph of G induced by such I is
also a matching. A strong edge coloring of G is a partition E1, E2, . . . , E` of sets of edges (resp., arcs) of
G such that each Ei is an induced matching in G. The smallest number ` such that G has an `-strong edge
coloring is called the strong chromatic index of G, denoted by χ′S(G).

All of our hardness results come from the same source, the label cover problem (a.k.a, 2P1R). Hence,
we devote the next section to discuss the label cover problem.

2.1 The Label Cover Problem

The (maximum) label cover problem (the projection game) is defined as follows. We are given a directed
bipartite graph G = (U,W,E) on n vertices, two sets of labels (a.k.a, alphabets) L1 (for vertices in U )
and L2 (for vertices in W ), and a constraint πe on each arc e, which is a projection2 πe : L1 → L2. A
labeling (f1, f2) is a pair of functions f1 : U → L1 and f2 : W → L2 assigning a label to each vertex of
U and W , respectively. We say that (f1, f2) covers an arc (u,w) ∈ E if πe((f1(u)) = f2(w). The goal
in the maximum label cover problem is to find a labeling that maximizes the number of arcs covered. For
notational convenience, we shall denote an instance of the label cover problem by (G = (U,W,E), {πe :
e ∈ E}, L1, L2).

The gap version of the maximum label cover problem is the problem of deciding whether a given in-
stance of the maximum label cover problem is one of the following two cases:

• YES-INSTANCE: There is an labeling covering at least (1− ε) fraction of all the arcs.

2 The constraints of the label cover problem can be relations instead of projections; however, here we define the label cover
problem as the projection game.
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• NO-INSTANCE: There is no labeling covering more than γ fraction of all the arcs.

We call 1 − ε and γ the completeness and the soundness of the label cover instance, respectively. If ε = 0,
then we say that a (gap) label cover instance has perfect completeness; otherwise, we say that an instance
has imperfect completeness. It can be seen that NP-hardness of the gap version of the label cover problem
implies the hardness of the maximum one. Thus, we shall abuse the term “maximum label cover” to also
mean the gap label cover problem.

For our purpose, we need a minimization version of the label cover problem, which can be defined by
allowing each vertex to have more than one label, and the goal is to minimize the total cost of labels used
over all vertices. To be precise, we define the minimum-cost label cover problem to be the weighted counter
part of the maximum label cover problem. The minimum label cover problem was defined in [1], and it has
an equivalent form known as the Min-Rep problem as defined in [18]. The input of this problem is the same
as that of the maximum label cover problem except that we also have a cost c1 on each label a ∈ L1 and a
cost c2 on each label b ∈ L2. The labeling is relaxed as a pair of functions (f1, f2), where f1 : U → 2L1

and f2 : W → 2L2 , i.e., we are allowed to assign more than one labels to each vertex. A labeling (f1, f2)
covers an arc e = (u,w) if there are labels a ∈ f1(u) and b ∈ f2(w) such that πe(a) = b. The goal in the
minimum-cost label cover problem is to find a labeling (f1, f2) that covers all the arcs and minimizes the
cost c(f1, f2) =

∑
u∈U c1 · |f1(u)|+

∑
w∈W c2 · |f2(w)|.

Note that there is a standard technique that reduces the maximization version of the label cover problem
to the minimum-cost one. (See Appendix A.) Thus, it suffices to consider the maximum label cover problem.

3 Relationships between Label Cover and with Connectivity Problems

Here we show the relationships between the parameters of the label cover problem (2P1R) with the hardness
of approximating connectivity problems.

First, we survey relationships between the hardness in terms of the connectivity parameter k of the
connectivity problems and the parameters of the minimum-cost label cover problems.

Theorem 1 ([7, 3, 11]). Given an instance (G = (U,W,E), {πe : e ∈ E}, L1, L2, c1, c2) of the minimum-
cost label cover problem, there are polynomial-time approximation preserving reductions that output

• An instance of the rooted k-connectivity problem on directed graphs with k = ∆(G).

• An instance of the rooted k-connectivity problem on undirected graphs with k = O(∆(G)3·max{|L1|, |L2|}+
∆(G)4).

• An instance of the vertex-connectivity survivable network design problem on undirected graphs with a
maximum requirement k = O(∆(G) ·max{|L1|, |L2|}+ ∆(G)2).

• An instance of the vertex-connectivity k-route cut problem on undirected graphs with k = O(∆(G) ·
max{|L1|, |L2|}).

The hardness in terms of the connectivity parameter k can be transformed into hardness in terms of the
number of demand pairs D. The parameter that involves with hardness in this term is the degree of the
label cover instance. We claim that, for each of the problems we consider, two demand pairs (s1, t1) and
(s2, t2) are independent if and only if they come from two different constraints (arcs) (u1, w1) and (u2, w2)
of the label cover instance such that (u1, w1) and (u2, w2) forms an induced matching, which thus can have
the same “strong edge color”. So, we can partition the arcs of the label cover instance using strong edge
coloring and merge source-sink pairs with the same color. Thus, we have the following theorem.

Theorem 2. For each of the following problems, say Π,
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• The rooted k-connectivity problem on directed graphs,

• The rooted k-connectivity problem on undirected graphs,

• The vertex-connectivity survivable network design problem on undirected graphs,

• The vertex-connectivity k-route cut problem on undirected graphs,

there is a polynomial-time reduction that, given an instance (G = (U,W,E), {πe : e ∈ E}, L1, L2, c1, c2)
of the minimum-cost label cover problem, outputs an instance of the problem Π with the number of demand
pairs D = 2∆(G)2.

See Appendix C, D, E, and F for the full proofs and discussions.
As we will show in the next section, the label cover instance of Chan [4] can be modified so that it has

degree close to the inverse of its soundness. (See Theorem 6). We apply a standard technique to transform
the hardness of the maximization version of the label cover problem to the minimum-cost version. (See
Appendix A for more detail.) Then we have the following theorem.

Theorem 3. For any constants q > 0 and ε > 0, given an instance (G = (U,W,E), {πe : e ∈ E}, L1, L2)
of the maximum label cover problem such that |L1|, |L2| ≤ q2, ∆(G) = Θ(q) and ∆avg(G) = Θ(q), unless
NP = ZPP, it is hard to approximate the minimum-cost label cover problem to within a factor of q1/2−ε.

By substituting the bound in Theorem 3 to Theorem 1 and Theorem 2, we prove the results in Table 1.

4 Modifying The Label Cover Instance

In this section, we show how to construct a label cover instance with strong soundness, small degree and
small alphabet-size. In particular, we prove the following lemma.

Lemma 4. Let q > 0 be a constant. There is a randomized polynomial-time algorithm that reads as input
an instance (G = (U,W,E), {πe : e ∈ E}, L1, L2) of the maximum label cover problem with the following
properties:

• The alphabet-size is max{|L1|, |L2|} ≤ q.

• The graph G has regular left degree ∆left = poly(q).

• The completeness is 1− ε, for any ε > 0.

• The soundness is γ = 1/poly(q).

then with constant probability outputs an instance (G′ = (U ′,W ′, E′), {πe : e ∈ E}, L1, L2) of the maxi-
mum label cover problem with completeness 1−ε and soundness γ′ = Θ(γ) and ∆(G′) ≤ O((1/γ) log(1/γ)).

The following theorem is due to the work of Chan [4].

Theorem 5 ([4]). For any constants q > 0 and ε > 0, given an instance (G = (U,W,E), {πe : e ∈
E}, L1, L2) of the maximum label cover problem such that |L1|, |L2| ≤ q2 and ∆left(G) = q, it is NP-hard
to distinguish between the following two cases.

• YES-INSTANCE: There is an labeling covering at least (1− ε) fraction of all the arcs.

• NO-INSTANCE: There is no labeling covering more than O(log q/q) fraction of all the arcs.

Thus, by invoking Lemma 4, we have the following theorem.
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Theorem 6. For any constants q > 0 and ε > 0, given an instance (G = (U,W,E), {πe : e ∈ E}, L1, L2)
of the maximum label cover problem such that |L1|, |L2| ≤ q2, ∆(G) = Θ(q log q) and ∆avg(G) =
Θ(q log q), unless NP = ZPP, it is hard to distinguish between the following two cases.

• YES-INSTANCE: There is an labeling covering at least (1− ε) fraction of all the arcs.

• NO-INSTANCE: There is no labeling covering more than O(log q/q) fraction of all the arcs.

So, we devote the remaining part of this section to prove Lemma 4. We have four steps. First, we take
a basic instance, which is a label cover instance with strong soundness and have a regular left-degree as in
Theorem 5. We apply the right degree reduction to make a (d1, d2)-regular instance. Then we make copies
of left vertices so that both sides have the same number of vertices and thus have regular degree. Finally, we
apply a random sparsification to reduce the maximum degree of a label cover graph to be O(q log q), where
γ = 1/poly(q) is the soundness of the label cover instance.

4.1 Basic Instance

We take an instance (G = (U,W,E), {πe : e ∈ E}, L1, L2) of the maximum label cover problem with
properties as stated in Lemma 4. That is,

• The alphabet-size is max{|L1|, |L2|} ≤ q.

• The graph G has regular left degree D = poly(q).

• The completeness is 1− ε, for any ε > 0.

• The soundness is γ = 1/poly(q).

An instance of the maximum label cover problem that satisfies the above properties are that constructed
by Chan in [4] and by Khot and Safra in [17]. Note that due to the size of the construction, the former result
applies for any constant q > 0 while the latter result in [17] applies for all primes 5 ≤ q ≤ polylog(N),
where N is the size of the label cover instance. More precisely, the result in [17] also applies for q =
polylog(N) under the hardness assumption NP ( DTIME(2polylogn).

4.2 Making An Instance (d1, d2)-Regular

The basic instance discussed in the previous chapter is the bipartite graph G = (U, V,E) that is left-regular
but not right-regular. To make an instance of the maximum label cover instance regular, we apply the
right degree reduction introduced by Moshkovitz and Raz [22]. (Also, see [14].) In short, the right degree
reduction makes the right degree of a label cover instance regular while almost preserves the soundness. It
is not hard to see that the reduction preserves the completeness as well. (See Appendix B for more detail.)

Lemma 7 (Right Degree Reduction [22]). There exists a polynomial-time reduction that, given a parameter
d and a maximum label cover instance (G = (U,W,E), L1, L2, {πe : e ∈ E}) with completeness 1 − ε
and soundness γ, where G has regular left degree ∆left, outputs a maximum label cover instance (G′ =
(U ′,W ′, E′), L1, L2, {πe}e∈E′) with regular left degree d ·∆left, regular right degree d, completeness 1− ε
and soundness γ +O(1/

√
d).

We choose a parameter d = 1/γ and apply the right degree reduction on G. Thus, we have an instance
(Ĝ = (Uk, Ŵ , Ê), L1, L2, {πe}e∈Ê) of the maximum label cover problem in which Ĝ is (dD, d)-regular,
where D is the left-degree of G, as desired.
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4.3 Making (d1, d2)-Regular Instance ∆-Regular

Take an instance Ĝ of the maximum label cover problem as discussed in the previous section. Now, we want
to make the (dD, d)-regular graph Ĝ a dD-regular graph. To do so, we replace each left vertex u of G by
D vertices u1, u2, . . . , uD and we add an arc (ui, w) with a constraint πui,w = πu,w, for each arc (u,w) of
Ĝ. This results in a graph Greg which is dD-regular because the degree of each right vertex increases by
a factor of D while the degree of each left vertex remains the same. Observe that the reduction preserves
completeness because each edge of Ĝ has exactly D copies in Greg. Now, consider the soundness. Take
any labeling (f1, f2) of Greg. We construct a labeling (f̂1, f2) of Ĝ by assigning f̂1(u) = f1(ui), where
f1(ui) is a labeling that covers the maximum number of arcs of Greg incident to ui given that f2 is fixed. If
(f1, f2) covers more than γ fraction of arcs of Greg, then (f̂1, f2) will cover more than γ fraction of arcs of
Ĝ as well by the choice of f̂1(u). Therefore, the reduction preserves both completeness and soundness, and
the resulting bipartite graph is ∆-regular, where ∆ = dD.

4.4 Reducing Degree via Random Sparsification

Now, we take a dD-regular label cover instance from the previous section. We apply a random sparsification
technique to reduce the “average degree” of the label cover instance to almost match the inverse of its
soundness. Then we throw away vertices with large degree so that the graph has degree within the desired
bound, the inverse of the soundness.

4.4.1 Sparsifying The Graph

First, we will sparsify the graph Ĝ. The reduction takes as input a regular-degree instance of the maxi-
mum label cover problem and outputs an instance whose bipartite graph has small average degree. To be
precise, the input of our reduction is an instance (G = (U,W,E), {πe : e ∈ E}, L1, L2) of the maxi-
mum label cover problem with regular degree ∆, completeness 1 − ε and soundness γ. Then it constructs
a graph G′ = (U,W,E′) from G by randomly and independently picking each arc of G with probability
ρ = γ−1 log(max{|L1|, |L2|})/∆(G).

Intuitively, since we sample arcs of G with the same probability ρ, the resulting graph G′ should have
degree approximately O(ρ∆), and for any labeling (f1, f2), the fraction of arcs in G′ that (f1, f2) covers
is approximately the same as that it covers in G. The next theorem shows that the random sparsification
(almost) preserves completeness and soundness of the original instance. Moreover, the expected average
degree of the output instance is exactly ∆avg(G) = γ−1 log(max{|L1|, |L2|}).

Lemma 8. Suppose the random sparsification algorithm takes as input an instance (G = (U,W,E), {πe :
e ∈ E}, L1, L2) of the maximum label cover problem with regular degree ∆(G), completeness 1 − ε and
soundness γ, where 0 < ε, γ < 1. Then it outputs with high probability an instance G′ = (U,W,E′, {πe :
e ∈ E′}, L1, L2) of the maximum label cover problem with completeness 1 − 4ε, soundness 8γ and the
average degree of G′ is ∆avg(G′) = γ−1 log(max{|L1|, |L2|}).

Proof. Throughout, let n = |U |+ |W | denote the number of vertices of G.

Completeness: Suppose there is a labeling (f1, f2) covering (1 − ε) fraction of arcs in G. We will
show that (f1, f2) covers at least 1− 4ε fraction of arcs in G′.

