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Abstract

We present an O(log2 k)-approximation algorithm for the problem of finding a k-vertex con-
nected spanning subgraph of minimum cost, where n is the number of vertices in an input graph,
and k is a connectivity requirement. Our algorithm is the first that achieves a polylogarithmic
approximation ratio for all values of k and n, and it works for both directed and undirected
graphs.

As in previous works, we use the Frank-Tardos algorithm for finding k-outconnected sub-
graphs as a subroutine. However, with our structural lemmas, we are able to show that we need
only partial solutions returned by the Frank-Tardos algorithm; thus, we can avoid paying the
whole cost of an optimal solution every time the algorithm is applied.

1 Introduction

In the minimum-cost k-vertex connected spanning subgraph problem (k-VCSS), we are given a graph
(or a directed graph) G = (V,E) with a nonnegative cost ce on each edge e ∈ E and a connectivity
requirement k. The goal is to find a min-cost spanning subgraph G′ = (V,E′) ⊆ G such that G′ is
k-vertex connected. By a k-vertex connected graph, we mean a graph with at least k + 1 vertices
such that removing any k−1 vertices leaves a connected graph. Throughout, we denote the number
of vertices and edges of an input graph by n = |V | and m = |E|.

The minimum-cost k-vertex connected spanning subgraph problem is one of the important
network design problems, and a lot of work has been done to study this problem, in general
settings [41, 42, 30, 31, 7, 15, 37] and in more restricted settings [30, 27, 6]. For the case k = 1, the
problem on undirected graphs is the well-known minimum spanning tree problem; thus, this special
case, 1-VCSS, is polynomial-time solvable. However, when k ≥ 2, the problem becomes NP-hard
since it includes the traveling salesman problem as a special case due to the work of Eswaran and
Tarjan [14]. A similar hardness result was given by Czumaj and Lingas [12] for the case that the
cost of each edge is either 1 or 2. Indeed, it can be seen that, in metric-cost graphs, 2-VCSS and
the traveling salesman problem share an optimal solution. Even for the problem of augmenting the
vertex-connectivity of a graph from 1 to 2, Frederickson and JáJá [21] showed that the problem is
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NP-hard by a reduction from the 3-dimensional matching problem. Kortsarz, Krauthgamer and
Lee [29] extended the result of Frederickson and JáJá to the general case of the vertex-connectivity
augmentation problem. As a consequence, it is NP-hard to approximate k-VCSS to within a factor
of 1 + ǫ, for some fixed ǫ > 0. For the case of directed graphs, the problem is NP-hard even for
k = 1 because this special case is indeed the minimum-cost strongly connected spanning subdigraph
problem.

On the positive side, Frederickson and JáJá gave a 3-approximation algorithm for 2-VCSS, and
the approximation ratio was subsequently improved to 2 + 1/n by Khuller and Raghavachari [27].
Later on, for k = 2, 3, Auletta, Dinitz, Nutov and Parente [1] gave a 2-approximation for k-VCSS,
which is obtained by an application of the Frank-Tardos algorithm for the min-cost k-outconnected
spanning subgraph problem. For k = 4, 5, Dinitz and Nutov [13] gave a 3-approximation algorithm
for the problem. In higher connectivity settings, one can obtain an O(k)-approximation algorithm
for k-VCSS by solving k instances of the min-cost k-outconnected spanning subgraph problem. An
approximation ratio of O(log k) was first claimed by Ravi and Williamson [41]; however, it was
found to have a very subtle flaw [42]. For the case k ≤

√
n/2, Cheriyan, Vempala, and Vetta [7]

gave an O(log k)-approximation algorithm for the case of undirected graphs. Their algorithm is
based on the property of 3-critically k-connected graphs due to Mader [34, 35]. An approximation
ratio of O(log k ·min{√n, n

n−k
log k}) was achieved by by Kortsarz and Nutov [31]; their algorithm

works for both directed and undirected graphs. For metric-cost graphs, the best approximation
ratio are 2 + (k − 1)/n for undirected graphs and 2 + k/n for directed graphs [30]. For unit-cost
graphs, a (1 + 1/k)-approximation algorithm was devised by Cheriyan and Thurimella [6] for both
directed and undirected graphs. For the case of Euclidean graphs, Czumaj and Lingas [12] designed
PTAS for k-VCSS and gave both a randomized algorithm and its derandomized version.

The general approach for k-VCSS is to start with an empty subgraph and iteratively increase its
connectivity. There are various techniques for increasing vertex-connectivity. One related notion
of connectivity is outconnectivity (to be defined later). The cost of a min-cost k-vertex outcon-
nected subgraph is a lower bound on the optimum value of k-VCSS. Therefore, the Frank-Tardos
algorithm [19] for finding a min-cost k-vertex outconnected subgraph has been used, starting with
Khuller and Raghavachari [27], as a subroutine for approximating k-VCSS.

In a line of research [30, 7, 31], there were attempts to minimize the number of calls to the
Frank-Tardos algorithm as this would give a better performance ratio. In an important work,
Cheriyan et al. [7] observed that if an undirected graph is not a ρ-critically k-connected graph,
then it is enough to apply the Frank-Tardos algorithm from ρ roots to increase the connectivity of
a graph by one. This leads to an O(log k)-approximation algorithm for the case that k ≤

√
n/2 as

it was shown by Mader [35] that every 3-critically k-connected graph has at most (2k−1)k vertices.
(In fact, Cheriyan et al. used an old upper bound of 6k2 [34].)

Kortsarz and Nutov [31] further explored this approach. They considered a set of ℓ-fragments
which are, intuitively and informally, subsets of vertices with ℓ neighbors; these fragments are those
that need to be covered in order to ensure that the connectivity of the graph is at least ℓ+1. With a
set-cover type analysis, they obtained the bound of O( n

n−ℓ
·log ℓ) on the number of roots required for

applying the Frank-Tardos algorithm and thus obtain an O( n
n−k

log2 k)-approximation algorithm.
They also gave another O(

√
n log k)-approximation algorithm based on Ravi and Williamson’s

primal-dual algorithm [41, 42].
In this paper, we show that it is not necessary to minimize the number of calls to the Frank-

Tardos algorithm; instead, it suffices to make sure that the cost for each call is small. Our notion
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of progress is the number of cores, inclusionwise minimal ℓ-fragments, which has been used by
Kortsarz and Nutov [31]. Similar to their algorithm, we decrease the number of cores in a subgraph
via the Frank-Tardos algorithm1, but we do not take the whole solution. We show that we can use
only a partial solution from the Frank-Tardos algorithm, thus paying only O(1/t) fraction of the
usual cost2, where t is the number of cores in a current graph. Hence, we pay a factor of O(log t) for
the augmentation problem. As we have to apply the algorithm k times to increase the connectivity
of a graph to k, we pay an addition factor of O(log k). This is due to an analysis based on the
LP-scaling technique, which has been used in edge-connectivity problems; see [43] and [24] for more
detail. Thus, the approximation guarantee of our algorithm is O(logn log k) because we may have
n cores at the start. To get an approximation guarantee of O(log2 k), the final blow is to apply an
algorithm that works well for the case of small k. In particular, Cheriyan et al.’s algorithm and
Kortsarz and Nutov’s give approximation guarantees of O(log k) and O(log2 k), respectively, for the
case that k < poly(n). Alternatively, we give a preprocessing step that reduces the number of cores
to k; this technique was used in Laekhanukit’s algorithm [33] for the min-cost subset k-connected
subgraph problem, a generalization of k-VCSS. Therefore, we have an approximation guarantee of
O(log2 k) for all values of k and n.

As a side product, our procedure can be used to approximate a min-cost augmenting set (a set
of edges whose addition increases the vertex-connectivity of a graph by at least one) to within a
factor of O(log k) of an optimal. In particular, our algorithm implies an O(log k)-approximation
algorithm for the problem of increasing the vertex-connectivity of a graph from k to k + 1.

We remark that, at the time this paper was written, Nutov [37] already improved the approxi-
mation ratio of k-VCSS to O(log n

n−k
log k). Nutov’s algorithm was built upon our algorithm with

an addition of a preprocessing step that reduces the number of cores to O( n
n−k

).

1.1 Organization

In Section 2, we give formal definitions and state some basic lemmas. In Section 3, we present the
algorithm and its analysis. In Section 4, we present and analyze the procedure PartialAugment,
which is our main ingredient. In Section 5, we present the subroutine required by the procedure
PartialAugment. In the last section, Section 6, we present a preprocessing step that reduces the
number of cores to k.

1.2 More related work

While we focus on the uniform vertex-connectivity problem, many works have been done to study
the more general problems and edge-connectivity problems. The subset k-connectivity problem
is the generalization of k-VCSS where Steiner vertices are allowed; that is, we are given a set of
terminals T ⊆ V , and the goal is to find a min-cost subgraph G′ such that T is k-connected in
G′. This problem is strictly harder than k-VCSS because Kortsarz, Krauthgamer and Lee showed
that it cannot be approximated to within a factor of O(2log

1−ǫ n), for all fixed 0 < ǫ < 1, unless
NP ⊆ DTIME(npolylog(n)). This problem has been studied in [3, 38, 33, 39]. Most approximation

1Since we consider the problem of increasing the connectivity of a graph by one, we may replace the Frank-Tardos
algorithm by the Frank algorithm [17] for increasing the outconnectivity of a graph by one; also, Frank [18] recently
gave a combinatorial algorithm for the k-outconnected spanning subgraph problem.

2By an LP-scaling based analysis, it can be shown that the fractional cost of increasing the vertex-connectivity
from ℓ to ℓ+ 1 is at most 1/(k − ℓ) times the optimal cost of k-VCSS.
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algorithms for this problem are done by solving the rooted problem k times. Laekhanukit [33]
showed that if k ≤ 2|T |, then we only need to solve O(log k) instances of the rooted problem.
Specifically, generalized Kortsarz and Nutov’s algorithm for k-VCSS to the subset k-connectivity
problem. Recently, Nutov gave an approximation ratio of O(k log k) for this problem, where |T | ≥
k + Ω(k). However, for |T | ≤ k, the best known approximation ratio is |T |2 as no algorithms
can beat a trivial approximation algorithm. For metric-cost graphs, the problem is easier than
the general case because there is an O(1)-approximation algorithm due to Cheriyan and Vetta [9].
The generalization of the k-outconnected subgraph problem is the rooted subset k-connectivity
problem, where we want to connect a given root vertex to a set of terminals by k-internally disjoint
paths. A lot of attentions have been drawn to this problem [3, 10, 4, 5, 11, 38], culminating in an
O(k log k)-approximation algorithm by Nutov [38]. However, similar to the subset k-connectivity
problem, for |T | ≤ k, the best known is a trivial |T |-approximation algorithm. The most general
vertex-connectivity problem is the vertex-connectivity survivable network design problem, where
we are allowed that have an arbitrary requirement for each pair of vertices. Although it is the
hardest problem among vertex-connectivity problems, an O(k3 log |T |)-approximation algorithm
due to Chuzhoy and Khanna [11] is surprisingly simple.

The k-edge connected spanning subgraph problem (k-ECSS) is a variant of k-VCSS, where we
are asked to find a min-cost k-edge connected subgraph. A 2-approximation algorithm for k-ECSS
was proposed by Khuller and Vishkin [28]. For the case that a given graph has unit-costs, Cheriyan
and Thurimella [6] gave a (1+ 2/(k+1))-approximation algorithm, thus showing that the problem
is easier as k increases. This special case has been subsequently studied in [23, 22], and the best
approximation ratio is 1 + 1/(2k) + O(1/k2) due to the work of Gabow and Gallagher [22]. This
ratio is almost tight as Goemans, Tardos and Williamson [23] showed that k-ECSS on graphs
with unit-costs cannot be approximated to within a factor of 1 + O(1)/k unless P=NP. The gap
between unit-cost and general-cost versions of k-ECSS was found by Pritchard [40]; he showed that
it is NP-hard to approximate the general case of k-ECSS to within a factor of 1 + ǫ, for some
fixed ǫ > 0. For the general version of edge-connectivity problems, a 2-approximation algorithm
was achieved by a novel iterated rounding algorithm proposed by Jain [25]. Jain’s algorithm was
extended to the element-connectivity problem by Fleischer, Jain and Williamson [16] and also by
Cheriyan, Vempala and Vetta [8]. For a more restricted version, the Steiner tree problem, an
approximation ratio better than 2 is known. The first algorithm that breaks a factor two barrier
is due to Zelikovsky [44], and the best known approximation ratio of 1.39 was recently given by
Byrka, Grandoni, Rothvoß and Sanità [2].

For more detail, we refer readers to a comprehensive survey by Kortsarz and Nutov [32].

2 Preliminaries

Let G = (V,E) denote an input graph with a nonnegative cost ce on each edge e ∈ E. A k-separator
is a subset of vertices S ⊆ V such that |S| = k and G − S is disconnected. We say that G is k-
vertex connected or k-connected if G is a complete graph on k + 1 vertices, or G has at least k + 1
vertices and has no (k − 1)-separator; thus, G−X is connected, for all subsets of vertices X ⊂ V
with |X| < k. The connectivity of G, denoted by κ(G), is the maximum integer ℓ such that G is
ℓ-connected. We can check the connectivity of a graph in polynomial time. Thus, we may assume
that the input graph G is k-vertex connected; otherwise, there would be no feasible solution.

For any subset of vertices X ⊆ V , we denote by NG(X) the set of neighbors of X in G; that
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is, NG(X) = {v ∈ V : u ∈ X and (u, v) ∈ E}. The vertex complement of X is denoted by
X∗ = V − (X ∪NG(X)). If G is clear from the context, then we will omit the subscript G. We say
that X is an ℓ-fragment in G if |NG(X)| = ℓ and X,X∗ 6= ∅. An ℓ-fragment is a certificate that the
graph G is not (ℓ+ 1)-connected. It can be seen that the vertex complement X∗ of an ℓ-fragment
X is also an ℓ-fragment; we call this ℓ-fragment X∗ the complementary ℓ-fragment of X.

Later on, we will work on an ℓ-connected subgraph H of G; thus, we will use a fragment to
mean an ℓ-fragment. A fragment X is called a small fragment if |X| ≤ |X∗|. Observe that for any
pair of fragments X,X∗, one of them must be small. A core C of H is an inclusionwise minimal
small fragment; that is, C does not properly contain any small fragment. We denote by C(H) the
set of all cores in H and denote by t(H) the size of C(H). For any core C, let AC be a union of all
small fragments that contain only one core C. Thus,

AC =
⋃

{X ⊆ V : X is a small fragment , C ⊆ X,D * X for all cores D 6= C}.

The set of all sets AC of G is denoted by A(G) = {AC : C ∈ C(G)}.
The definitions for directed graphs are similar. However, each subset of vertices has both out-

neighbors and in-neighbors. Thus, we have both out-fragments and in-fragments. To be precise,
consider two disjoint non-empty subsets of vertices X+, X− ⊆ V . We say that X+ is an ℓ-out-
fragment and X− is an ℓ-in-fragment if |V − (X+ ∪X−)| = ℓ and there is no arc going from X+ to
X−. The terms out-cores and in-cores are defined analogously.

We now list a few basic properties, most of which are proved by Jordan [26] and Kortsarz and
Nutov [31].

Proposition 1 ([26],[31]). Consider an ℓ-connected (directed or undirected) graph G on n vertices.
Let X and Y be ℓ-fragments such that X ∩Y 6= ∅. If n−|X ∪Y | ≥ ℓ, then X ∩Y is an ℓ-fragment,
and if a strict inequality holds, then X ∪ Y is also an ℓ-fragment. In particular, the non-empty
intersection of two small ℓ-fragments is also a small ℓ-fragment.

Proof. We prove the proposition for the case of undirected graphs, which follows from the submod-
ularity of the function |NG(.)|; that is,

|NG(U)|+ |NG(W )| ≥ |NG(U ∪W )|+ |NG(U ∩W )| for every U,W ⊆ V .

Since X ∩ Y 6= ∅ and G is ℓ-connected, we have |NG(X ∩ Y )| ≥ ℓ. Since X and Y are ℓ-fragments,
|NG(X)| = |NG(Y )| = ℓ. Thus, |NG(X ∪ Y )| ≤ ℓ by the submodularity of |NG(.)|.

Next, we claim that if (X ∪ Y )∗ is not empty, then |NG(X ∪ Y )| = |NG(X ∩ Y )| = ℓ; that is,
both X ∪ Y and X ∩ Y are ℓ-fragments. To see this, suppose (X ∪ Y )∗ is not empty. Since G is
ℓ-connected, we have |NG(X ∪Y )| ≥ ℓ and |NG(X ∩Y )| ≥ ℓ; otherwise, we would have a separator
of size less than ℓ separating X ∩ Y and (X ∪ Y )∗. It then follows that

|NG(X)|+ |NG(Y )| = 2ℓ ≥ |NG(X ∪ Y )|+ |NG(X ∩ Y )| ≥ 2ℓ

Thus, |NG(X ∪ Y )| = |NG(X ∩ Y )| = ℓ.
If n−|X ∪Y | > ℓ, then (X ∪Y )∗ is not empty because |NG(X ∪Y )| ≤ ℓ. Thus, |NG(X ∪Y )| =

|NG(X ∩ Y )| = ℓ. If n − |X ∩ Y | = ℓ, then |NG(X ∪ Y )| = ℓ; otherwise, (X ∪ Y )∗ is not empty,
and we would have a separator of size less than ℓ. Thus, |NG(X ∪ Y )| = |NG(X ∩ Y )| = ℓ by the
submodularity of |NG(.)|. Therefore, X ∩ Y is an ℓ-fragment by definition, and if n− |X ∪ Y | > ℓ,
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then X ∪ Y is also an ℓ-fragment, proving the first two statements of the proposition. The last
statement then follows immediately since X ∩ Y has size at most min{|X|, |Y |}.

The proof for the case of directed graphs is the same but with NG(U) redefined as the set of
out-neighbors of U ⊆ V .

This proposition implies that no two cores intersect; thus, the set of all cores is pairwise disjoint.
By the definition of a core together with Proposition 1, we have the following proposition.

Proposition 2. Any small ℓ-fragment F in an ℓ-connected graph G contains at least one core.

Proof. This proposition follows directly from the definition of a core. If F is a core itself, then
we are done. Otherwise, F must contain another small fragment. Take a smallest fragment X
contained in F . Then X does not properly contain other small fragments and thus is a core by
definition.

The following proposition, which is a consequence of the above propositions, was proved by
Kortsarz and Nutov [31].

Proposition 3 ([31]). For an ℓ-connected graph G, the sets in A(G) are pairwise disjoint.

3 The Algorithm

In this section, we describe and analyze the performance of our algorithm.
The algorithm starts with an empty subgraph G0 of G. It then proceeds in k rounds. In round

ℓ, starting from round 0, it augments Gℓ resulting in Gℓ+1 whose vertex-connectivity is ℓ+ 1 with
a procedure described in Subsection 4.

Lying at the heart of our augmenting procedure is the subroutine PartialAugment. A set
of edges F is an augmenting set of H if κ(H ∪ F ) > κ(H). We define a partial augmenting set to
be a set of edges A such that t(H ∪ A) < t(H). In other words, adding the set of edges A to an
ℓ-connected graph H reduces the number cores in H by at least one (or increases the connectivity
of a graph by one if t(H) = 1).

Let optk = optk(G) be the cost of an optimal k-vertex connected spanning subgraph of G. We
prove in Section 4 the following lemma.

Lemma 1. Given an ℓ-connected subgraph H of G with t = t(H) cores, PartialAugment finds
a partial augmenting set for H of cost at most

O

(
1

t
· 1

k − ℓ

)
· optk.

With PartialAugment, our augmenting procedure is straight-forward; we repeatedly call
PartialAugment until the resulting subgraph is (ℓ+ 1)-connected.

Lemma 1 implies the following theorem.

Theorem 1. There is an O(logn log k)-approximation algorithm for the minimum-cost k-vertex
connected subgraph problem, which runs in polynomial time.
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Proof. First, we show that for each round ℓ, the augmenting cost is at most O( logn
k−ℓ

) · optk. Let
Gℓ = H0, H1, . . . , Hp = Gℓ+1 denote a sequence of subgraphs produced by PartialAugment.
From Lemma 1, the cost of augmenting Hi to Hi−1 is at most

O

(
1

t(Hi−1)
· 1

k − ℓ

)
· optk.

Summing them up, we have that the augmenting cost at round ℓ is at most

O

((
p−1∑

i=0

1

t(Hi)

)(
1

k − ℓ

))
optk ≤

(
1

n
+

1

n− 1
+ · · ·+ 1

1

)
O

(
1

k − ℓ

)
optk

= O

(
logn

k − ℓ

)
optk.

The second inequality follows because the number of cores decreases by at least one in each
step, and the number of cores in H0 is at most n. Hence, the total cost is

k−1∑

ℓ=0

O

(
log n

k − ℓ

)
optk = O(logn log k) · optk.

Our algorithm gives an approximation guarantee of O(logn log k), which is O(log2 k) for k =
Ω(n). To obtain a guarantee of O(log2 k) for the case k = o(n), we apply an O( n

n−k
log2 k)-

approximation algorithm of Kortsarz and Nutov [31]. In particular, we apply our algorithm when
k ≥ 2n and apply Kortsarz and Nutov algorithm otherwise. Thus, we have a final guarantee of
O(log2 k) for all values of n and k. An alternative method is to reduce the number of cores to k by
a preprocessing step given in Section 6.

Regarding the cost of an augmenting set, the proof above shows that one can augment an ℓ-
connected subgraph to be an (ℓ+1)-connected subgraph by adding edges of cost O( 1

k−ℓ
logn ·optk).

4 Partially augmenting a graph

In this section, we describe the procedure PartialAugment that, given an ℓ-connected subgraph
H of G, finds a partial augmenting set of small cost. We rely on the fact that, for each core C in H,
there exists a subroutine that finds a set AC . (Recall that AC is the union of all small fragments
that contain only one core C.) For the sake of the presentation flow, we describe the subroutine
separately in Section 5. Later in this section, we describe the algorithm. In Subsection 4.1, we prove
the correctness of the procedure PartialAugment. Then we show its performance guarantee in
Subsection 4.2. We will focus on the undirected case. The discussion on the directed case will be
given later in Subsection 4.3.

The procedure PartialAugment finds, for each core C, a partial augmenting set FC . Then
it returns the set FC whose cost is minimum over all FC ’s. To find FC , it applies as a subroutine
the Frank-Tardos algorithm [19], which (approximately) finds a min-cost subgraph that is (ℓ+ 1)-
outconnected from a root vertex r in C.

We shall give a precise definition of a k-outconnected subgraph. A directed graph G = (V,E)
is k-outconnected from a root vertex r if G has k-internally disjoint paths from r to each vertex in

7



V − {r}. Similarly, G is k-inconnected to a root vertex r if G has k-internally disjoint paths to r
from each vertex in V −{r}. Since these two notions are the same in undirected graph, we will use
only the term k-outconnected when considering undirected graphs.

In the min-cost k-outconnected spanning subgraph (k-outconnectivity) problem, we are given an
undirected or directed graph G = (V,E), a root vertex r and a connectivity requirement k. The
goal is to find a min-cost spanning subgraph of G that is k-outconnected from r. If an input graph
is directed, Frank and Tardos [19] (and also Frank [18]) showed that a natural linear programming
relaxation for the k-outconnectivity problem is totally dual integral; thus, the ellipsoid method gives
an optimal integral solution. As this was proved by Frank and Tardos, we refer to the algorithm for
the k-outconnectivity problem as the Frank-Tardos algorithm. For the case of undirected graphs,
we replace each edge (u, v) by two arcs (u, v) and (v, u) with the same cost as the edge (u, v) and
then solve the k-outconnectivity problem in the resulting directed graph. Thus, the Frank-Tardos
algorithm gives a 2-approximate solution to the linear program of the k-outconnectivity problem
in undirected graphs.

Now, we show how to find an augmenting set FC , where C is a given core. Note that here an
input graph is undirected. The case of directed graphs will be discussed later in Subsection 4.3.
First, we construct a graph GC by setting to “zero” the costs of all edges in G ∩H and all edges
whose endpoints are not in AC . We pick an arbitrary vertex u ∈ C and then apply the Frank-
Tardos algorithm to find an (ℓ + 1)-outconnected spanning subgraph IC of GC rooted at u. The
augmenting set FC is obtained by picking all edges in IC with at least one endpoint in AC .

The procedure PartialAugment is presented in Figure 1.

Algorithm 1 PartialAugment

for all core X in C(H) do
• Construct a graph GX from G by setting to zero the costs of edges in H and all edges whose
endpoints are not in AX .
• Choose an arbitrary vertex u in X.
• Apply the Frank-Tardos algorithm to find an (ℓ+1)-outconnected spanning subgraph IX of
GX rooted at u.
• Let FX = {(u, v) ∈ IX : {u, v} ∩AC 6= ∅}.

end for

return FC whose cost is minimum over all cores X ∈ C(H).

4.1 Correctness of PartialAugment

In this section, we prove the correctness of PartialAugment; that is, we show that the set FC

that it returns is indeed a partial augmenting set. More generally, we show that, for any core C,
the set FC computed by PartialAugment is a partial augmenting set.

The following lemma uses various facts listed in Section 2.

Lemma 2. Let H be an ℓ-connected graph with t cores. Let C be a core in H. Then the number
of cores in H ∪ FC is at most t− 1.

Proof. Let H ′ = H ∪ FC , C = C(H) and C′ = C(H ′).
Note that every small fragment X in H ′ is also a small fragment in H since |NH(X)| ≤

|NH′(X)| ≤ ℓ. This means that any core in H ′ is a fragment in H.
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For the sake of contradiction, assume that |C′| ≥ t.
We first show that |C′| cannot be greater than t. Since any core in H ′ is a small fragment

in H, and any small fragment contains at least one core (from Proposition 2), we have that any
core X ′ ∈ C′ contains some core X ∈ C. By the Pigeon Hole Principle, if |C′| > t, then there are
X ′, Y ′ ∈ C′ that contain the same core X ∈ C. By proposition 1, cores are pairwise disjoint, a
contradiction since X ′ ∩ Y ′ 6= ∅ (because ∅ 6= X ⊆ X ′ ∩ Y ′).

Next, consider the case that |C′| = t. Using the previous arguments, we have that exactly one
core D ∈ C′ contains C, and D contains no other cores in C. The Frank-Tardos algorithm outputs
a subgraph IC such that NIC (X) ≥ ℓ + 1, for any set of vertices X with |X| < n − ℓ − 1. Thus,
NH∪IC (D) ≥ ℓ + 1. Clearly, D is contained in AC . This means that every edge in IC with at
least one endpoint in D is also in FC . So, we conclude that NH′(D) = NH∪IC (D) ≥ ℓ + 1. This
contradicts the assumption that D is a core in H ′, and the lemma follows.

Note that this lemma also implies that the number of cores in H ∪ IC is at most t − 1 as well
since FC ⊆ IC .

4.2 The cost for PartialAugment

Let OPTk = (V,Ek) denote an optimal solution to the k-vertex connected spanning subgraph
problem, and let optk denote its cost. We compare the cost of our solution to the cost of an optimal
solution of the following linear program for the min-cost k-connected spanning subgraph problem
introduced in [20] and used in [7, 31].

LP (k)





min
∑

e∈E

cexe

s.t.
∑

e∈δE(S,T )

xe ≥ k − (n− |S ∪ T |) ∀∅ 6= S, T ⊂ V,
S ∩ T = ∅

0 ≤ xe ≤ 1 ∀e ∈ E,

where δE(S, T ) = {(u, v) ∈ E : u ∈ S, v ∈ T}. We call this linear program LP (k) and denote its
optimal cost by Z. Since this is a relaxation, we have Z ≤ optk.

As our algorithm iteratively adding edges to a solution subgraph, denoted by H = (V,Eh), we
may define an instance Π(ℓ + 1) of LP (ℓ + 1) by assigning zero costs to all edges in H. We can
construct a solution x for Π(ℓ+ 1) from OPTk by assigning

xe =





1 if e ∈ Eh,
1/(k − ℓ) if e ∈ Ek − Eh,
0 otherwise.

It is known (see, e.g., [7]) that x is feasible and has cost at most optk/(k− ℓ). We include the proof
for completeness.

Lemma 3. There is a feasible solution to Π(ℓ+ 1) with cost at most 1
k−ℓ

optk.

Proof. First, we show that x satisfies all the constraints of Π(ℓ + 1). Let S and T be arbitrary
non-empty sets of vertices such that S and T are disjoint. Consider the constraint

∑

e∈δE(S,T )

xe ≥ (ℓ+ 1)− (n− |S ∪ T |)
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Note that δE(S, T ) = δEh
(S, T )∪ δEk−Eh

(S, T ). Let q denote the number of edges in δEh
(S, T ),

and let r denote the number of edges in δEk−Eh
(S, T ). Recall that xe = 1 for all edges e ∈ H, and

xe = 1/(k − ℓ) for all edges e ∈ Ek −Eh. Since H is ℓ-connected, we have r ≥ ℓ− (n− |S ∪ T |). If
r > ℓ− (n− |S ∪ T |), then the constraint is satisfied because r is integer. So, let consider the case
that r = ℓ− (n− |S ∪ T |). Since OPTk is k-connected, |δEk

(S, T )| ≥ k− (n− |S ∪ T |). So, we have
q ≥ k − (n− |S ∪ T |)− r = k − ℓ, which implies that

∑

e∈δE(S,T )

xe = r +
q

k − ℓ
≥ r + 1 = (ℓ+ 1)− (n− |S ∪ T |).

Thus, x is a feasible solution to Π(ℓ+ 1).
We now consider the cost of x. Since the cost of each edge in H is zero, and all variables of

non-zero cost edges are scaled by 1
k−ℓ

, the cost of x is at most 1
k−ℓ

·optk. This proves the lemma.

Given an undirected graph G = (V,E) and a root vertex r, the following linear program

L̂P (G, k, r) is a relaxation of the k-outconnected spanning subgraph problem.

L̂P (G, k, r)





min
∑

e∈E

cexe

s.t.
∑

e∈δE(S,T )

xe ≥ k − (n− |S ∪ T |) ∀∅ 6= S, T ⊂ V
S ∩ T = ∅, r ∈ S

0 ≤ xe ≤ 1 ∀e ∈ E

The linear program L̂P (G, k, r) is similar to LP (k) except that every set S in the constraints

contains r. Thus, any feasible solution to LP (k) is also feasible for L̂P (G, k, r), but the converse
is not true. The Frank-Tardos algorithm [19] (or the Frank algorithm [18]) gives a 2-approximate

solution for L̂P (G, k, r). This allows us to bound the cost of a solution obtained by our algorithm
in terms of optk.

Procedure PartialAugment computes partial augmentations from many roots. Recall that,
for each core C, the algorithm first constructs a graph GC by assigning zero costs to all edges in
H and all edges with no endpoints in AC . It then computes IC using the Frank-Tardos algorithm.
Let FC denote the set of partial augmenting edges computed by PartialAugment.

We shall bound the cost of FC to the cost of OPTk. Let denote by OC = {(u, v) ∈ OPTk :
{u, v} ∩ Ac 6= ∅} the set of edges in OPTk with at least one endpoint in AC . Then we have the
following lemma.

Lemma 4. A solution x is feasible for L̂P (GC , ℓ + 1, v), where v is any vertex in a core C.
Therefore, the cost of FC is at most

2 ·
(

1

k − ℓ

) ∑

e∈OC

ce

Proof. First, x is feasible for L̂P (GC , ℓ+ 1, v) because every constraint of L̂P (GC , ℓ+ 1, v) is also
a constraint of LP (ℓ+ 1) (and x is feasible for LP (ℓ+ 1)).

Next, we show that FC has cost as claimed. Let u be a root vertex selected for computing
IC . Since x is feasible for L̂P (GC , ℓ+ 1, u) and the Frank-Tardos algorithm finds a 2-approximate
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solution for this linear program, the cost of IC is at most the cost of x in GC . Because we assign

zero costs to all edges with no endpoints in AC , the cost of x is at most 2 ·
(

1
k−ℓ

)∑
e∈OC

ce.

To see that the bound also applies to FC , we note that the cost of all edges in FC remains the
same as that in the graph GC .

Applying Lemma 4, we have the following bound on the total cost of all partial augmenting
sets.

Corollary 1. ∑

C∈C(Gℓ)

cost(FC) ≤ 4 · 1

k − ℓ
optk.

Proof. The corollary follows since all sets in A(H) are pairwise disjoint as asserted in Proposition 3.
Therefore, each edge e ∈ OPTk contributes at most twice to the right-hand-side.

The above corollary implies our key lemma, which guarantees the performance of PartialAug-

ment.
Lemma 1. Given an ℓ-connected subgraph H of G with t = t(H) cores, PartialAugment

finds a partial augmenting set for H of cost at most

O

(
1

t
· 1

k − ℓ

)
· optk.

Proof. By Corollary 1, there is at least one core inH such that the cost of FC is at most 1
t
·( 4

k−ℓ
·optk).

The lemma thus follows from the fact that PartialAugment returns the set FC with minimum
cost.

Note that if we replace the fractional solution x by the minimum augmenting set, then we have
the cost of the optimal augmenting set as the lower bound instead of the term 1

k−ℓ
· optk. A proof

similar to the main theorem shows that one can apply PartialAugment repeatedly to find an
augmenting set of cost at most O(logn) times the optimal.

4.3 Discussion for the case of directed graphs

Here we discuss the case of directed graphs. In this case, even if we have no small out-fragment,
we may still have some out-fragment that is not small, which means that the graph is not (ℓ+ 1)-
connected. Thus, we have to work on both small and large out-fragments. As we need special
properties of small fragments, this would be a problem. Fortunately, the vertex-complement of
a large out-fragment must be a small in-fragment by definition. Thus, it suffices to work on two
families of small fragments: the family of small out-fragments and the family of small in-fragments.
The algorithm is the same as that of undirected graphs with cores replaced by out-cores (in-cores)
and small fragments replaced by small out-fragments (in-fragments). In the case of directed graphs,
the cost of a partial augmenting set FC is bounded by ( 1

k−ℓ
)
∑

e∈OC
ce because the Frank-Tardos

algorithm gives an optimal integral solution in directed graphs. Since the tail of each arc can be
in exactly one set AC , each arc contributes exactly once to the sum

∑
C∈C(Gℓ)

cost(FC). Thus,
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∑
C∈C(Gℓ)

cost(FC) ≤ 1
k−ℓ

optk. It then follows from the same proof as that of Lemma 1 that the

cost of the set FC returned by PartialAugment is at most O(1
t
· 1
k−ℓ

·) ·optk. Note that we have to
work on two families of fragments, but this only incurs a factor of two in the performance guarantee
of the main algorithm.

5 Finding a union of all small ℓ-fragments containing only one

core C

In this section we describe a subroutine that, given an ℓ-connected graph H and a core C of H,
outputs a set AC . As the procedure does the same for both undirected and directed graphs, we
describe it in terms of undirected graphs.

The subroutine, instead of generating all small fragments which share the same core C, deter-
mines whether a given vertex v ∈ V − C is in AC using a decision procedure described shortly.

Note that, given a graph H = (V,E) and a pair of vertices u and v, one can find a minimal
subset X containing u such that N(X) is the minimum vertex cut separating u and v using one
max-flow computation (on the vertex capacitated network induced by H ′). Therefore, given an
ℓ-connected graph H = (V,E) and a vertex u ∈ V , we can find an inclusionwise minimal fragment
that contains u by applying at most n max-flow computations from u to all other vertices. In [31],
it was shown that this algorithm can be implemented to run in time O(ℓmn).

To determine if a given vertex v is in AC , one has to find a fragment X that contains both C
and v. Let c be an arbitrary vertex in C. Note that if we add an edge ec from c to v, then the
resulting graph will contain no fragment X ′ which contains C but v 6∈ X ′ ∪ N(X ′); otherwise, ec
would violate the fact that N(X ′) is a separator. However, this does not rule out the possibility
that v lies in N(X ′); therefore, the algorithm that finds the minimal ℓ-fragment discussed above
might find X ′ instead of the required X.

Our approach for finding X is to modify the graph H further to get a graph H ′ so that v does
not lie inside any ℓ-separators separating a small fragment containing C. To do this, we first add
to H ′ an edge ec from c to v (if such edge is not already in H). Recall that NH(v) denotes a set of
neighbors of v in H. We also add to H ′ edges joining each pair of vertices in NH(v).

The decision procedure can be described as follows. First, it finds all cores in H, denoted by
C(H). It then constructs H ′ and applies a max-flow algorithm to find an inclusionwise minimal
fragment X containing c. If X is a small fragment, then X is a core by definition. The procedure
accepts v if X exists, contains no other cores in C(H) and is small.

Lemma 5. The decision procedure accepts v if and only if v is in AC .

Proof. First, we prove the forward direction. Suppose that v is accepted by the procedure. Then
the procedure finds a small fragment X of H ′ that contains v and contains C as a unique core. It
can be seen that X is also a small fragment of H. Thus, we have a certificate for the fact that v is
in AC .

Now, we prove the converse. Suppose v is in AC . Then there exists a minimal small fragment
X in H such that X contains both C and v, and X contains no other core distinct from C. To
show that the procedure accepts v, it suffices to show that X is a core of H ′ and thus will be found
by the procedure.

For X to be a core of H ′, X has to be a small fragment in H ′. