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Abstract

In the k-Connected Directed Steiner Tree problem (k-DST), we are given a directed graph
G = (V,E) with edge (or vertex) costs, a root vertex r, a set of q terminals T ⊆ V − {r},
and a connectivity requirement k > 0; the goal is to find a minimum-cost subgraph H ⊆ G
such that each terminal t ∈ T has k edge-disjoint paths from the root r in H. The k-DST
problem is a natural generalization of the classical Directed Steiner Tree problem (DST) in
the fault-tolerant setting in which the solution subgraph is required to have a r, t-path, for
every terminal t ∈ T , even after removing k − 1 vertices or edges. This paper studies the
k-DST problem when an input graph is quasi-bipartite, i.e., there is no edge joining two
non-terminal vertices.

The fault-tolerant variants of DST have been actively studied in the past decades;
see, e.g., [Cheriyan et al., SODA’12 & TALG], [Laekhanukit, SODA’14], [Laekhanukit,
ICALP’16], [Grandoni-Laekhanukit, STOC’18]. Despite this, for k > 2, the positive results
were known only in special cases, e.g., directed acyclic graphs when |T | + k is a constant
or in a γ-shallow instances for constant γ. In this paper, we make progress toward devis-
ing approximation algorithms for k-DST. We extend the study of DST in quasi-bipartite
graphs [Hibi-Fujito, Algorithmica; Friggstad et al., SWAT’16] to the fault-tolerant setting
and present a polynomial-time O(log k log q)-approximation algorithm for k-DST in quasi-
bipartite graphs, for arbitrary k ≥ 1. Our result is based on the Halo-Set decomposition
developed by Kortsarz and Nutov [STOC’04 & SICOMP] and further developed in subse-
quent works, e.g., [Fakcharoenphol-Laekhanukit, STOC’08 & SICOMP], [Nutov, SODA’09
& Combinatorica], [Nutov, FOCS’09 & TALG]. The main ingredient in our work is a non-
trivial reduction from the problem of covering uncrossable families of subsets to the Set
Cover problem, which can be seen as the generalization of the spider decomposition method
in [Klein-Rav, IPCO’93 & JAL; Nutov, APPROX’06 & TCS].
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1 Introduction

Designing a network that can operate under failure conditions is an important task for Computer
Networking in both theory and practice. Many models have been proposed to capture this
problem, giving rise to the area of survivable and fault-tolerant network design. In the past few
decades, there have been intensive studies on the survivable network design problems; see, e.g.,
[WGMV95, GGP+94, Jai01, FJW06, CK12, Nut12a, GL17]. The case of link-failure is modeled
by the Edge-Connectivity Survivable Network Design problem (EC-SNDP), which is shown to
admit a 2-approximation algorithm by Jain [Jai01]. The case of node-failure is modeled by the
Vertex-Connectivity Survivable Network Design problem (VC-SNDP), which is shown to admit
a polylogarithmic approximation algorithm by Chuzhoy and Khanna [CK12]. Nevertheless,
most of the known algorithmic results pertain to only undirected graphs, where each link has
no prespecified direction. In the directed case, only a few results are known as the general case
of Survivable Network Design is at least as hard as the Label-Cover problem [DK99], which is
believed to admit no sub-polynomial approximation algorithm [Mos15, BGLR93].

This paper studies the special case of the Survivable Network Design problem on directed
graphs, namely the k-Connected Directed Steiner Tree problem (k-DST), which is also known
as the Directed Root k-Connectivity. In this problem, we are given an n-vertex directed graph
G = (V,E) with edge-costs c : E → R+

0 , a root vertex r, a set of q terminals T ⊆ V −{r} and a
connectivity requirement k ∈ Z+; the goal is to find a minimum-cost subgraph H ⊆ G that has k
edge-disjoint1 r, t-paths for every terminal t ∈ T . This problem was mentioned in [FKN09] and
have been subsequently studied in [CLNV14, Lae14, CGL15, Lae16, GL17]. The only known
non-trivial approximation algorithms for k-DST is for the case k = 2 due to the work of Grandoni
and Laekhanukit [GL17], and for the case of γ-shallow instances due to the work of Laekhanukit
[Lae16]. To the best of our knowledge, for k ≥ 3, there were only a couple of positive results on
k-DST: (1) Laekhanukit [Lae16] devised an approximation algorithm whose running time and
approximation ratios depend on the diameter of the optimal solution, and (2) Chalermsook,
Grandoni and Laekhanukit [CGL15] devised a bi-criteria approximation algorithm for a special
case of k-DST, namely the k-Edge-Connected Group Steiner Tree (k-GST), where the solution
subgraph is guaranteed to be an O(log2 n log k)-approximate solution, whereas the connectivity
is only guaranteed to be at least Ω(k/ log n). We focus on the case of k-DST where an input
graph is quasi-bipartite, i.e., there is no edge joining any pair of non-terminal (Steiner) vertices,
which generalizes the works of Hibi and Fujito [HF16], and Friggstad, Könemann and Shadravan
[FKS16] for the classical directed Steiner tree problem (the case k = 1).

The main contribution of this paper is an O(log q log k)-approximation algorithm for k-DST
on quasi-bipartite graphs, which runs in polynomial-time regardless of the structure of the
optimal solution. Our result can be considered the first true polylogarithmic approximation
algorithm whose running time is independent of the structure (i.e., diameter) of the optimal
solution, albeit the algorithm is restricted to the class of quasi-bipartite graphs. Our technique
is different from all the previous works on k-DST [GL17, Lae16, CGL15]; all these results rely
on the tree-rounding algorithm for the Group Steiner Tree problem by Garg, Konjevod and
Ravi [GKR00], and thus require either an LP whose support is a tree or a tree-embedding
technique (e.g., Räcke’s decomposition [Räc08] as used in [CGL15]). Our algorithm, on the
other hand, employs the Halo-Set decomposition devised by Kortsarz and Nutov [KN05] and
further developed in a series of works [FL12, CL13, Nut12a, Nut14, Lae15, Nut12b]. It is worth
noting that the families of subsets decomposed from our algorithm are not uncrossable. We
circumvent this difficulty by reducing it to the Set Cover problem. Our algorithm can be seen

1While we define the problem here as an edge-connectivity problem, our algorithm itself works for both edge
and vertex connectivity variants, and can handle both edge and vertex costs.
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as a variant of the spider decomposition method developed by Klein and Ravi [KR95], and
Nutov [Nut10].

Lastly, we remark that it was discussed in [GL17] that the tree-embedding approach reaches
the barrier as soon as k > 2, and this holds even for quasi-bipartite graphs. Please see Ap-
pendix B for discussions. While our algorithm exploits the structure of quasi-bipartite graphs,
we hope that our technique using the Halo-Set decomposition would be an alternative method
that sheds some light on developing approximation algorithms for the general case of k-DST
for k > 2.