Let X =
∑

e∈E Xe be the number of arcs covered by the labeling (f1, f2), where Xe is an indicator
random variable such thatXe = 1 if an arc e is covered by the labeling (f1, f2) andXe = 0 otherwise. Then
the expected number of arcs not covered by (f1, f2) is E[|E| −X] = ε|E| · γ

−1

∆(G) log(max{|L1|, |L2|}) =
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εn
2 ·γ

−1 log(max{|L1|, |L2|}). The last equation follows since |E| = ∆(G)|U | = ∆(G)|W |. By Chernoff’s
bound, we have Pr[|E| −X > εnγ−1 log(max{|L1|, |L2|})] < exp

(
− εn

6 · γ
−1 log(max{|L1|, |L2|})

)
≤

2−Ω(n). Now, consider the expected number of arcs in G′. We have E[|E′|] = |E| · γ
−1 log(max{|L1|,|L2|})

∆(G) =
n
2 · γ

−1 log(max{|L1|, |L2|}). Thus, by Chernoff’s bound,

Pr
[
|E′| < n

4
γ−1 log(max{|L1|, |L2|})

]
< exp

(
− n

16
γ−1 log(max{|L1|, |L2|})

)
≤ 2−Ω(n)

By union bound, with high probability, (f1, f2) covers at least (1− 4ε) fraction of arcs in G′.
Soundness: Suppose there is no labeling (f1, f2) covering more than γ fraction of arcs in G. We will

show that with high probability there is no labeling (f1, f2) covering more than 4γ fraction of arcs in G′.
Fix any labeling (f1, f2). Let X =

∑
e∈E Xe be the number of arcs covered by the labeling (f1, f2),

whereXe is an indicator random variable such thatXe = 1 if an arc e is covered by the labeling (f1, f2) and
Xe = 0 otherwise. Then the expected number of arcs satisfied by (f1, f2) is E[X] = γ|E|·γ

−1 log(max{|L1|,|L2|})
∆(G) =

n
2 · log(max{|L1|, |L2|}). Thus, by Chernoff’s bound, we have

Pr[X > 2n log(max{|L1|, |L2|})] < exp

(
9

6
n log(max{|L1|, |L2|})

)
≤
(

1

max{|L1|, |L2|}

)3n/2

Since there are |L1|n/2|L2|n/2 ≤ (max{|L1|, |L2|})n possible labellings, by union bound, we have that
with probability 2−Ω(n), the labeling (f1, f2) covers at most 2n log(max{|L1|, |L2|}) arcs. By the proof for
the case of Yes-Instance, we have that G′ has at most (n/4)γ−1 log(max{|L1|, |L2|}) arcs with probability
2−Ω(n). Thus, the labeling (f1, f2) covers at most 8γ fraction of the arcs with high probability.

We sparsify the instance (Ĝ = (U,W, Ê), {πe : e ∈ Ê}, L1, L2) from Section 4.3 to an instance
(Ĝavg = (U,W, Êavg), {πe : e ∈ Êavg}, L1, L2) with expected degree ∆avg(G′) = γ−1 log(max{|L1|, |L2|}).

4.4.2 Removing Vertices with Large Degree

The graph Ĝavg obtained from the previous step has average degree to be within the desired bound. However,
some vertices may still have large degree, i.e., their degree are larger than 2γ−1 log(max{|L1|, |L2|}). To
make the graph to have degree within the desired bound, we remove all the large degree vertices from the
graph Ĝavg. This results in a graph Ĝbound = (U ′, V ′, E′) with ∆(Ĝbound) ≤ 2γ−1 log(max{|L1|, |L2|}).

By Chernoff’s bound, the probability that a vertex v ∈ U ∪W has large degree is
Pr[deg

Ĝavg
(v) > 2γ−1 log(max{|L1|, |L2|})] < exp

(
−1

3γ
−1 log(max{|L1|, |L2|}

)
≤ 2−(1/3)γ−1

.
Let Xv be an indicator variable such that Xv = 1 if v has large degree and xv = 0 otherwise.

Then we have E
[∑

v∈V ∪W Xv

]
=
∑

v∈V ∪W E[Xv] ≤ 2−(1/3)γ−1 |V ∪ W |. By Markov’s inequality,

we have Pr
[∑

v∈V ∪W Xv > 2−(1/3)γ−1+1|V ∪W |
]
< 1

2 . Thus, with probability 1/2 we remove at most

2−(1/3)γ−1 |V ∪W | vertices of Ĝavg. This does not effect the success probability of the random sparsification
step because the probability of success of the random sparsification step is very high, say 1− 1/2Ω(n).
The Size of Construction: As above, with high probability, the graph Ĝbound has at least (1−1/2n/3)n ver-
tices. For the number of arcs, we may assume that all vertices removed have degree dD = poly(γ−1), where
dD is the (regular) degree of the graph Ĝ. Note that γ−1 is smaller thanO(log n). So, with high probability,
the number of arcs of Ĝbound is at least |E(Ĝavg)| − 2−n/3dD(|U |+ |W |) ≥ (1− 2−n/6)|E(Ĝavg)|.
Completeness: Suppose there is a labeling (f1, f2) covering (1 − ε) fraction of the arcs of Ĝavg. We will
show that (f1, f2) covers at least (1−2ε) fraction of the arcs of Ĝbound. We may assume that arcs incident to

9



vertices removed from Ĝavg are covered by (f1, f2), and each vertex removed has degree dD = poly(γ−1),
which is the maximum degree of Ĝ. Thus, the number of arcs of Ĝbound covered by (f1, f2) is at least
(1− ε)|E(Ĝavg)| − 2−n/3dD(|U |+ |W |) ≥ (1− 2ε)|E(Ĝavg)|. The last inequality follows because ε is a
constant. Therefore, there is a labeling that covers at least (1− 2ε) fraction of the arcs of Ĝbound.

Soundness: Suppose there is no labeling (f1, f2) that covers more than γ fraction of the arcs of Ĝavg. We
will show that there is no labeling (f1, f2) that covers more than 2γ fraction of the arcs of Ĝbound.

Consider a labeling (f1, f2) of Ĝavg that covers γ′ ≤ γ fraction of arcs of Ĝbound. We construct a
labeling (f ′1, f

′
2) of Ĝbound by assigning f ′1(u) = f1(u) (resp., f ′2(w) = f2(w)) for each vertex u ∈ U ′

(resp., w ∈ W ′) in Ĝbound. We may assume the worst case that all vertices removed have degree dD and
arcs incident to them are not covered by (f1, f2). So, (f ′1, f

′
2) still covers γ′|E(Ĝavg)| arcs of Ĝbound, but

the number of arcs in Ĝbound is smaller than that of Ĝavg. By the analysis of the construction size, with high
probability, Ĝbound has at least (1− 2−n/6)|E(Ĝavg)| arcs. Thus, (f1, f2) covers at most γ′

1−2−n/6
≤ 2γ′ ≤

2γ arcs of Ĝbound. The first inequality follows because 1− 2n/6 ≥ 1/2 for large enough n. Therefore, there
is no labeling covering more than 2γ fraction of arcs of Ĝbound.

5 Getting Hardness in Terms of D

Here we discuss how to obtain the hardness in terms of demand pairs. We give an example of the hardness
of the rooted k-connectivity problem on directed graphs. The next theorem is implicit in [7].

Theorem 9 (Implicit in [7]). There is a polynomial-time approximation preserving reduction such that,
given an instance (G = (U,W,E), {πe : e ∈ E}, L1, L2, c1, c2) of the minimum-cost label cover problem,
outputs an instance (Ĝ, c, r, T ) of the rooted k-connectivity problem on directed graphs with k = O(δ(G),
where Ĝ is a directed graph, c is a cost function, r is a root vertex and T is a set of terminals. Moreover, the
reduction has the following properties:

• Each terminal ti,j ∈ T corresponds to an arc (ui, wj) ∈ E(G).

• The graph Ĝ can be partitioned into Ĝ =
⋃
ti,j∈T Ĝi,j , where Ei,j is the union of all r, ti,j-paths in Ĝ.

• For any two partitions Ĝi,j and Ĝi′,j′ of Ĝ, where i 6= i′ and j 6= j′, there is a path from Ĝi,j to Ĝi′,j′
(resp., from Ĝi′,j′ to Ĝi,j) if only if the label cover graph G has an arc (ui, wj′) (resp., (ui′ , wj′)).

The full discussions are provided in Appendix C. Also, see Appendix D, E, and F.
Our goal is to reduce the number of terminals by merging some terminals of the instance (Ĝ, c, r, T )

of the rooted k-connectivity problem on directed graphs as in Theorem 9. However, if we merge terminals
ti,j and ti′,j′ such that Ĝi,j and Ĝi′,j′ share some vertex v 6= r, then this will cause us some problems.
For example, we might have some “free path” formed by concatenating an r, ti,j-path and an r, ti′,j′-path
or might not have enough openly disjoint paths to satisfy the requirement. Thus, we have to ensure that
terminals that we merge share no vertex v 6= r in the graphs Ĝi,j’s. Observe that if the label cover graph G
has no arc joining (ui, wj) and (ui′ , wj′) (i 6= i′ and j 6= j′), then Ĝi,j and Ĝi,j share no vertex v 6= r. In
other words, if (ui, wj) and (ui′ , wj′) form an induced matching in G, then we can merge terminals ti,j and
ti′,j . Hence, we can partition arcs of G into induced matching by applying strong edge coloring, and the
number of partition of arcs we obtain is at most 2∆(G)2. Thus, we can reduce the number of terminals to
2∆(G)2. Applying Theorem 3, we have the hardness of |T |1/4−ε = D1/4−ε, for any ε > 0 as claimed.

Acknowledgment. We thank Adrian Vetta, Joseph Cheriyan, Guyslain Naves, Parinya Chalermsook, Danupon
Nanongkai and Siu On Chan for useful comments and discussions.
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A From Maximum To Minimum-Cost Label Cover

In this section, we show how to obtain the hardness of the minimum-cost label cover problem from the
hardness of the maximum label cover problem.

The following is a standard lemma that transforms the hardness of the maximization version of the
label cover problem to the hardness of the minimum-cost label cover problem. The theorem has been proved
for the case that an instance has perfect completeness; see [1, 18], and also see [8, 3]. For our purpose, we
state the theorem for the case of imperfect completeness.

Lemma 10. Suppose there are constants 0 < γ, ε < 1 and q1, q2 > 0 such that, given an instance (G =
(U,W,E), {πe : e ∈ E}, L1, L2) of the maximum label cover problem with ∆left = q1∆avg

left and ∆right =
q2∆avg

right, it is hard to distinguish between the following two cases:

• COMPLETENESS: There is a labeling covering at least 1− ε fraction of the arcs.

• SOUNDNESS: There is no labeling covering at least γ fraction of the arcs.

Then it is hard to approximate the minimum-cost label cover problem to within a factor of o(1/
√
γ).

Proof. We construct an instance of the minimum-cost label cover problem from an instance (G = (U,W,E), {πe :
e ∈ E}, L1, L2) of the maximum label cover problem with a parameter ε such that ε · |E| ≤ min{|U |, |W |}
as follows. First, we take an instance (G = (U,W,E), {πe : e ∈ E}, L1, L2) as a base construction. Then
we set costs c1 and c2 of the left and right labels so that c1|U | = c2|W |, and let C = c1|U | + c2|W |. To
show the hardness of the minimum-cost label cover problem, it suffices to show that there is a gap of at least√
γ/(16

√
2q1q2) = Ω(

√
γ) between the two cases of maximum label cover instances.

Completeness: Suppose there is a labeling (f1, f2) of the maximum label cover instance that covers
1 − ε fraction of the arcs. Then, clearly, there is a labeling (f̂1, f̂2) of the minimum-cost label cover that
covers the same number of arcs. For each arc (u,w) not covered, we add to f̂1(u) and f̂2(w) labels a ∈ L1

and b ∈ L2 such that πu,w(a) = b. By the construction, the labeling (f̂1, f̂2) covers all the arcs. Since
ε|E| ≤ min{|U |, |W |}, the cost of the labeling (f̂1, f̂2) is at most 2(c1|U |+ c2|W |) = 2C.

Soundness: Suppose there is no labeling of the maximum label cover instance that covers at least γ|E|
arcs. We will show that if there is a labeling (f̂1, f̂2) of the minimum cost label cover instance with cost
αC ≤ (

√
γ/(8
√

2q1q2)) · C, then there is a labeling (f1, f2) of the maximum label cover instance that
covers at least γ|E| arcs.

First, we construct (f1, f2) from (f̂1, f̂2) by uniformly at random picking a label a ∈ f̂1(u) and assigning
f1(u) = a, for each u ∈ U , and uniformly at random picking a label b ∈ f̂2(w) and assigning f2(w) = b,
for each w ∈W . We claim that (f1, f2) covers at least γ|E| arcs. To see this, consider the number of labels
assigned to (f̂1, f̂2). Let U ′ ⊆ U and W ′ ⊆ W be sets of vertices with at most 8αq1 and 8αq2 labels,
respectively, and let E′ ⊆ E be the set of arcs with both endpoints in U ′ ∪W ′. Then we have

|U − U ′| ≤ αC

8α · q1c1
=

1

4q1
|U | and |W −W ′| ≤ αC

8α · q2c2
=

1

4q2
|W |

Thus, by union bound, the number of arcs of E′ is at least

|E| − 1

4q1
∆left|U | −

1

4q2
∆right|W | ≥ |E| −

|E|
2
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The second inequality follows from the facts that ∆left|U | = q1δleft|U | ≤ q1|E| and ∆right|W | = q2∆right|W | ≤
q2|E|. The probability that (f1, f2) covers any arc e ∈ E′ is at least 1/(64α2). Thus, the expected number
of arcs of E′ covered by (f1, f2) is∑

e∈E′
(1 ·Pr[(f1, f2) covers e]) ≥ |E|

2
· 1

64α2 · q1q2
≥ γ|E|

128q1q2/(8
√

2q1q2)2
= γ|E|.

We can derandomize this process by the method of conditional expectation. Therefore, there is a labeling
(f1, f2) of the maximum label cover instance that covers at least γ|E| arcs, a contradiction.

A similar lemma can be proven for the case of the label cover problem with perfect completeness. We
will skip the proof for this case since it is almost identical to the previous one.

