
Deteting and leaning intruders in sensor networksPoonna Yospanya, Bundit Laekhanukit, Danupon Nanongkai, Jittat FakharoenpholDepartment of Computer Engineering,Kasetsart University,Bangkok, 10900 Thailand.E-mails: fpoonna�eng.sr,b4205092�,danupon�eng.sr,jtf�gku.a.thAbstratWe view the problem of deteting and leaning intrud-ers in sensor networks using mobile agents as a ver-sion of the graph searhing problem. The goal is tominimize the number of agents running at the sametime. Three senarios are onsidered, eah differs inthe relative power of the agents and the intruders. Ourmain idea is to use breadth-�rst-searh (BFS) trees toorganize the searh. In the ase where the intruderis most powerful, we searh the graph by levels ofthe nodes on the BFS tree. However, in the seondase where the network is on�gurable, the number ofagents ould be improved signi�antly if a good sub-graph an be found. This motivates us to de�ne theMinimum Searh Number Spanning Tree problem, ofwhih we also prove its hardness. We however showthat one an still use a BFS tree to get a good result. Inthe last senario where the intruder has no informationon the status of the agents, random walks are used. Ineah ase, we prove upper bounds on the number ofagents and provide experiment results.1 IntrodutionThe networks of small but numerous sensors withwireless ommuniation prove to be very useful inremote sensing tasks (see, for example, [17, 13, 6℄).Their unique haraters are the soures of many hal-lenges [5, 7℄. Very often, as in military examples,they are plaed in hostile environment, a result of bothphysial fators, suh as heat, wind, and radio ativity,and also logial fators, i.e., software intruders, whihare the fous of this paper.If the sensor nodes are powerful enough, it ispossible to equip them with management software,e.g., system diagnosing or intrusion detetion sys-tem. However, the resoure, espeially the mem-ory resoure, is very limited in eah node. Storingthese huge, infrequently used programs might ausethe nodes to be unable to perform their main sens-ing task due to memory shortage. Thus, this ruial

managing apability is provided through mobile soft-ware agents. The agent is a program that an migrateitself on the network. When residing on some sen-sor node, it takes are of various system managementtasks. However, it also takes large amount of ompu-tational resoure of the node, interrupting the node'sprimary work. Thus, simply �ooding the entire net-work with agents would stop the whole network fromfuntioning.The problem addressed in this paper is how to or-ganize a small group of agents to trak down an in-truder, whih is a kind of maliious software agent1.We disuss the problem of deteting and leaning theintruder. We note that one way to detet the intruder isby atually leaning the network. This problem is es-sentially a well-studied problem, alled graph searh-ing [3, 16℄, in graph theory. Furthermore, the re-quirement that the agents only move along the edgeof the ommuniation graph results in the ontagiousversion of the problem, de�ned by Barri�ere, Flo-hini, Fraigniaud, and Santoro [1℄ who also give a dis-tributed algorithm that omputes the searh strategywhen the graph is a tree. They leave the ases of otherfamilies of graphs as the open problem. This paperan be onsidered as an attempt to give partial answersto the problem for ommuniation graphs indued bytypial sensor networks.We study three versions of the problem, eah withdifferent agent-intruder relative power. In all ases,the intruder is in�nitely faster than the agents. The�rst ase is when the intruder is adversarial, and theagents have no ontrol over the network. The se-ond is when the network is dynamially on�gurable,so that it is possible to �onstrain� the intruder (andagents) to move only on seleted edges. In these �rsttwo ases, the fast intruder knows the status of the net-work and the agents, and utilizes this knowledge tomove, or evade the agents aordingly. Therefore, todetet the intruder, one essentially has to lean the en-tire network, and the problem of deteting and lean-1From here on, we will refer to the agents doing the detetingand leaning tasks simply as agents, and the intruding agent as in-truder.