1.1 Related Works

Directed Steiner tree has been a central problem in combinatorial optimization. There have
been a series of work studying this problem; see, e.g., [Zel97, CCC+99, Rot11, FKK+14,
GLL19, GN18]. The best approximation ratio of O(qε), for any ε < 0, in the regime of
polynomial-time algorithms, is known in the early work of Charikar et al. [CCC+99]2, which
leads to an O(log3 q)-approximation algorithm that runs in quasi-polynomial-time. Very re-
cently, Grandoni, Laekhanukit and Li [GLL19] developed a framework that gives a quasi-
polynomial-timeO(log2 q/ log log q)-approximation algorithm for the Directed Steiner Tree prob-
lem, and this approximation ratio is the best possible for quasi-polynomial-time algorithms,
assuming the Projection Games Conjecture and NP ⊆

⋃
δ>0 ZPTIME(2n

δ
). The same approxi-

mation ratio was obtained in an independent work of Ghuge and Nagarajan [GN18].
The study of Steiner tree problems on quasi-bipartite graphs was initiated by Rajagopalan

and Vazirani [RV99] in order to understand the bidirected-cut relaxation of the (undirected)
Steiner tree problem. Since then the special case of quasi-bipartite graphs has played a central
role in studying the Steiner tree problem; see, e.g., [Riz03, CDV11, RZ00, KPT11, BGRS13,
GORZ12]. For the case of directed graphs, Hibi and Fujito [HF16], Friggstad, Könemann
and Shadravan [FKS16] independently discovered O(log n)-approximation algorithms for the
directed Steiner tree problem on quasi-bipartite graphs. Assuming P 6= NP, this matches to the
lower bound of (1− ε) lnn, for any ε > 0, inherited from the Set Cover problem [Fei98, DS14].

The generalization of the Steiner tree problem is known as the Survivable Network De-
sign problem, which has been studied in both edge-connectivity [WGMV95, GGP+94, Jai01],
vertex-connectivity [CK12] and element-connectivity [FJW06] settings. The edge and element
connectivity Survivable Network Design problems admit factor 2 approximation algorithms via
the iterative rounding method, while the vertex-connectivity variant admits no polylogarithmic
approximation algorithm [KKL04, CCK08, Lae14] unless NP ⊆ DTIME(npolylog(n)). To date,
the best approximation ratio known for the Vertex-Connectivity Survivable Network problem
is O(k3 log n) due to the work of Chuzhoy and Khanna [CK12]. The single-source k-vertex-
connectivity variant, which is closely related to the problem considered in this paper, has been
studied in [CCK08, CK08, CK09, Nut12a, Nut18], culminating in the best approximation ratio
of O(k log k) due to Nutov [Nut12a].

In vertex-connectivity network design, one of the most common techniques is the Halo-Set
decomposition method, which has been developed in a series of works [KN05, FL12, CL13,
Nut14]. The main idea is to use the number of minimal deficient sets as a notion of progress.
Here a deficient set is a subset of vertices that needs at least one incoming edge to satisfy the
connectivity requirement. The minimal deficient sets in [KN05, FL12, CL13, Nut14], called
cores, are independent and have only polynomial number, while the total number of deficient
sets is exponential on the number of vertices. The families of deficient sets defined by these
cores allow us to keep track of how many deficient sets remain in a solution subgraph. The

2The same result can be obtained by applying the algorithm by Kortsarz and Peleg in [KP97]
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early version of this method can be traced back to the seminal result of Frank [Fra99] and that
of Frank and Jordan [FJ99]; please see [FJ16] for reference therein.

The spider decomposition method was introduced by Klein and Ravi [KR95] to handle the
Vertex-Weighted Steiner Tree problem. This technique gives a tight approximation result (up
to constant factor) to the problem. Later, Nutov generalized the technique to deal with the
Minimum Power-Cover problems [Nut10] and subsequently for the Vertex-Weighted Element-
Connectivity Survivable Network Design problem [Nut12a].

1.2 Our Result

The main result in our paper is an O(log q log k)-approximation algorithm for k-DST on quasi-
bipartite graphs. To keep the flow, our algorithm is presented as a randomized algorithm. The
derandomization is provided in Appendix A. Since our algorithm is LP-based, it also gives an
upper bound on the integrality gap of the standard LP.

Theorem 1. Consider the k-Connected Directed Steiner Tree problem where an input graph
consists of an n-vertex quasi-bipartite graph and a set of q terminals. There exists a polynomial-
time O(log q log k)-approximation algorithm. Moreover, the algorithm gives an upper bound on
the integrality gap of O(log q log k) for the standard cut-based LP-relaxation of the problem.

2 Preliminaries

We use standard graph terminologies. Given a graph G, we denote by V (G) and E(G) the
vertex set and edge set of G, respectively. For any subset of vertices U ⊆ V (G), we denote
by δinG (U) the set of edges in G entering the set U and denote by deginG (U) its cardinality. We
denote by EG(U) the set of edges that have both head and tail in U . That is,

δinG (U) = {wv ∈ E(G) : v ∈ U,w 6∈ U}, deginG (U) = |δinG (U)|, and

EG(U) = {vw ∈ E(G) : v, w ∈ U}.

We will omit the subscript G if the graph G is known in the context, and we may replace EG
with another edge-set, e.g., E+. Then, for any subset of edges E′, we denote the total cost of
edges in E′ by cost(E′) =

∑
e∈E′ ce.

2.1 Problem Definitions

k-Edge-Connected Directed Steiner Tree (k-DST). In the k-Edge-Connected Directed
Steiner Tree problem (k-DST), we are given a graph G with non-negative edge-costs c : E −→
R+
0 , a root vertex r and a set of q terminals T ⊆ (V (G) − {r}), and the goal is to find a

minimum-cost subgraph H ⊆ G such that H has k edge-disjoint r → t-paths for every terminal
t ∈ T .

Rooted Connectivity Augmentation (Rooted-Aug). In Rooted-Aug, we are given a
graph G with the edge-set E(G) = E0 ∪ E+, where E0 is the set of zero-cost edges and E+ is
the set of positive-cost edges, a root vertex r and a set of terminals T ⊆ V (G) − r such that
E0 induces a subgraph G0 ⊆ G that has ` edge-disjoint r → t-paths for every terminal t ∈ T .
The goal in this problem is to find a minimum-cost subset of edges E′ ⊆ E+ such that E0 ∪E′
induces a subgraph H ⊆ G that has `+ 1 edge-disjoint r → t-paths for every terminal t ∈ T .

We may phrase Rooted-Aug as a problem of covering deficient sets as follows. We say that a
subset of vertices U ⊆ V (G) is a deficient set if U separates the root vertex r and some terminal
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t ∈ T , but U has less than ` + 1 incoming edges (which means that U has exactly ` incoming
edges); that is, U is a deficient set if r 6∈ U , U ∩ T 6 ∅ and deginG0

(U) = `. These subsets of
vertices need at least one incoming edge to satisfy the connectivity requirement. We say that
an edge e ∈ E+ covers a deficient set U if deginE0∪{e}(U) ≥ `, which means that adding e to G0

satisfies the connectivity requirement on U .
Let F denote the set of all deficient sets in the graph G0. Then Rooted-Aug may be phrased

as the problem of finding a minimum-cost subset of edges E′ ⊆ E+ that covers all the deficient
sets, which can be described by the following optimization problem:

min{E′ ⊆ E+ : deginE′(U) ≥ 1 ∀U ∈ F}.

Set Cover. Given a universe U of n elements and a collection of m subsets S1, . . . , Sm ⊆ U ,
each associated with weight wj , for j = 1, . . . ,m, the goal in the Set Cover problem is to find
a collection S∗ of subsets with minimum total weights so that the union of all subsets in S∗ is
equal to U .

2.2 Deficient Sets, Cores and Halo-families

This section discusses subsets of vertices called deficient sets that certify that the current solution
subgraph in Rooted-Aug (and also in k-DST) does not meet the connectivity requirement. To
be formal, a subset of vertices U ⊆ V (G) is called a deficient set in the graph G if T ∩ U 6= ∅,
r 6∈ U and deginG (U) < k; that is, (V (G)− U,U) induces an edge-cut of size < k that separates
some terminal t ∈ U ∩ T from the root vertex r. We say that an edge vw 6∈ E(G) covers a
deficient set U if deginG+vw(U) ≥ k, i.e., the set U is not a deficient set after adding the edge vw.
Similarly, we say that a subset of edges E′ covers a deficient set or a collection of deficient sets
F if deginG+E′(U) ≥ k, for every deficient set U ∈ F .

Let F be a family of deficient sets. A core C ∈ F is a deficient set such that there is no
deficient set in F properly contained in C. The Halo-family Halo(C) of a core C is the collection
of all deficient sets in F that contain C but no other core C ′ 6= C. The Halo-set H(C) of C is
the union of all the deficient sets in Halo(C), i.e., H(C) =

⋃
U∈Halo(C) U .

2.3 LP-relaxations

Throughout this paper, we will use the following standard (cut-based) LP-relaxation for k-DST
and Rooted-Aug. Our LP-relaxations will be written in terms of deficient sets. We denote by
Val(z) the cost of the optimal solution to an LP z.

LP for k-DST: Here we present the standard cut-based LP-relaxation for k-DST, denoted by
LP(k). The collection of deficient sets in this LP is defined by F(k) = {U ⊆ V −{r} : U∩T 6= ∅}.

LP(k) =


min

∑
e∈E cexe

s.t. ∑
e∈δinG (U) xe ≥ k ∀U ∈ F(k)

0 ≤ xe ≤ 1 ∀e ∈ E(G)

LP for Rooted-Connectivity Augmentation: Here we assume that the initial graph G0

is already `-rooted-connected, and the goal is to add edges to increase the connectivity of the
solution subgraph by one. Thus, the collection of deficient sets in this problem is defined by
F(`) = {U ⊆ V : U ∩ T 6= ∅,deginG0

(U)| = `}. Below is the standard cut-based LP-relaxation
for the problem of increasing the rooted-connectivity of a graph by one.
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LPaug(`) =


min

∑
E(G)−E(G0)

cexe
s.t. ∑

e∈δin
E(G)−E(G0)

(U) xe ≥ 1 ∀U ∈ F(`)

0 ≤ xe ≤ 1 ∀e ∈ E(G)− E(G0)

3 Properties of Deficient Sets in Rooted Connectivity Augmen-
tation

This section presents the basic properties of deficient sets, cores and Halo-families in a Rooted-
Aug instance, which will be used in the analysis of our algorithm. Readers who are familiar
with these properties may skip this section. Similar lemmas and proofs can be seen, e.g., in
[CL13]. Our proofs are rather standard. The readers who are familiar with these properties
may skip to the next section.

The first property is the uncrossing lemma for deficient sets of Rooted-Aug.

Lemma 1 (Uncrossing Properties). Consider an instance of Rooted-Aug. Let G0 be a rooted
`-connected graph, and let A,B be deficient sets in G0 that have a common terminal, i.e.,
A ∩B ∩ T 6= ∅. Then both A ∪B and A ∩B are deficient sets.

Proof. We prove the lemma by using Menger’s theorem and the submodularity of the indegree
function degin. First, since G0 is rooted `-connected, we know from Menger’s Theorem that
degin(A) and degin(B) = `. We also know that degin(A∪B) ≥ ` and degin(A∩B) ≥ ` because
the root r is not contained in either A or B and that A ∩B ∩ T 6= ∅. By the submodularity of
degin, it holds that

2` = degin(A) + degin(B) ≥ degin(A ∪B) + degin(A ∩B) ≥ 2`.

Therefore, degin(A∪B) = degin(A∩B) = `, implying that both A∪B and A∩B are deficient
sets in the Rooted-Aug instance.

The next lemma gives an important property of the cores arose from deficient sets in directed
graphs; that is, two cores may have non-empty intersection on Steiner vertices, but they are
disjoint on terminal vertices.

Lemma 2 (Members of Two Halo-families are Terminal Disjoint). Let C and C ′ be two distinct
cores. Then, for any deficient sets U ∈ Halo(C) and U ′ ∈ Halo(C), it holds that U ∩U ′∩T = ∅,
i.e., any members of two distinct Halo-families have no common terminals.

Proof. We prove the lemma by contradiction. Let U and U ′ be deficient sets U ∈ Halo(C) and
U ′ ∈ Halo(C) such that U and U ′ share a terminal t ∈ U ∩U ′ ∩ T . We may assume that U and
U ′ are minimal such sets, i.e., there are no deficient sets W ∈ Halo(C) and W ′ ∈ Halo(C) such
that (1) W is properly contained in U , (2) W ′ is properly contained in U ′ and (3) t ∈W ∩W ′.
By Lemma 1, U ∩ U ′ must be a deficient set properly contained in both U and U ′ (because
C 6= C ′). This contradicts the minimality of U and U ′.

Then we combine Lemma 2 and that there is no edge joining any pair of Steiner vertices in
quasi-bipartite graphs, we have the Internally Edge-Disjoint Lemma.

Lemma 3 (Internally Edge-Disjoint). Consider a quasi-bipartite graph G. For any edge e ∈
E(G), there is at most one core C ∈ C such that e ∈ E(H(C)).
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Proof. Consider any edge uv ∈ E(G). Since G is a quasi-bipartite graph, one of u and v must
be a terminal. By Lemma 2, we know that there can be at most one Halo-family Halo(C), for
some C ∈ C, whose member contains both u and v. Hence, the lemma follows.

The next lemma shows that both the union and the intersection of any two deficient sets in a
Halo-family Halo(C) are also deficient sets in Halo(C). This is a crucial property for computing
the halo-set H(C) as we are unable to list all the deficient sets in a Halo-family.

Lemma 4 (Union and Intersection of Halo-Family Members). Let F be a family of all deficient
sets in G0, and let C be any core w.r.t. F . Then, for any two deficient sets A,B ∈ Halo(C),
both A ∩B and A ∪B are also deficient sets in Halo(C).

Proof. Consider any deficient sets A,B ∈ Halo(C). Since both A and B contain C, they share
at least one terminal. Thus, Lemma 1 implies that both A ∪ B and A ∩ B are deficient sets.
Clearly, A ∩B contains C and no other core C ′ 6= C. Thus, A ∩B is a member of Halo(C).

Next consider A ∪ B. Assume for a contradiction that A ∪ B is not a member of Halo(C).
Then A ∪ B must contain a core C ′ 6= C. This means that at least one of the sets, say A,
contains some terminal t ∈ C ′. By Lemma 1, since A and C ′ have a common terminal, it holds
that A ∩ C ′ is a deficient set. Since C ′ ( A (because A is a member of Halo(C)), we have that
A ∩ C ′ is a deficient set that is strictly contained in C ′, a contradiction.

It follows as a corollary that H(C) =
⋃
U∈Halo(C) U is a also deficient set in Halo(C).

Corollary 1 (Halo-set is deficient). Let F be a family of all deficient sets in G0, and let C be
any core w.r.t. F . Then the Halo-set H(C) =

⋃
U∈Halo(C) U is also a deficient set in Halo(C).

Corollary 1 implies that H(C) can be computed in polynomial-time using an efficient
maximum-flow algorithm. Such an algorithm can be seen in [CL13].

Corollary 2. For any core C, its Halo-set H(C) =
⋃
U∈Halo(C) U can be computed in polynomial-

time.

4 Our Algorithm and Its Overview

This section provides the overview of our algorithm, which is based on the connectivity augmen-
tation framework plus the Halo-set decomposition method. To be specific, our algorithm starts
with an empty graph called H0 = (V, ∅). Then we add edges from G to the graph H0 to form
a graph H1 that has at least one path from the root vertex r to each terminal t ∈ T . We keep
repeating the process, which produces graphs H2, . . . ,Hk such that each graph H`, for ` ∈ [k],
has ` edge-disjoint r, t-paths for every terminal t ∈ S. In each iteration ` ∈ [k], we increase the
rooted-connectivity of a graph by one using the Halo-set decomposition method.

We discuss the connectivity augmentation framework in Section 4.1 and discuss the algo-
rithm based on the Halo-set decomposition method for Rooted-Aug in Section 4.2. We devote
Section 5 to present a key subroutine for solving the the problem of covering Halo-families via
a reduction to the Set Cover problem.

4.1 Connectivity Augmentation Framework

A straightforward analysis of the connectivity augmentation framework incurs a factor k in
the approximation ratio. Nevertheless, provided that the approximation algorithm for Rooted-
Aug is based on the standard LP for k-DST, the cost incurred by this framework is only∑k

`=1 1/(k− `+ 1) = O(log k). This is known as the LP-scaling technique, which has been used
many times in literature; see, e.g., [GGP+94, KN05, CLNV14].
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Lemma 5 (LP-Scaling). Consider an instance of the k-DST problem, and its corresponding LP,
namely LP(k). Suppose there exists an algorithm that produces an integer solution to LPaug(`)
with costs at most α` · Val(LPaug(`)). Then there exists an

∑k
`=1 α`/(k − ` + 1) = O(α log k)

approximation algorithm for k-DST, where α = maxk`=1α`.

Proof. Let G be the input graph in the k-DST instance. Let H∗ be an optimal integral solution
to k-DST (and thus LP(k)), and letG0 ⊆ G be the initial solution subgraph of Rooted-Aug where
we wish to increase the connectivity of G0 from ` to `+ 1 by adding edges from E(G)−E(G0).
Then we can define the following LP solution {xe}e∈E(G) to LPaug(`):

xe =

{
1
k−` if e ∈ E(H∗)− E(G0)

0 otherwise.

Let F be the family of deficient sets in the Rooted-Aug instance. Then we know by Menger’s
theorem that any deficient set U ∈ F has at least k incoming edges in H∗, and at most ` of
them are in G0 (because deginG0

(U) = ` by the definition of the deficient set). Consequently, we
have ∑

e∈δin
E(G)−E(G0)

(U)

xe ≥ (k − `) · 1

k − `
= 1.

This means that {xe}e∈E(G)−E(G0) is a feasible solution to LPaug(`) whose cost is at most (1/(k−
`))Val(LP(k)). The lemma then follows by taking the summation over all ` = 0, 1, . . . , k−1.

4.2 Algorithm for Rooted-Aug via Halo-set Decomposition

The algorithm for rooted-connectivity augmentation is built on the Halo-set Decomposition
framework. In detail, we decompose vertices in the graph G0 into a collection of subsets of
vertices, each is defined by a Halo-family Halo(C), which is in turn defined by its core C. Then
we add edges to cover all the deficients that are contained in any of these families. However, the
collection of Halo-families does not include all the deficient sets in the graph because a deficient
set that contain two distinct cores are not recorgnized by any Halo-families. Thus, after we
cover all these Halo-families (i.e., we add edges covering all its members), we need to recompute
the deficient sets remaining in the graph and form the system of Halo-families again.

Following the above method, our algorithm runs in multiple iterations. In each iteration, we
first compute all the cores and their corresponding Halo-set in the current solution subgraph,
which can be done in polynomial time. (We recall that it is not possible to compute a Halo-
family explicitly because it may contain exponential number of deficient sets.) These cores
define a collection of Halo-families. Our goal is then to find a subset of edges E′ that covers
Halo-families in this collection. To be formal, by covering a Halo-family, we mean that we find
a subset of edges that covers every deficient set in its family. Here our algorithm departs from
the previous application of the Halo-set decomposition as we are not aiming to cover all the
Halo-families. We cover only a constant fraction of Halo-families from the collection, which is
sufficient for our purposes. Once we found the subset of edges E′, we add it to the solution
subgraph and recompute the cores and their Halo-sets.

To find a set of edges E′, we need to compute an optimal solution to the LP for augmenting
the connectivity of a graph from ` to ` + 1 (i.e., LPaug(`)), denoted by {xe}e∈E+ , where E+

is the set of edges not in the initial solution subgraph H`, which is `-rooted-connected. Using
this LP-solution, we can find a set of edges E′ that covers at least 1/9 fraction of the collection
of Halo-families whose cost is at most 4

∑
e∈E+

cexe via a reduction to the Set Cover problem.
This subroutine is presented in Section 5. Note that the mentioned subroutine is a randomized
algorithm that has a constant success probability; thus, we may need to run the algorithm for
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O(log n) times to guarantee that it successes with high probability. The derandomization of our
subroutine is presented in Appendix A. Our algorithm for the rooted-connectivity augmentation
is presented in Algorithm 1.

Algorithm 1 Rooted-Connectivity Augmentation

Input : An input graph G and an `-rooted-connected graph H`

Output : An (`+ 1)-rooted-connected graph H`+1

1: Initialize H`+1 := H`.
2: repeat
3: Find an optimal solution x to LPaug(`).
4: Compute cores and their corresponding Halo-sets in H`+1.
5: Find a subset of edges E′ that covers at least 1/9 fraction of the Halo-families whose

cost is at most 4
∑

e∈E+
cexe.

6: Update H`+1 := H`+1 + E′.
7: until The graph H`+1 has no deficient set (and thus has no core).
8: return H`+1

One may observe that the covering problem in our setting is different from that in the usual
Set Cover problem as after we add edges to cover γ fraction of the Halo-families, it is not
guaranteed that the number of Halo-families will be decreased by a factor γ. This is because
some of the deficient sets in the previous iterations may become new cores in the solution
subgraph. Fortunately, we have a key property that any new core that was not contained in any
Halo-families must contain at least two old cores. As a result, we can promise a factor (1−γ/2)
decrease. Please see Figure 1 for illustration. The subsets C1 and C2 are two cores covered by
e1 and e2, respectively. After adding two edges, C1 and C2 are no longer a deficient set. Now
the deficient set C3 ⊇ C1

⋃
C2 becomes a new core, which contains two old cores.

Figure 1: After adding edges e1 and e2 to cover C1, C2, a new core C3 appear. The new core
C3 must contain at least two old cores.