Lemma 11. Suppose there are constants 0 < γ < 1 and q1, q2 > 0 such that, given an instance (G =
(U,W,E), {πe : e ∈ E}, L1, L2) of the maximum label cover problem with ∆left = q1δleft and ∆right =
q2∆right, it is hard to distinguish between the following two cases:

• COMPLETENESS: There is a labeling covering all the arcs.

• SOUNDNESS: There is no labeling covering at least γ fraction of the arcs.

Then it is hard to approximate the minimum-cost label cover problem to within a factor of o(1/
√
γ).

B The Right Degree Reduction

In this section, we discuss the right degree reduction introduced by Moshkovitz and Raz in [22]. The
right degree reduction is an operation that transforms any instance of the maximum label cover problem to
an instance with regular right degree d while preserving the completeness and preserving the soundness up
to additive O(1/

√
d).

The right degree reduction is described as follows. Take an instance (G = (U,W,E), {πe : e ∈
E}, L1, L2) of the maximum label cover problem with completeness 1 − ε and soundness γ. For each
right vertex w ∈ W , we construct an expander graph Hw (Hw is an undirected graph) on 2deg(w) vertices
with regular degree d and a second eigenvalue O(

√
d). Then we replace each vertex w ∈ W by vertices

of Hw. To be precise, let A = {a1, a2, . . . , adeg(w) and B = {b1, b2, . . . , bdeg(w) be the bipartite of Hw.
Let u1, u2, . . . , udeg(w) be the neighbors of w indexed in an arbitrary order. We make deg(w) copies of w,
namely w(1), w(2), . . . , w(deg(w)). For each edge {ai, bj} of Hw, we add an arc (ui, w(j)) and place a
constraint πui,wj = πu,w on the arc (ui, wj).

By the construction, there are d copies of arcs e ∈ E in the output instance, and they have the same
constraint. Thus, for any labeling (f1, f2) that covers (1− ε) fraction of arcs of the input instance, there is a
labeling (f1, f

′
2) that covers (1 − ε) fraction of arcs of the output instance, where f ′2 can be constructed by

assigning f ′2(w(j)) = f2(w) for all copiesw(j) of a vertexw ∈W . It was shown in [22] using the expander
mixing lemma that the right-degree reduction gives an output instance with soundness γ + O(1/

√
d); see

[22] and [14] for more detail.
This operation requires the projection property of a label cover instance and thus does not apply to the

more general instance in which the constraints πe are relations rather than projections. Also, the additive
loss O(1/

√
d) in the soundness is the best possible because the smallest possible second eigenvalue of the

d-regular expander graph is 2
√
d− 1 due to the work of Alon and Boppana; see Theorem 5.3 in [16].
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C Rooted k-Connectivity on Directed Graphs

In this section, we present hardness of Ω(k1/2) and Ω(D1/4) for the rooted k-connectivity problem on
directed graphs.

C.1 Hardness in Terms of k

First, we give a hardness of Ω(k1/2) for the rooted k-connectivity problem on directed graphs. Our result
is based on the construction in [7]. Here we will give a construction but will omit the proof. Let (G =
(U,W,E), {πe : e ∈ E}, L1, L2, c1, c2) be an instance of the minimum-cost label cover problem. We
construct a directed graph Ĝ = (V̂ , Ê) of the rooted k-connectivity problem as follows.

Base Construction: For each vertex ui ∈ U , we add to Ĝ a vertex ui and a set of vertices Ai, which is a
copy of the set of labels L1; we join ui to each vertex a ∈ Ai by an arc (ui, a). For each vertex wj ∈ W ,
we add to Ĝ a vertex wj and a set of vertices Bj , which is a copy of the set of labels L2; we join wj to each
vertex b ∈ Bj by an arc (ui, a). We may think that ui (resp., wj) is the same vertex in both G and Ĝ. Also,
since Ai (resp., Bj) is a copy of L1 (resp., L2), we may say that a vertex a ∈ Ai (resp., b ∈ Bj) is a label
in L1 (resp., L2). We set cost c1 on an arc (ui, a), for each a ∈ Ai, and we set cost c2 on an arc (b, wj), for
each b ∈ Bj . For each arc (ui, wj) of G, we add to Ĝ a zero-cost arc (a, b) joining a vertex a ∈ Ai to a
vertex b ∈ Bj if πui,wj (a) = b. This finishes the base construction.

The final construction: Now, we add a root vertex r to Ĝ and join r to each vertex ui by a zero-cost arc
(r, ui). For each arc (ui, wj), we add a terminal ti,j and join wj to ti,j by a zero-cost arc (wj , ti,j). Thus,
we have the root vertex r and a set of terminals Ti,j = {ti,j : (ui, wj) ∈ E}. Next, we add a zero-cost arcs
(ui′ , ti,j), called a padding arc, if i′ 6= i and (ui′ , wj) ∈ E. Thus, each terminal has indegree at most ∆(G).
For each terminal ti,j with indegree di,j < ∆(G), we add ∆(G) − di,j copies of a zero-cost arc (r, ti,j).
Finally, we set the connectivity requirement k = ∆(G). (Note that ∆(G)� |T |.)

The above construction gives the following theorem whose correctness is proved in [7].

Theorem 12 ([7]). There is a polynomial-time approximation preserving reduction such that, given an
instance of the minimum-cost label cover problem consisting of a graphG, outputs an instance of the rooted
k-connectivity problem on directed graphs with k = ∆(G).

Applying Theorem 3, it then immediately follows that the hardness of the rooted k-connectivity problem
on directed graphs is Ω(k1/2−ε), for any ε > 0 (since k = ∆(G)). Thus, we have the next theorem.

Theorem 13. For k < |T |, unless NP = ZPP, it is hard to approximate the rooted k-connectivity problem
on directed graphs to within a factor of o(k1/2).

C.2 Hardness in Terms of D

Now, we show the hardness of the rooted k-connectivity problem on directed graphs in terms of the other
parameter. Specifically, we show a hardness of Ω(D1/4) for the rooted k-connectivity problem on directed
graphs, where D = |T | (since the demand pairs are between the root vertex r and terminals in T ). We start
from the previous construction and then merge some terminals. The key idea is to merge terminals that do
not share paths from the root vertex. To be precise, we say that two terminals ti,j and ti′,j′ are dependent
if there are an r, ti,j-path P and an r, ti′,j′-path P ′ that have a common vertex v 6= r; otherwise, we say
that ti,j and ti′,j′ are independent. Observe that two terminals ti,j and ti′,j′ are dependent if and only if
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arcs (ui, wj) and (ui′ , wj′) of G (of the label cover instance) are incident or there is an arc joining them.
Specifically, (ui, wj) and (ui′ , wj′) are independent if and only if they form an induced matching in G. This
proves in the lemma below. For notational convenience, we use ij to mean an arc (ui, wj) of G.

Lemma 14. Any two terminals ti,j and ti′,j′ are independent if and only if ij and i′j′ forms an induced
matching in G.

Proof. First, we prove the “only if” part. Suppose ti,j and ti′,j′ are independent, but {ij, i′j′} is not an
induced matching in G. Then we have two cases: (1) i = i′ or j = j′ (2) G has an arc ij′ or i′j. For the
former case, every r, ti,j-path and r, ti′,j′-path in G has to use either ui or wj and thus share a vertex. This
implies that ti,j and ti′,j′ are dependent, a contradiction. For the latter case, assume wlog that G has an arc
ij′. Then we must have added to G a padding arc ui, ti′,j′ by the construction. Thus, there is an r, ti′,j′-path
that shares a vertex ui with an r, ti,j-path, a contradiction. This proves the “only if” part.

Next, we prove the “if” part. Suppose ij and i′j′ form an induced matching in G. Then i 6= i′ and
j 6= j′. Also, G has neither an arc ij′ nor an arc i′j. It then follows immediately by the construction that Ĝ
has no r, ti,j-path and r, ti′,j′-path that share a common vertex. This completes the proof.

Lemma 14 allows us to apply a strong edge-coloring algorithm to the arcs of G, which are constraints of
the label cover instance. It is known that every graph G can be strongly edge-colored using at most 2∆(G)2

colors. In more detail, let us define an auxiliary graph Q as follows. For each arc (u,w) of G, there is a
vertex uw in Q. For any pair of vertices uw and xy of Q, Q has an arc (uw, xy) if and only if G has a
path of length at most 2 from {u,w} to {x, y}, i.e., either the arcs (u,w) and (x, y) share an end-vertex
or G has one of the arcs (u, x), (u, y), (w, x), (w, y). (Note that Q is, in fact, the square of the line graph
of the underlying undirected graph of G.). It is easy to verify that a vertex-coloring of Q translates to a
strong edge-coloring of G and that the maximum degree of H is at most 2∆(G)− 1. So, G can be strongly
edge-colored using 2∆(G)2 colors.

Now, consider the instance of the rooted k-connectivity problem as constructed in Section C consisting
of the directed graph Ĝ, the root vertex r and the set of terminals T . We construct from Ĝ an instance
of the rooted connectivity problem with non-uniform connectivity requirements consisting of a directed
graph Ĝnew, the root vertex r (the same root) and a set of terminals Tnew. Note that it is easy to make
the requirements uniform. So, we will focus on the case of non-uniform requirements. First, we strongly
edge-colorG. For each color C, define TC = {Ti,j : ij receives the color C}; we add to Tnew a terminal tC
and, for each ti,j ∈ TC , we join ti,j to tC by a zero-cost arc (ti,j , tC). We set the connectivity requirement
of each terminal tc to be kc = k|TC |. Next, we prove the following theorem and thus finish the discussion.

Theorem 15. For k ≥ |T |, unless NP = ZPP, it is hard to approximate the rooted k-connectivity problem
on directed graphs to within a factor of o(D1/4−ε) = o(|T |1/4−ε) for any constant ε > 0.

Proof. Consider the instance of the rooted k-connectivity problem consisting of the graph Ĝnew, the root r
and the set of terminals Tnew as described above. We will show that there is a one-to-one mapping between
any k|TC | arc-disjoint r, tC-paths in Ĝnew and a collection of k arc-disjoint paths from r to each ti,j ∈ TC .

By construction, every terminal ti,j ∈ TC corresponds to the arc ij of G receiving the same color C.
Since each color class forms an induced matching in G, any two terminals ti,j , ti′,j′ ∈ TC are independent
by Lemma 14. Thus, any collection of k arc-disjoint paths from r to each tc ∈ TC form a k|TC | arc-disjoint
r, tc-paths in Ĝnew. Conversely, observe that each vertex ti,j has indegree exactly k by construction. So,
any k|TC | arc-disjoint r, tc-paths in Ĝnew must be formed by k arc-disjoint r, ti,j for ti,j ∈ TC . This show
the existence of the mapping.
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Now, consider the hardness of approximation. By the construction, we have at most 2∆(G)2 terminals
in the new instance. Therefore, applying Theorem 3, we have a hardness of Ω(D1/4−ε) = Ω(|T |1/4−ε) for
the rooted k-connectivity problem on directed graphs, for any constant ε > 0.

D The Rooted k-Connectivity Problem on Undirected Graphs.

In this section, we present hardness constructions for the rooted k-connectivity on undirected graphs.

D.1 Hardness in Terms of k

Similar to the case of the directed graphs, the following theorem has been proved in [7].

Theorem 16 ([7]). There is a polynomial-time approximation preserving reduction such that, given an
instance of the minimum-cost label cover problem consisting of a graph G with a set of labels L1 and
L2, outputs an instance of the rooted k-connectivity problem on directed graphs with k = O(∆(G)3 ·
max{|L1|, |L2|}+ ∆(G)5).

We will present the hardness construction described in [7] but will skip the proof for completeness and
soundness. (For more detail, see [7].) Take an instance (G = (U,W,E), {πe : e ∈ E}, L1, L2, c1, c2) of the
minimum-cost label cove problem. We construct a graph Ĝ = (V̂ , Ê) of the rooted k-connectivity problem
on undirected graphs as follows.

Base Construction: The base construction is the same as that in Section C.1 except that we ignore the
direction of edges.

Add Root Vertex and Terminals: We add to Ĝ a root vertex r. For each arcs (ui, wj) ∈ G, we add to Ĝ a
clique Xi,j and a terminal ti,j ; the size of Xi,j will be specified later. We join each clique Xi,j to a vertex
ui ∈ U by adding a zero-cost edge {x, ui} for each pair of vertices x ∈ Xi,j and ui ∈ U . We join each
terminal ti,j to a vertex wj ∈W by a zero-cost edge {wj , ti,j}. Then we join the root vertex r to each clique
Xi,j by a zero-cost edge {r, x} for each x ∈ Xi,j .

Final Construction: Now, we add some zero-cost edges, called padding edges, which intuitively force
r, ti,j-paths to be in a canonical form. We say that an r, ti,j-paths is a canonical path if it is of the form
r,Xi,j , ui, Ai, Bj , wj , ti,j . The padding for each terminal ti,j is as follows. For notational convenience, we
use ij to means an arc {ui, wj} of the label cover instance G, and we use dist(ij, i′j′) to mean the distance
between ij and i′j′ in the line graph H of the underlying undirected of G, i.e., the vertex set of H is the
edge set of G, and there is an edge (e, e′) in H if edges e and e′ share an endpoint in G. We define the set
Zi,j and Yi,j as below.

Z1
i,j =

 ⋃
i′ 6=i:i′j∈E

Ai′

 ∪
 ⋃
j′ 6=j:ij′∈E

Bj′


Z2
i,j = {ti′,j′ : 1 ≤ dist(ij, i′j′) ≤ 2}

Zi,j = Z1
i,j ∪ Z2

i,j

Yi,j =
⋃

1≤dist(ij,i′j′)≤2

Xi′,j′
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We also create a set of verticesQi,j , which is the set of auxiliary vertices created to make the connectivity
requirement uniform. The vertices ofQi,j are not in the base construction, and its size will be specified later.
We join Yi,j to ti,j by edges {y, ti,j} for all y ∈ Yi,j . We join Zi,j to Xi,j and ti,j by edges {x, z},{z, ti,j}
for all pairs of vertices x ∈ Xi,j and z ∈ Zi,j . We join r,Qi,j and ti,j by edges {r, q}, {q, ti,j} for all
q ∈ Qi,j . All of these edges have zero costs.

Lastly, we have to set the connectivity requirement and specify the size of Xi,j . We remark that we want
all the r, ti,j-paths except a canonical path to use all the vertices in Zi,j ∪ Yi,j ∪Qi,j . Thus, we need to set
the size of Xi,j to be |Zi,j |+ 1. By the construction, we have to set |Qi,j | = k − |Zi,j |+ |Yi,j | − 1.

|Zi,j | = |Z1
i,j |+ |Z2

i,j | ≤ 2∆(G) ·max{|L1|, |L2|}+ 2∆(G)2.

Thus, we need |Xi,j | = 2∆(G) · max{|L1|, |L2|} + 2∆(G)2 + 1, implying that |Yi,j | = O(∆(G)3 ·
max{|L1|, |L2|}+∆(G)4). We set k = maxi,j(|Zi,j |+ |Yi,j |)+1 and set the size ofQi,j to be |Qi,j | = k−
|Zi,j |+ |Yi,j |−1. Therefore, we have an instance of the rooted k-connectivity problem on undirected graphs
with k = O(∆(G)3 ·max{|L1|, |L2|}+∆(G)4) (given an instance in Theorem 3, we have k = O(q5)), and
the reduction preserves both the completeness and soundness. Here we skip the completeness and soundness
proofs. For more detail, please see [7].

D.2 Hardness in terms of D

To obtain the hardness in terms of D for the rooted k-connectivity problem on undirected graphs, we may
apply the same technique as that used in the directed case. However, we can simplify the proof by applying
the following theorem due to Lando and Nutov [21].

Theorem 17 ([21]). There is a polynomial-time approximation preserving reduction that, given an instance
of the “directed” rooted k-connectivity problem consisting of a directed graphG on n vertices, a root vertex
r, a set of terminals T and a connectivity requirement k, outputs an instance of the “undirected” rooted
k-connectivity problem consisting of an undirected graph G′ on n′ = 2n vertices, a root vertex r, and a set
of terminals T ′, where |T ′| = |T | and k′ = k + n.

Since there is an Ω(|T |1/4−ε)-hardness for the rooted k-connectivity problem on directed graphs, the
same hardness applies for the undirected case as well.

Theorem 18. For k ≥ |T |, it is NP-hard to approximate the undirected rooted k-connectivity problem to
within a factor of o(|T |1/4−ε) = o(D1/4−ε) for any constant ε > 0.

E Vertex-Connectivity Survivable Network Design

In this section, we present hardness constructions of the vertex-connectivity survivable network design prob-
lem on undirected graphs.

E.1 Hardness in Terms of k

The hardness of the vertex-connectivity survivable network design problem can be derived from its special
case, the rooted k-connectivity problem. However, by applying the reduction directly from the minimum-
cost label cover problem, we have a better bound.

The following theorem is proved by Chakraborty, Chuzhoy and Khanna in [3].
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Theorem 19 ([3]). There is a polynomial-time approximation preserving reduction such that, given an
instance of the minimum-cost label cover problem consisting of a graph G with a set of labels L1 and
L2, outputs an instance of the rooted k-connectivity problem on directed graphs with k = O(∆(G) ·
max{|L1|, |L2|}+ ∆(G)2).

We will present the hardness construction described in [3] but will skip the proof for completeness and
soundness. (For more detail, see [3].) Take an instance (G = (U,W,E), {πe : e ∈ E}, L1, L2, c1, c2) of the
minimum-cost label cove problem. We construct a graph Ĝ = (V̂ , Ê) of the vertex-connectivity survivable
network design problem on undirected graphs as follows.

Base Construction: The base construction is the same as that in Section C.1 except that we ignore the
direction of edges.

Add Source-Sink Pairs: We will add to the undirected graph Ĝ source-sink pairs, i.e., we add a pair of
vertices whose connectivity requirement is positive. For each arcs (ui, wj) ∈ G, we add to Ĝ a source si,j
and a sink ti,j . We join each source si,j to a vertex ui ∈ U by adding a zero-cost edge {si,j , ui}, and we
join each terminal ti,j to a vertex wj ∈W by a zero-cost edge {wj , ti,j}.

Final Construction: Now, we add some zero-cost edges, called padding edges, which intuitively force
si,j , ti,j-paths to be in a canonical form. We say that an r, ti,j-paths is a canonical path if it is of the form
si,j , ui, Ai, Bj , wj , ti,j . The padding for a source-sink pair si,j , ti,j is as follows. For notational convenience,
we use ij to means an arc {ui, wj} of the label cover instance G, and we use dist(ij, i′j′) to mean the
distance between ij and i′j′ in the line graph H of the underlying undirected of G, i.e., the vertex set of H
is the edge set of G, and there is an edge (e, e′) in H if edges e and e′ share an endpoint in G. We define the
set Zi,j and Yi,j as below.

Zi,j =

 ⋃
i′ 6=i:i′j∈E

Ai′

 ∪
 ⋃
j′ 6=j:ij′∈E

Bj′


Yi,j =

⋃
1≤dist(ij,i′j′)≤2

{si′,j′ , ti′,j′}

We join si,j and ti,j to Yi,j ∪Zi,j by adding zero-cost edges {si,j , x} and {x, ti,j} for all x ∈ Yi,j ∪ Zi,j .
For the connectivity requirement, we set req(si,j , ti,j) = |Yi,j ∪ Zi,j | + 1 for all source-sink pairs si,j , ti,j .
We may make the requirements uniform by setting k = maxi,j |Yi,j ∪Zi,j |+ 1 and adding a set of auxiliary
vertices Qi,j with |Qi,j | = k − |Yi,j ∪ Zi,j | − 1 for each source-sink pair si, tj .

By the construction, we have

|Zi,j |+ |Yi,j | ≤ 2∆(G) ·max{|L1|, |L2|}+ 4∆(G)2

Therefore, we have an instance of the rooted k-connectivity problem on undirected graphs with k =
O(∆(G) · max{|L1|, |L2|} + ∆(G)2) (given an instance in Theorem 3, we have k = O(q3)), and the
reduction preserves both the completeness and soundness. Here we skip the completeness and soundness
proofs. For more detail, please see [3].
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E.2 Hardness in Terms of D

The hardness in terms of D for the vertex-connectivity survivable network design problem on undirected
graphs follows immediately from that of its special case, the rooted k-connectivity problem on undirected
graphs. Thus, we have

Theorem 20. For k ≥ D, it is NP-hard to approximate the vertex-connectivity survivable network design
problem on undirected graphs to within a factor of o(D1/4−ε) for any constant ε > 0.

F Vertex-Connectivity k-Route Cut

In this section, we discuss the vertex-connectivity k-route cut problem.

F.1 Hardness in Terms of k

The following theorem is proved in [11] by Chuzhoy et al.

Theorem 21 ([11]). There is a polynomial-time approximation preserving reduction such that, given an
instance of the minimum-cost label cover problem consisting of a graph G with a set of labels L1 and
L2, outputs an instance of the vertex-connectivity k-route cut problem on undirected graphs with k =
O(∆(G) ·max{|L1|, |L2|}).

We will give the hardness construction of this problem based on the construction in [11]3. Take an
instance (G = (U,W,E), {πe : e ∈ E}, L1, L2, c1, c2) of the minimum-cost label cove problem. We
construct a graph Ĝ = (V̂ , Ê) of the vertex-connectivity k-route cut problem as follows.

Base Construction: First, for each left vertex ui ∈ U , we create a set of edges E(ui) = {{a, a′} : a ∈ L1}.
Similarly, for each right vertex wj ∈W , we create a set of edges E(wj) = {{b, b′} : b ∈ L2}. All the edges
in E(ui)’s have costs c1, and all the edges in E(wj)’s have costs c2.

Next, for each right vertex wj ∈ W , we arrange edges in E(wj) in an arbitrary order, say E(wj) =
{{b1, b′1}, {b2, b′2}, . . . , {b|L2|, b

′
|L2|}}. We then form a path Pj by joining edges in E(wj) by edges with

costs infinity. To be precise, we have an edge {b`, b`+1} with cost infinity in Ĝ, for each ` = 1, 2, . . . , |L2|−
1. Because of the projection property, which we will discuss later, we only create such paths for right
vertices.

For each arc (ui, wj) ∈ E, we construct a path Qi,j as follows. For any label b` ∈ L2, let π−1(b`) =
(aq1 , aq2 , . . . , aqα(b`)

) be a sequence of labels in L1 that projects to b` arranged in an arbitrary order. Since
each label aqt maps to an edge {aqt , a′qt} in E(wj), we may abuse π−1(b) to mean edges in E(ui). We
define an order ψ(i, j) by arranging the edges of E(ui) to be of the form

π−1(b1, )π
−1(b2), . . . , π−1(b|L2|)

Then we form a pathQi,j by joining edges in E(ui) according to the order ψ(i, j) by paths of length 2. That
is,

Qi,j = (a1, a
′
1, x1, a2, a

′
2, x2, . . . , a|L1|, a

′
|L1|)

where indices of aq’s are obtained from ψ(i, j). (This is crucial as edges in E(ui) may have different orders
in two different paths Qi,j and Qi,j′ .) We denote by Xi,j a set of vertices x′qs in Qi,j separating edges of

3 Due to a very subtle error in the proof in [11], our construction is slightly different from the original construction.
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E(ui). Next, for each edge {b`, b′`} and {b`+1, b
′
`+1} in E(wj), we join b′` and b`+1 to a vertex xq` , where

xq` is a vertex in Xi,j connecting the path on π−1(b`) to the path on π−1(b`+1). These edges have costs
infinity. This completes the base construction.

Add Source-Sink Pairs: For each vertex ui ∈ U , we add a source vertex si, and for each vertex wj ∈ W ,
we add a sink vertex tj . For each arc (ui, wj) of G, we add a demand (source-sink) pair (si, tj) to the set
of demand pairs D; then we join si to the first vertices of the paths Qi,j and Pj , and we join tj to the last
vertices of the paths Qi,j and Pj . All of these edges have costs infinity.

Final Construction: Now, we add padding edges, which will guarantee that to make the vertex-connectivity
of a source-sink pair si, tJ to be below k, ones have to remove edges corresponding to the feasible labeling
of the label cover instance. For the ease of presentation, we will use ij to mean an arc (ui, wj) of G. Denote
by V (F ) a set of vertices spanned by a set of edges (resp., a graph) F . We define a set of vertices Zi,j to be
the set of neighbors of V (Qi,j) ∪ V (Pj) in the current graph; that is,

Zi,j =
⋃

i′j∈E(G):i′ 6=i

(V (Qi′,j) ∪ {si′}) ∪
⋃

ij′∈E(G):j′ 6=j

(Xi,j′ ∪ V (Pj′) ∪ {tj′})

By the construction, we have

z = max
ij∈E
|Zi,j | ≤ O(∆(G)(|L1|+ |L2|) ≤ O(∆(G) ·max{|L1|, |L2|}).

The size Zi,j and Zi′,j′ for ij 6= i′j′ may be different. Thus, we add to Ĝ a set of auxiliary vertices Si,j with
|Si,j | = z − |Zi,j |. Then we add edges {si, v}, {tj , v} with cost infinity joining si and tj to each vertex
v ∈ Zi,j ∪ Si,j . Note that all the neighbors of {si, tj} ∪ V (Qi,j) ∪ V (Pj) are in Zi,j ∪ Si,j . Finally, we set
k = z + 1, finishing the construction.

Completeness and Soundness: Both the completeness and soundness proofs follows from the next claim.

Claim 22. Consider any source-sink pair (si, tj) ∈ D. There are at most k + 1 openly disjoint si, tj-paths
in Ĝ, and there are at most 2 openly disjoint si, tj-paths in Ĝ−(Zi,j∪Si,j). Moreover, any 2 openly disjoint
si, tj-paths in Ĝ− (Zi,j ∪ Si,j) must have Qi,j and Pj as subpaths.

Proof. First, observe that vertices in Zi,j∪Si,j , V (Qi,j) and V (Pj) are pairwise disjoint by the construction.
It can be seen that Zi,j ∪ Si,j gives k − 1 paths between si and tj , and the path Qi,j and Pj give another
two paths. Thus, we proved both the first and the second statements. For the third statement, it follows by
the construction that all the neighbors of {si, tj}∪V (Qi,j)∪V (Pj) are in Zi,j ∪Si,j , which means that the
only way we can have 2 openly disjoint si, tj-paths in Ĝ− (Zi,j ∪ Si,j) is to follow the two paths Qi,j and
Pj . Hence, the claim follows.

It can be seen that there is a one-to-one mapping between edges with finite cost and the labels of the
minimum-cost label cover instance. Thus, its suffices to show that, for any edges E′ ⊆ E with finite cost,
G − E′ has no k openly disjoint disjoint si, tj paths for all (si, tj) ∈ D if and only if the labeling (f1, f2)
corresponding to E′ is feasible for the minimum-cost label cover instance. To see this, consider the graph
Ĝi,j = Ĝ−(Zi,j∪Si,j) for any source-sink pair (si, tj) ∈ D. By Claim 22, there are at most 2 openly disjoint
si, tj-paths, and these paths have to use Qi,j and Pj . Now, consider the paths Qi,j and Pj . Observe that if
we remove an edge {b, b′} and one edge in π−1

ui,wj , then the resulting graph has no si, tj-path. Conversely, if
we remove {b, b′} but none of the edges in π−1

ui,wj , then we can have a path that goes zig-zag between Qi,j
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and Pj via an edge {xq, b̂}, where {b̂, b̂′} is an edge next to {b, b′}. Therefore, we conclude that there is no
k openly disjoint si, tj-paths in Ĝi,j if and only if we remove edges corresponding to the labeling covering
an edge {ui, wj} of G. This completes the proof of Theorem 21.

F.2 Hardness in Terms of D

For the hardness in terms of the number of demand pairs, it can be seen that for any pair of arcs (ui, wj) and
(ui′ , wj′) that form an induced matching (i.e., G has no arc joining (ui, wj) and (ui′ , wj′)), all the vertices
and edges of subgraphs of Ĝ induced by Zi,j∪Si,j∪V (Qi,j)∪V (Pj) and Zi′,j′∪Si′,j′∪V (Qi′,j′)∪V (Pj′)
are disjoint by the construction. Thus, two arcs (ui, wj) and (ui′ , wj′) are independent if and only if (ui, wj)
and (ui′ , wj′) form an induced matching. By the same arguments as in the case of the rooted k-connectivity
problem on directed graphs, we have the following theorem.

Theorem 23. For k ≥ D, unless NP = ZPP, it is hard to approximate the vertex connectivity k-route cut
problem to within a factor of o(D1/4−ε) for any constant ε > 0.
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