ing beome the same problem. The third ase is whenthe intruder does not know the states of the agents. Itan move very fast, but annot plan its ation based onthe agents's hoies. Only in this ase, we provide an-other detetion algorithm based on random walks ongraphs.1.1 The problemThe problem addressed in this paper is how to orga-nize a small group of agents to trak down a fasterintruder. We disuss the problem of deteting andleaning the intruder. We show that one way to detetthe intruder is by atually leaning the network. Thisproblem is essentially a well-studied problem, alledgraph searhing in graph theory.In the graph-searhing problem, introdued byBreish [3℄ and by Parson [16℄, we onsider the fol-lowing situation. A group of agents move along theedges of the graph to �nd an intruder, who movesalong the edges of the graph in�nitely faster and alsohas a omplete knowledge of the status of the agents.Given a graph G, the graph-searhing problem is todetermine the minimum number k suh that there is asearh strategy for k searhers that guarantees the ap-ture of the intruder. The minimum number k is alledthe searh number of the graphG.The variant of the graph-searhing problemwe on-sider in this paper is the ontagious graph searh, de-�ned by [1℄. The problem an be formulated as fol-lows.We are given a graph G whose edges are �on-taminated.� A group of searhers are plaed on thenodes of G. At any step, we an move a searheralong an edge. An edge fu; vg beomes temporarily�leaned� if a searher moves from u to v. However itonly remains leaned if and only if (1) there is anothersearher at u or (2) all edges adjaent to u are leaned.Another requirement for the ontagious graph searhis that the set of leaned edges must form a onnetedsubgraph.1.2 Related resultsMegiddo, Hakimi, Garey, Johnson, and Papadim-itriou [14℄ prove that determining the searh numberis NP-Hard. They also give a linear time algorithmto �nd the searh number on trees. The problem hasmany variants whih are related to onepts in graphtheory (see, for examples, [10, 9, 2, 19℄).The problem has been formulated as a pursuer-evader problem in Demirbas, Arora, and Gouda [4℄where a single faster agent tries to trak a singleslower adversarial intruder. We, however, fous onthe opposite ase, i.e., when the intruder is in�nitelyfaster, but many agents are allowed.

1.3 OrganizationWe give a formal desription of the model and a sum-mary of results in Setion 2. This paper fouses onthree senarios. The �rst ase when the intruder is ad-versarial and the agents have no ontrol over the net-work is desribed in Setion 3. Setion 4 deals withthe seond where the network is on�gurable. Finally,when the intruder is oblivious, Setion 5 gives a briefdisussion on how to use random walks to �nd the in-truders. The experiment results are presented in Se-tion 6. We onlude and list a few interesting openproblems in Setion 7.2 Preliminaries2.1 The model2.1.1 The networkWe model the situation as follows. There are n sen-sor nodes, eah with a unique id, loating in a irulararea of diameterD. The loations of the nodes are uni-formly distributed over the area2. Among the nodes,a speial node s is hosen to be the base station, theonly node that the intruder annot reside. We de�nethe density of the nodes to be � = n�D2=4 . This pa-rameter is not entirely independent of D and r if wewant to ensure onnetivity, as will be disussed lateron.Eah sensor node has a two-way broadast ommu-niation apability with maximum radius r. The lo-ations of the sensor nodes, together with the param-eter r, indue a possible ommuniation graph. Nowwe formalize this. We let V = fv1; v2; : : : ; vng de-note the set of n sensor nodes. For eah node vi,denote its loation with (xi; yi). There is an edge(vi; vj) in the ommuniation graph G = (V;E) iffp(xi � xj)2 + (yi � yj)2 � r. Sine the distanefuntion is symmetri, the graph is undireted.We do not require only the onnetivity of G butalso the property that the distanes between nodes inG approximates the atual distanes in the plane, i.e.,for any pair of nodes x and y whose distane on theplane is l, there is a path from x to y inG with�(l=r)edges. The lowerbound learly holds. The followinglemma states the suf�ient ondition for � that ensurethis property with high probability.Lemma 1 If � = 
(r2 logD=r), or equivalentlyn = 
((D=r)2 log(D=r)), the distanes in the graphapproximate the atual distanes of the nodes in theplane.2This is not a strit requirement. We only need to be able tobound the expeted number of nodes in a given area.



Proof: Cover the irular area with non-overlapping(r=2p2) by (r=2p2) squares whose diagonals are oflength r. This an be done with O((D=r)2) squares.Now onsider only the squares whih lie entirely inthe area; all them full squares. The rest are alledpartial squares. If there is at least one sensor node ineah of the full squares, the graph is learly onneted.Furthermore, for any pair of nodes x and y whose dis-tane is l, every full square interseting a line segmentfrom x to y ontains at least one sensor; this impliesthat there is a path of length at most O(l=r) onnet-ing x and y.We now think of a random proess of plaing sen-sors into all the squares. We laim that the probabilitythat we pik full squares is at least a onstant. Thereare O(D2=((r=2p2) � (r=2p2))) = O((D=r)2) fullsquares. We want to �gure out the expeted number ofnodes to over these squares. This is a oupon olle-tor problem, and we have what we need, on expeta-tion, 
((D=r)2 log(D=r)). The lemma thus follows.We believe that this assumption is not an arti�ialone. Normally, sensor nodes are plaed so that theyan perform a sensing task. To be able to over theentire area, the designer must ensure the overage.The lowerbound on the density � if the overage isrequired an be proved as well (see [8, 18℄). For thestudy on the onnetivity and overage for sensor net-works, see [15, 21℄.2.1.2 Relative power of the network and the in-trudersThe intruder is a software agent that an migrate itselfand (possibly) do harms on the network. In this paper,we allow the intruder to move in�nitely faster than theagents.We have three senarios.� Adversarial intruder, general network. In thissenario, not only the intruder is in�nitely faster,it is also adversarial, i.e., it knows ompletely allthe state of the network. It has the informationon where the agents are and how they move.� Adversarial intruder, on�gurable network. Inthis seond senario, we make the network morepowerful. Eah node an on�gure itself fromwhih node it an ommuniate with. The prob-lem turns out to be a network design problem,i.e., to �nd a subgraph having a good searh strat-egy.� Oblivious intruder. In the �nal senario, we re-move almost all power of the intruder. It anmove as fast as the previous senario, but itknows nothing about the agents.

Exept for the last senario, we also allow the in-truder to dupliate itself, i.e., there an be more thanone intruder at the same time.2.2 The resultWe show the following.� In Setion 3, we show that in the �rst senarioa simple algorithm using breadth-�rst searh anlean the network using O(rn=D) agents. Wealso prove that the number of agents is optimalfor this ase (up to a onstant fator).� Setion 4 shows a simple searh strategy on aspanning tree. This an be applied in the se-ond senario where the network is on�gurable.We show that a breadth-�rst-searh tree an beused and prove that the number of agents neededis O(D=r), independent of the number of sensornodes.� Finally, if the intruder has limited power, i.e., thease that the intruder does not know the statusof the agents, we desribe in Setion 5 how todetet the intruder by random walks, the sameapproah that has been used in [4℄. The analysisof that work uses the over time of the randomwalk, beause its goal is for a single agent to seethe trae of the intruders one. We, however, donot require the intruder to leave any trae on thenetwork. The property that we use is the near-uniform distribution of the agents, resulted fromthe memory loss property of a random walk.We also provide experiment results for these algo-rithms.3 BFS lean-up: adversarial in-truder, general networkIn this ase, the intruder is most powerful. To leanthe network, one needs to quarantine the intruder. Weperform this task in a breadth-�rst-searh fashion. Thealgorithm proeeds in iterations. In the �rst iteration,the agent, initially at s, migrates3 itself to all neigh-bors of s. Next iteration, eah agent migrates to itsunleaned neighbors. The proess ontinues until allnodes are leaned (See Figure 1 for illustration).We need to give a tehnial detail on how an agentmigrates. When an agent at node v migrates to allnodes in set S, it �rst dupliates itself to nodes in S,ativates them, and deletes itself from v. It must guar-antee that the opies in S are running before deletingitself to prevent the intruder from migrating bak to v.3We allow a single agent to migrate to more than one nodes bymeans of dupliation.



1 2

3 4Figure 1: How the searh progresses in BFS levels.Theorem 1 The above algorithm leans the network,and the expeted number of agents running simultane-ously is O(rn=D).Proof: We note that eah level of a BFS tree is a nodeut of the graph. Spei�ally, there is no edge adja-ent to nodes at level i and nodes at level i + 2. Thisobservation implies the orretness.We onsider now the number of agents. On iterationi, the agents resides only in the nodes whose distanesfrom s are between (i � 1)r and ir. The area of thisstrip of width r is at most (2�ir) � r. The maximumis obtained when i = O(D=r), the maximum numberof iterations. This gives the upperbound of O(Dr)on the area. Hene, the expeted number of agents isO(Dr � �) = O(rn=D).It an also be proved that the bound of O(rn=D) isthe best one ould hope for in this ase.Lemma 2 No deterministi algorithm performs bet-ter than O(rn=D).Proof: Again over the irular area with squareswhose diagonals are of length r. At any step t ofan algorithm, we de�ne the square to be leaned ifall of its nodes are leaned. For any algorithm thatperforms better than O(rn=D), eah new leanedsquare needs agents for all of its nodes. The num-ber of new squares must be bounded by O(D=r) inorder to maintain the expeted number of agents atO(Dr �r2 ��) = O(rn=D). Hene, there exists the stept suh that the number of leaned squares is within[((D=r)2=2)�O(D=r); (D=r)2=2℄ � �((D=r)2).We alled the leaned square risky if it is adjaentto the unleaned square. There must be an agent re-siding at eah node of the risky squares. We willshow that if there are k leaned squares, the num-ber of risky squares is 
(pk). Given a �xed num-ber of leaned squares, we an obtain a on�gurationthat ontains least number of risky squares when the

Figure 2: Con�guration with smallest proportion ofrisky squares to peripheral squares. Peripheral squaresare shown in gray, with lighter ones being riskysquares.leaned squares form a onneted shape and are ad-jaent to the boundary of the network area. Let theperipheral squares be the squares on the border ofthe shape, i.e., all the risky squares and the leanedsquares adjaent to the network boundary. The num-ber of risky squares an be proved to be at leastproportional to the number of the peripheral squares(the proportion is minimum at 
(1), when the riskysquares form a ord of the irular area, as illustratedin Figure 2). Let s denote the number of leanedsquares, and s is not more than half of the numberof all squares, the minimum number of peripheralsquares is bounded to 
(ps) by forming irle-likeshape. Our argument thus follows.Now we prove the theorem. At some step of the al-gorithm, there are �((D=r)2) leaned squares, whihrequire 
(p(D=r)2) = 
(D=r) agents. It followsthat the expeted number of agents is 
(rn=D).4 Cleaning along a tree: ad-versarial intruder, on�gurablenetworkIn this setion, we introdue a problem on graphsalled Minimum Searh Number Spanning Tree, andshow that it is NP-Hard in general graph. Althoughin this paper we neither solve the problem nor �nd anapproximation algorithm for the problem, we provethat a simple BFS tree gives a provable bound on thenumber of agents in Setion 4.1 We also show the ex-istene of a good tree under the density assumption, inSetion 4.2.Given a graph G = (V;E),the Minimum SearhNumber Spanning Tree problem is to �nd a spanningtree of G that minimizes the ontagious searh num-ber. The following proposition states that the problemis NP-Hard in general graphs.Proposition 1 The Minimum Searh Number Span-ning Tree is NP-Hard in general graphs.



Figure 3: Agents remains at shaded nodes whild doinga depth-�rst searh along the tree.Proof: We prove the hardness by a redution to theHamiltonian Path problem. Given a graphG, we wantto �nd a spanning tree that minimizes the ontagioussearh number. Note that only one agent is needed tolean a path. Therefore, if G ontains a Hamiltonianpath, that path must be the tree with minimum searhnumber. Now, if one an solve the Minimum SearhNumber Spanning Tree, one an determine if a graphontains a Hamiltonian path. This ompletes our re-dution.4.1 Cleaning along a BFS treeIn this ase, we have some ontrol over how the nodesommuniate. More spei�ally, we an enfore allthe ommuniations to take plae only on the edgesof a ommuniation subgraph H of G. The goal isto �nd the subgraph that admits a good searh strat-egy. We fous only in the ase that the subgraph is atree. This ase has been studied by Barri�ere et al. [1℄who show that given a ommuniation tree, one an�nd the optimal ontagious searh strategy in lineartime. However, to �nd the best tree seems to be dif-�ult beause the best possible tree is a Hamiltonianpath, whih is NP-Hard in general graphs.In this paper, we annot �nd the best tree or a treewhih approximates it. However, we settle for a prov-able bound. The following lemma gives an upper-bound on the number of agents needed in a tree withsome struture. A node in a tree is alled a branhingnode if its degree is greater than two.Lemma 3 Consider a tree T rooted at s. Let m bethe maximum number of branhing nodes along anypath from s to any nodes in the tree. There is a searhstrategy whih usesm agents.Proof: (sketh) Consider running a depth-�rst searhon the tree starting from s. At any branhing node v,
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Figure 4: Illustration of lune and diamondwhen we move further to visit its hildren we leave aopy of the agent with v (see Figure 3). This agentis deleted when the searh baktraks. Clearly, thereare at most m agents at any time. Furthermore, itis straight forward to show that any node remainsleaned after the searh leaves it.We have a simple orollary.Corollary 1 A tree of depth d requires at most dagents.Note that Lemma 1 implies that the depth of abreadth-�rst-searh tree is O(D=r). We have the fol-lowing theorem.Theorem 2 When the network is on�gurable, lean-ing it along a breadth-�rst-searh tree needs O(D=r)agents.4.2 Existene of a good treeWe note that if the sensor nodes are loation-aware, aspanning tree with small searh number an be on-struted. In fat, only three agents are required. Webrie�y disuss how to �nd suh a tree here. Consider,again, the �lling of the area with r=(2p2) by r=(2p2)squares as in Lemma 1. First, we work on eah rowof full squares. All nodes in eah row an be linkedup as a path. We then join eah pair of adjaent rowswith some edge. Finally, we onnet all the nodes ineah partial square to some node in their adjaent fullsquare. We note that these steps an be done if thenodes are loation-aware. One an verify that in thistree, three agents are enough to lean it.4.3 Cleaning networks with no assump-tionCleaning along a BFS tree also works on the networkwith no distribution assumption, i.e., the network isnot required to have a minimum density. The numberof agents is bounded by the depth of the tree.Lemma 4 The depth of BFS tree on any sensor net-work is O(D2=r2)



Proof: We fous on path from root to any leaf. Itan be proved in the same way as Lemma 10 in [20℄that for every edge e we an determine a diamond ofsize p36 jjejj2 whih is disjoint from the diamonds ofother edges (on the same path). To prove this, welaim that, on eah path from root to a leaf, there areno pair of edges that ross eah other, no node on-tained in the lune determined by any edge in that path,and the angle between two edges in different levelsonneting the same node are not less than �=3. Be-ause there are edges of length not less than r=2 inevery other levels of the path, its depth is not morethan 2�(d=2)2p36 (r=2)2 = O(D2=r2).5 Wandering agents: obliviousintruderThis setion desribe a algorithm for deteting intrud-ers in the ase of oblivious intruders. Oblivious in-truders are those whih an move in�nitely faster thanthe agents, however, they do not have any informationon the status of the set of the agents.In fat, if we allow the agent to �jump� randomlyto any nodes, a simple bound an be proven. I.e., ifmagents are plaed independently randomly on n nodes,the probability that the intruders esape the detetionis at most�n� 1n �m = �1� 1n�m � e�m=n:To get this failure probability for this �one-shot� de-tetion to be smaller than a onstant, we need the num-ber of agents to be s onstant fration of n. How-ever, if we allow many rounds of detetion, m ouldbe made muh smaller. Suppose we allow k iteration.We have that the failure probability is roughly(e�m=n)k = e�mk=n:Thus, if we require the failure probability to be lessthan Æ, the number of agents we need is O(n=k +log Æ).The problem we are left with is how to reate thisuniform distribution of agents whih an only movealong the network. The answer omes from the theoryof Markov hains. We an have m agents, eah ran-domly walks on the network, i.e., at any time step theagent piks one of its neighbor nodes to migrate to.If they walk long enough, the distribution of the loa-tions of the agents onverges to some �xed stationarydistribution. It is well-known that on an undiretedgraph, the probability that an agent would end up atany given node is proportional to the node's degree.In our ase the expet degree of a node is proportional
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Figure 5: Cleaning in a BFS fashionto the broadasting range inside the area. Thus, in thease that D � r, the ratio between the smallest areaand the largest area is at most 1=3; this implies that af-ter the agents walk long enough, the distribution getslose to uniform.The expeted number of steps needed to gets loseto uniform is alled mixing time (see [12, 11℄, for ex-ample). Clearly, the over time of a graph�the ex-peted time for a random walk to visit all the nodes�an be used as an upperbound of the mixing time. Itis known that the over time of any graph is O(mn);thus, the agents would �nd the intruders in polynomialtime. A more sophistiated tehnique based on graphexpansion an be used to give loser bounds.6 ExperimentsSetion 6.1 reports the experiment results for the �rsttwo ases. Setion 6.2 desribes the result for the in-truder detetion using random walks.6.1 First two algorithms: using a BFStree to searhWe performed experiments by plaing 100,200,300upto 1000 nodes on a disk of diameter 100 units. Wevaried the transmission radii to be 15,20,25 and 30units.In the �rst algorithm, we lean the network level-by-level on the breadth-�rst-searh tree as in Se-tion 6.1. The result, whih is averaged over 100 trials,is shown in Figure 5. The number of agents needed isthus proportional to the number of nodes (as the radius�xed, the density grows with the number of nodes).
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Figure 6: Cleaning on a BFS treeWhen the network is on�gurable, we use a BFStree to guide the searh. Figure 6 plots the number ofagents required in eah ase. We note that the num-ber of agents required is independent of the number ofnodes.6.2 Cathing oblivious intruders by wan-dering agentsWe experimented with 500, 1000, and 1500 nodes,plaed randomly on a disk of diameter 100 units. Herethe metri is the number of searh steps, sine we �xedthe number of agents on the network. Figure 7 andFigure 8 show the number of steps required for var-ious transmission radii on the network of 1000 and1500 nodes, respetively. Some ases experimentedon 500-node networks were unsuessful due to therelatively low density of nodes, ausing the graph tobe unonneted. The numbers plotted are average of10 trials.7 Conlusion and open problemsWe present multi-agent algorithms for deteting andleaning intruders on sensor networks. Our aim is tominimize the number of agents required at any giventime.Here are some open problems.� Can we �nd an approximation algorithm to theMinimum Searh Number Spanning Tree prob-lem?� Can we generalize results of [1℄ to generalgraphs?
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Figure 7: Wandering agents on 1000-node networks
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