Lemma 6 (The number of cores decreases by a constant factor). Let H be the current solution
subgraph whose number of cores is ν, and let E′ be a set of edges that covers at least γ fraction
of the Halo-families in H. Then the number of cores in H ∪ E′ is at most (1 − γ/2)ν. In
particular, the number of cores in the graph H ∪E′ decreases by a constant factor, provided that
γ is a constant.

Proof. Let us count the number of cores in the graph H ∪E′. Consider any core C in H ∪E′. If
C is a member of some Halo-families Halo(C ′) in H, then we know that Halo(C ′) is not covered
by E′. Thus, there can be at most (1− γ)ν cores of this type.

Next assume, otherwise, that C is not a member of any Halo-family in H. Then, by def-
inition, C must contain at least two cores in H. Notice that, for every core C ′ in H that is
contained in C, all of the deficients in Halo(C ′) must be covered by E′. Suppose not. Then
there exists a deficient set U in Halo(C ′) that is not covered by E′. Since U interesects C on the
terminal set, Lemma 1 implies that U ∩ C is also a deficient set. By Lemma 2, any two cores
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are disjoint on the terminal set, which means that U ∩ C is strictly contained in C (because C
contains another core C ′′ distinct from C ′). The existence of U ∩C contradicts the fact that C
is a core in H ∪ E′. Thus, we conclude that H ∪ E′ has at most (γ/2)ν cores of this type.

Summing it up, the total number of cores in H ∪ E′ is at most (1− γ/2)ν as claimed.

It follows as a corollary that our algorithm terminates within O(log q) iterations.

Corollary 3. The number of iterations of our algorithm is at most O(log q), where q is the
number of terminals.

By Corollary 3, our algorithm for rooted-connectivity augmentation terminates with in
O(log q), and each round, we buy a set of edges whose cost is at most 4

∑
e∈E+

cexe; see Section 5.
Therefore, the total cost incurred by our algorithm is at most O(log q) times the optimal LP
solution, implying an LP-based O(log q)-approximation algorithm as required by Lemma 5. The
following lemma then follows immediately.

Lemma 7. Consider the problem of augmenting the rooted-connectivity of a directed graph from
` to `+ 1 when an input graph is quasi-bipartite. There exists a polynomial-time algorithm that
gives a feasible solution whose cost at most O(log q) that of the optimal solution to the standard
LP-relaxation. In particular, there exists a polynomial-time LP-based O(log q)-approximation
algorithm for the problem.

Remark Lastly, we remark that one may simply cover all the Halo-families in each iteration.
However, the number of rounds the randomized algorithm required will be at least O(log q),
meaning that the total number of iterations is O(log2 q). Consequently, this implies that the
algorithm has to pay a factor O(log2 q) in the approximation ratio. We avoid the extra O(log q)
factor by covering only a constant fraction of the Halo-families.

4.3 Correctness and Overall Analysis

First, to prove the feasibility of the solution subgraph, it suffices to show that the rooted-
connectivity of the solution subgraph increasess by at least one in each connectivity augmenta-
tion step. This simply follows by the stopping condition of the Halo-set decomposition method
runs until there exists no core in the graph (and thus no deficient sets). It then follows by
Menger’s theorem that the number of edge-disjoint paths from the root vertex r to each termi-
nal t ∈ T must be increased by at least one.

Next we analyze the cost. By Lemma 7, the approximation factor incurred by Algorithm 1 is
O(log q), and it also bounds the integrality gap of LPaug(`). Consequently, letting OPTk denote
the cost of an optimal solution to k-DST, by Lemma 5, the total expected cost incurred by the
algorithm is then

k∑
`=1

O(log q) · Val(LPaug(`)) = O(log q) ·

(
k∑
`=1

1

k − `+ 1

)
· Val(LP(k))

= O(log q log k) · OPTk.

This completes the proof of Theorem 1.

5 Covering Halo-Families via Set Cover

In this section, we present our subroutine for covering the Halo-families that arose from the
Rooted-Aug problem. As mentioned in the introduction, the key ingredient in our algorithm is
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the reduction from the problem of covering Halo-families to the Set Cover problem. However,
our instance of the Set Cover problem has an exponential number of subsets, which more
resemblances to an instance of the Facility Location problem. To prove our result, one route
would be using Facility Location as an intermediate problem in the presentation. However, we
prefer to directly apply a reduction to the Set Cover problem to avoid confusing the readers.

5.1 The Reduction to Set Cover and Algorithm

As an overview, our reduction follows from simple observations.

• (P1) For any minimal subset of edges that covers a Halo-family Halo(C), there is only
one edge e that has head in Halo(C) and tail outside. Let us say e is outer-cover Halo(C)
since it is coming from the outside of the family.

• (P2) Any edge can be contained in at most one Halo(C). i.e., there is at most one halo-
family Halo(C) such that both head and tail of e are contained in H(C). (From Lemma 3.)

• (P3) An LP for covering a single Halo-family is integral.

We remark that while Properties (P1) and (P3) hold in general instances of k-DST, Prop-
erty (P2) holds only in quasi-bipartite graphs.

Now an instance of the Set Cover problem can be easily deduced. We define each Halo-
family Halo(C) as an element, and we define each edge e as a subset. However, we may have
multiple subsets corresponding to the same edge e as it may serve as an “outer-cover” for many
Halo-families. Thus, we need to enumerate all the possible collections of Halo-families that are
outer-covered by e. We avoid getting exponential number of subsets by using the solution from
an LP (for the connectivity augmentation problem) as a guideline.

Before proceeding, we need to formally define some terminologies. Let Ĝ be the current
solution subgraph. We say that an edge e outer-covers a Halo-family Halo(C) if the head of e
is in H(C) and the tail is not in H(C) and that there exists a subset of edges E′ ⊆ E+ −E(Ĝ)
such that (1) both endpoints of every edge in E′ are contained in H(C) and (2) the set of edges
E′ ∪ {e} covers Halo(C).

For each Halo-family Halo(C), we define the set of edges IeC to be the minimum-cost subset

of edges E′ ⊆ E+−E(Ĝ) whose both endpoints are in H(C) and that E′ ∪ {e} covers Halo(C),
and we denote the cost of IeC by σeC . We may think that σeC is the cost for covering Halo(C) given
that e has been taken for free. We use the notation E[C] to mean the set of edges whose both
endpoints are contained in the Halo-set H(C). We denote the cost of the fractional solution
restricted to E[C] by costx(E(C)) =

∑
e∈E[C] cexe.

Our reduction is as follows. Let H be the current solution subgraph. For each core C in
H, we define an element C. For each edge e ∈ E+ − E(H), we define a subset Se by adding
to Se an element C if σeC ≤ costx(E[C]). This completes a reduction. Notice that the resulting
instance of the Set Cover problem has polynomial size. To show that our reduction runs in
polynomial-time, we need to give a polynomial-time algorithm for computing σeC , which we
defer to Section 5.4. Here we leave a forward reference to Lemma 11. Our algorithm covers a
constant fraction of the collection of Halo-families by simply picking each edge e with probability
xe and add all the edges IeC , for all cores C ∈ Se, to the solution subgraph; if a core C is outer-
covered by two picked edges, then we add only one edge-set IeC . We claim that the set of edges
chosen by our algorithm covers at least 1/9 fraction of the Halo-families, while paying a cost
of at most four times the optimum (with a constant probability). In particular, we prove the
following lemma.
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Lemma 8. With constant probability, the above algorithm covers at least 1/9 fraction of the
collection of Halo-families, and the cost of the of the edges chosen by the algorithm has cost
at most 4

∑
e∈E+

cexe. In particular, the algorithm partially covers the collection of the Halo-
families, while paying the cost of at most constant times the optimum.

To prove Lemma 8, we need to show that the fractional solution defined by {xe}e∈E+ is
(almost) feasible to the Set Cover instance, which then implies that the set of edges we bought
covers a constant fraction of the Halo-families with probability at least 2/3. Then we will show
that the cost of the fractional solution to the Set Cover instance is at most twice that of the
optimal solution to LPaug(`), thus implying that we pay at most six times the optimum with
probability 2/3.

To be more precise, we show in Section 5.2 that our algorithm covers at least 1/3 fraction of
the Halo-families in expectation, meaning that we cover less than 1/9 fraction with probability
at most 1/3. Then we show in Section 5.3 that the expected cost incurred by our algorithm is
2
∑

e∈E+
cexe, thus implying that we pay more than six times that of the LP with probability

at most 1/3. Applying the union bound, we conclude that our algorithm covers at least 1/9
fraction of the Halo-families, while paying the cost of at most six times the optimal LP solution
with probability at least 1/3. (Note that in Section 5.3, we show a slightly stronger statement
that the cost incurred by our algorithm is 4

∑
e∈E+

cexe with probability at least 2/3.) To finish
our proof, we proceed to prove the above two claims and then prove the structural properties
used in the forward references.

5.2 Partial Covering

We show in this section that our algorithm covers at least 1/9 fraction of the Halo-families with
probability at least 1/3

First, we show that the LP variable defined by xe is almost feasible to the LP-relaxation of
the Set Cover problem. We note that our proof will need a forward reference to Lemma 10.

Lemma 9. The LP variable {ye}e∈E+, where ye = min{1, 2xe} for all edges e ∈ E+ is feasible
to the Set Cover instance. That is, for any core C in the graph,∑

e∈E+:C∈Se

xe ≥ 1/2.

Proof. Consider a core C, which corresponds to an element in the Set Cover instance. We take
the set of edges incident to its Halo-set H(C), and find a minimal vectors {x′e}e∈E+ such that
{x′e}e∈E+ fractionally covers the Halo-family Halo(C) and x′e ≤ xe for all edges e ∈ E+. (Note
that by minimality we mean that, for any edge e and any ε > 0, decreasing the value of x′e by
ε results in an infeasible solution.) By Lemma 10, we have

∑
e∈δin(H(C)) x

′
e = 1, i.e., the total

weight of the LP value of edges incoming to H(C) is exactly one.
Next consider the following LP.

LPhalo =


min

∑
e′∈E+(H(C)) ce′xe′

s.t
∑

e′∈δinE+
(U) xe′ ≥ 1 ∀U ∈ Halo(C)

0 ≤ xe′ ≤ 1 ∀e ∈ E+(H(C))

By Lemma 1, we know that both the intersection and union of any two deficient sets in
Halo(C) are also deficient sets in Halo(C). This means that the Halo-family Halo(C) is an
intersecting family. It then follows from the result of Frank [Fra79] that the above LP is
Totally Dual Integral, which means that any convex point of its polytope is an integral solution
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(including the optimal one). Since {x′e}e∈E′ is a feasible solution to LPhalo, it can be written as
a convex combination of integral vectors in the polytope, i.e.,

x =

w∑
i=1

λiz
i, where

w∑
i=1

λi = 1.

Let Fi be the set of edges induced by each integral vector zi (i.e., Fi is the support of zi). Since
the LP requires H(C) to have at least one incoming edge, we deduce that, for each Fi, there
exists one edge ei ∈ Fi entering H(C).

Now we compare the cost of σeiC to the cost of Fi − {ei}. By minimality of σeiC , we know
that σeiC ≤ cost(Fi − {ei}) for all i = 1, . . . , w. We recall that we add a core C to the set Sei
only if σeiC ≤ costx(E[C]). Since costx′(E[C]) is the convex combination of Zi, at least half
of the Fi (w.r.t. to the weight λi) must have σeiC ≤ cost(Fi − {ei}) ≤ costx(E[C]); that is,∑

i:σeC≤cost(Fi−{ei})
λi ≥ 1/2. Therefore, we conclude that the sum of yei over all ei such that

σeiC ≤ costx(E[C]) is at least one, thus proving the lemma.

We remark that we may define the Set Cover instance so that {xe}e∈E+ is exactly a feasible
solution to the LP for the Set Cover problem by using the integer decomposition as in the proof
of Lemma 9. However, we choose to present it this way to keep the reduction simple.

Now we finish the proof of our claim. Consider a core C. Note that by construction, every
time we pick an edge e, we also add the set of edges IeC , for each C ∈ Se (recall that IeC ∪ {e}
covers Halo(C)). Thus, the probability that the algorithm picks no edges e such that C ∈ Se is

Πe∈E+:C∈Se(1− xe) ≤ exp

− ∑
e∈E+

xe

 ≤ exp(−1/2) ≤ 2

3
.

The first inequality follows because 1−x ≤ exp(−x), for 0 < x ≤ 1. That is, the probability that
the algorithm does not cover a core C is at most 2/3, which means that the expected fraction
of Halo-families covered by our algorithm is at least 1/3. Applying Markov’s inequality, we
conclude that with probability at least 2/3 our algorithms covers at least 1/9 fraction of the
Halo-families. Our algorithm can be derandomized using the method of conditional expectation.
Please see Appendix A for details.

5.3 Cost Analysis

Now we analyze the expected cost of the edges we add to the solution subgraph. We classify
the cost incurred by our algorithm into two categories. The first case is the set of edges e that
we pick with probability xe. The expected cost of this case is

∑
e∈E+

cexe. Applying Markov’s
inequality, we have that with probability at least 2/3 the cost incurred by the edges of this case
is at most 3

∑
e∈E+

cexe.
The second case is the set of edges corresponding to each subset Se whose edge e is added

to the solution. By construction, a core C is added to Se only if costx(E[C]) is greater than
σeC (i.e., the cost of the set of edges IeC). We recall that we also add one set of edges IeC to
the solution if there are more than one edges e such that C ∈ Se are chosen. As the set of
edges E[C] and E[C ′] are disjoint for any two cores C 6= C ′ (please see the forward reference to
Lemma 3), we conclude that the cost incurred by the edges of this case is at most

∑
e∈E+

cexe
(regardless of the choices of the edges randomly picked in the previous step). Therefore, with
probability at least 2/3 the cost of edges chosen by our algorithm is at most 4

∑
e∈E+

cexe.
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5.4 Structural Properties of the LP solution

We devote this last subsection to prove properties (P1) to (P3) and all the forward references as
discussed earlier. Property (P3) simply follows from the fact that the intersection and union of
any two members of a Halo-family Halo(C) are also members of Halo(C), which means that the
polytope of the problem of covering Halo(C) is integral due to the result of Frank [Fra79]. Thus,
we are left to prove the property (P1) and (P2) and to present a polynomial-time algorithm for
computing σeC , which thus complete the proof that our reduction can be done in polynomial
time.

First, we prove Property (P1), which allows us to reduce the instance of the problem of
covering Halo-families to a Set Cover instance.

Lemma 10 (Unique Entering Edge in Minimal Cover). Consider a minimal fractional cover x
of a Halo-family Halo(C). That is, x is a feasible solution to LPhalo whose collection of deficient
sets is defined by Halo(C), and decreasing the value xe of any edge e ∈ E+ results in an infeasible
solution. It holds that

∑
e∈δinE+

(H(C)) xe = 1. Thus, for an integral solution E′, there is exactly

one edge e ∈ E′ entering the Halo-set H(C).

Proof. Assume for a contradiction that
∑

e∈δinE+
(H(C)) xe > 1. By the minimality of x, for any

edge e ∈ δinE+
(H(C)), there exists a deficient set We ∈ Halo(C) such that∑

e∈δinE+
(We)

xe = 1. We choose We to be the maximum inclusionwise such set and call it the

witness set of e.
Now we take two distinct witness sets We and We′ , for e 6= e′. By Lemma 4, both We ∩We′

and We ∪We′ are deficient sets in Halo(C). Let us abuse the notation of x. For any subset of
vertices S ⊆ V (G), let x(S) =

∑
e∈δinE+

(S) xe. The function x(S) is known to be submodular

[FJ16], meaning that

2 = x(We) + x(We′) ≥ x(We ∩We′) + x(We ∪We′) ≥ 2.

The last inequality follows because {x}e∈E+ fractionally covers Halo(C), which then implies
that x(We ∩We′) = x(We ∪We′) = 1. But, this contradicts the choice of We (and also We′)
because We ∪We′ is a deficient set in Halo(C) strictly containing We in which the conditions
x(We ∪We′) = 1 and e ∈ δinE+

(We ∪We′) hold.

Next we prove Property (P2), which allows us to upper bound the cost incurred by the main
algorithm.

Finally, we show that σeC can be computed in polynomial time.

Lemma 11. For any core C ∈ C and an edge e ∈ E(G), the set of edges IeC and, thus, its cost
σeC can be computed in polynomial time. Moreover, the value of σeC is equal to the optimal value
of the corresponding covering LP given below.

LPcover =


min

∑
e′∈E+(H(C)) ce′xe′

s.t
∑

e′∈δinE+
(U) xe′ ≥ 1 ∀U ∈ Halo(C)

0 ≤ xe′ ≤ 1 ∀e ∈ E+(H(C))
xe = 1

Proof. Consider the Halo-family Halo(C). By Lemma 4, the union and intersection of any
deficient sets U,W ∈ Halo(C) are also deficient sets in Halo(C). This means that Halo(C) is
an intersecting family. It is known that the standard LP for covering an intersecting family is
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integral (see, e.g., [Fra79]), which implies that we can compute σeC and its corresponding set of
edges IeC in polynomial time by solving LPcover.

Alternatively, we may compute σeC combinatorially using an efficient minimum-cost (`+ 1)-
flow algorithm. In particular, we construct an s∗, t∗-flow network by setting the costs of edges
in δinH`+1

(H(C)) ∪ {e} to zero, adding a source s∗ connecting to ` + 1 edges entering Halo(C)

(which consists of ` edges from δinH`+1
(H(C)) plus the edge e) and then picking an arbitrary

terminal t∗ ∈ C as a sink. All the edges not in E(H(C)) except δinH`+1
(H(C))∪{e} are removed.

Applying Manger’s theorem, it can be seen that every (` + 1)-flow in this s∗, t∗-flow network
corresponds to a feasible solution to the covering problem with the same cost. This gives a
polynomial-time algorithm for computing σeC and IeC as desired.

6 Conclusion and Open Problems

We have presented our O(log q log k)-approximation algorithm for k-DST when an input graph
is quasi-bipartite. This is the first polylogarithmic approximation algorithm for k-DST for
arbitrary k that does not require an additional assumption on the structure of the optimal
solution. In addition, our result implies that k-DST in quasi-bipartite graphs is equivalent to
the Set Cover problem when k = O(1).

Lastly, we conclude our paper with some open problems. A straightforward question is
whether there exists a non-trivial approximation algorithm for k-DST for k ≥ 3 in general
case or for a larger class of graphs (perhaps, in quasi-polynomial-time). Another interesting
question is whether our randomized rounding technique, which consists of dependent rounds of
a randomized rounding algorithm for the Set Cover problem, can be applied without connectivity
augmentation. If this is possible, it will give O(log k) improvements upon the approximation
ratios for approximating many problems whose the best known algorithms are based on the
Halo-Set decomposition technique.
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tree approximation via iterative randomized rounding. J. ACM, 60(1):6:1–6:33,
2013. Preliminary version in STOC’10.
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Tardos, and David P. Williamson. Improved approximation algorithms for network
design problems. In Daniel Dominic Sleator, editor, Proceedings of the Fifth Annual
ACM-SIAM Symposium on Discrete Algorithms. 23-25 January 1994, Arlington,
Virginia, USA., pages 223–232. ACM/SIAM, 1994.

[GKR00] Naveen Garg, Goran Konjevod, and R. Ravi. A polylogarithmic approximation
algorithm for the group steiner tree problem. J. Algorithms, 37(1):66–84, 2000.
Preliminary version in SODA’98.

[GL17] Fabrizio Grandoni and Bundit Laekhanukit. Surviving in directed graphs: a quasi-
polynomial-time polylogarithmic approximation for two-connected directed steiner
tree. In Hamed Hatami, Pierre McKenzie, and Valerie King, editors, Proceedings
of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2017, Montreal, QC, Canada, June 19-23, 2017, pages 420–428. ACM, 2017.

[GLL19] Fabrizio Grandoni, Bundit Laekhanukit, and Shi Li. O(log2 k / log log k)-
approximation algorithm for directed steiner tree: a tight quasi-polynomial-time
algorithm. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019., pages 253–264,
2019.

[GN18] Rohan Ghuge and Viswanath Nagarajan. A quasi-polynomial algorithm for sub-
modular tree orienteering in directed graphs. CoRR, abs/1812.01768, 2018.

[GORZ12] Michel X. Goemans, Neil Olver, Thomas Rothvoß, and Rico Zenklusen. Matroids
and integrality gaps for hypergraphic steiner tree relaxations. In Howard J. Karloff
and Toniann Pitassi, editors, Proceedings of the 44th Symposium on Theory of
Computing Conference, STOC 2012, New York, NY, USA, May 19 - 22, 2012,
pages 1161–1176. ACM, 2012.

[GT16] Loukas Georgiadis and Robert E. Tarjan. Dominator tree certification and diver-
gent spanning trees. ACM Transactions on Algorithms, 12(1):11, 2016. Preliminary
version in SODA’05.

[HF16] Tomoya Hibi and Toshihiro Fujito. Multi-rooted greedy approximation of directed
steiner trees with applications. Algorithmica, 74(2):778–786, 2016.

[Jai01] Kamal Jain. A factor 2 approximation algorithm for the generalized steiner network
problem. Combinatorica, 21(1):39–60, 2001. Preliminary version in FOCS’01.

[KKL04] Guy Kortsarz, Robert Krauthgamer, and James R. Lee. Hardness of approximation
for vertex-connectivity network design problems. SIAM J. Comput., 33(3):704–720,
2004. Preliminary version in APPROX’02.

[KN05] Guy Kortsarz and Zeev Nutov. Approximating k -node connected subgraphs via
critical graphs. SIAM J. Comput., 35(1):247–257, 2005. Preliminary version in
STOC’04.

[KP97] Guy Kortsarz and David Peleg. Approximating shallow-light trees (extended ab-
stract). In Proceedings of the Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms, 5-7 January 1997, New Orleans, Louisiana, USA., pages 103–110,
1997.

18



[KPT11] Jochen Könemann, David Pritchard, and Kunlun Tan. A partition-based relaxation
for steiner trees. Math. Program., 127(2):345–370, 2011.

[KR95] Philip N. Klein and R. Ravi. A nearly best-possible approximation algorithm
for node-weighted steiner trees. J. Algorithms, 19(1):104–115, 1995. Preliminary
version in IPCO’93.

[Lae14] Bundit Laekhanukit. Parameters of two-prover-one-round game and the hardness of
connectivity problems. In Chandra Chekuri, editor, Proceedings of the Twenty-Fifth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland,
Oregon, USA, January 5-7, 2014, pages 1626–1643. SIAM, 2014.

[Lae15] Bundit Laekhanukit. An improved approximation algorithm for the minimum cost
subset k-connected subgraph problem. Algorithmica, 72(3):714–733, 2015. Prelim-
inary version in ICALP’11.

[Lae16] Bundit Laekhanukit. Approximating directed steiner problems via tree embedding.
In Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide San-
giorgi, editors, 43rd International Colloquium on Automata, Languages, and Pro-
gramming, ICALP 2016, July 11-15, 2016, Rome, Italy, volume 55 of LIPIcs, pages
74:1–74:13. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016.

[Mos15] Dana Moshkovitz. The projection games conjecture and the np-hardness of ln
n-approximating set-cover. Theory of Computing, 11:221–235, 2015. Preliminary
version in APPROX’12.

[Nut10] Zeev Nutov. Approximating minimum power covers of intersecting families and
directed edge-connectivity problems. Theor. Comput. Sci., 411(26-28):2502–2512,
2010. Preliminary version in APPROX’06.

[Nut12a] Zeev Nutov. Approximating minimum-cost connectivity problems via uncrossable
bifamilies. ACM Trans. Algorithms, 9(1):1:1–1:16, 2012. Preliminary version in
FOCS’09.

[Nut12b] Zeev Nutov. Approximating subset k-connectivity problems. J. Discrete Algo-
rithms, 17:51–59, 2012. Preliminary version in WAOA’11.

[Nut14] Zeev Nutov. Approximating minimum-cost edge-covers of crossing biset-families.
Combinatorica, 34(1):95–114, 2014. Preliminary version in SODA’09.

[Nut18] Zeev Nutov. Erratum: Approximating minimum-cost connectivity problems via
uncrossable bifamilies. ACM Trans. Algorithms, 14(3):37:1–37:8, 2018.
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A Derandomization

In this section, we present a derandomization of our algorithm in Section 5 using the method
of conditional expectation [AS16]. We will mostly follow the proof presented in the work of
Bertsimas and Vohra [BV98] who gave a derandomized technique for the randomized scheme
for the Set Cover problem.

In more detail, first observe that the cost incurred by our algorithm comes from two parts.
The firt part is the cost of edges e that we pick with probabilty xe, and the second part is the
cost of edges ICe in which the edge e is chosen. For the second part, our algorithm guarantees
that, for each core C, only one set of edges ICe will be added to the solution. Thus, by the
construction of Se and Lemma 3, the cost incurred by this part is

∑
e∈E+

cexe regardless of the
choices of the edges e added to the solution from the first part.

Hence, it suffices to show that there exists a deterministic algorithm that pick a set of edges
E′ that outter-covers at least 1/3 fraction of the Halo-families, while paying the cost at most∑

e∈E+
cexe.

Let C be the collection of all the cores in the current solution subgraph. For a given set
of edges E′ ⊆ E+, we define a function τC ∈ {0, 1} for each Halo-family Halo(C) to indicate
whether Halo(C) is covered by some edge in E′, and we define a function I(~τ) to indicate whether
E′ outer-covers at least 1/9 fraction of the Halo-families. The formal definition of these two
functions are given below.

τC(E′) =

{
1 if E′ outer-covers Halo(C)
0 Otherwise

I(E′) =

{
1
∑

C∈C τC(E′) < |C|
9

0 Otherwise

Next we define the potential function:

Φ(E′) =
∑
e∈E′

ce +M · I(E′), where M = 3
∑
e∈E+

cexe.

Observe that Φ(E′) ≤M if E′ outer-covers at least 1/9 fraction of the Halo-families, while
having the cost at most three times that of the LP solution; otherwise, Φ(X) > M . Notice that,
by Lemma 8, if we add each edge e ∈ E+ to E′ with probability xe, then E[Φ(E′)] ≤M . Thus,
there exists an event that Φ(X) ≤M , which will give us the desired integer solution. We then
follow the method of conditional expectation (see, e.g., [AS16]). That is, we order edges in E+

in an arbitrary order, say e1, e2, . . . , e|E+|. Let E′′ be the set of edges that we try to simulate
the set of randomly chosen edges E′. Initially, Edet = ∅. Then we decide to add each edge ei,
for i = 1, 2, . . . , |E+| to E′ if E[Φ(E′)|Edet ∪ {ei} ⊆ E′]] ≤ E[Φ(E′)|Edet ⊆ E′]]. This way the
resulting set of edges Edet outer-covers at least 1/9 fraction of the Halo-families, while having
the cost of at most 3

∑
e∈E+

cexe. Therefore, after adding the set of edges ICe for each core
outer-covered by some edge e ∈ Edet, we have a set of edges that covers at least 1/9 fraction
of the Halo-families with cost at most 4

∑
e∈E+

cexe, i.e., with the same guarantee as desired in
Lemma 8.
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B Bad Example for Grandoni-Laekhanukit Tree-Embedding Ap-
proach

In [GL17], Grandoni and Laekhanukit proposed an approximation scheme for k-DST based
on the decomposition of an optimal solution into k divergent arborescences [GT16, BK11].
Their approach results in the first non-trivial approximation algorithm for 2-DST, and the
algorithm achieves polylogarithmic approximation ratio in quasi-polynomial-time. Nevertheless,
this technique meets a barrier as soon as k ≥ 3 as it was shown in [BK11] that the decomposition
of an optimal solution into k divergent arborescences does not exist for general graphs when
k ≥ 3. One would hope that the decomposition is still possible for some classes of graphs, e.g.,
quasi-bipartite graphs. We show that, unfortunately, even for the class of quasi-bipartite graphs
the divergent arborescences decomposition does not exist for k ≥ 3. The counter example of a
3-rooted-connected graph that has no 3 divergent arborescences is shown in Figure 2.

Figure 2: This figure shows an example 3-rooted-connected quasi-bipartite graph that cannot
be decomposed into 3 divergent arborescences.
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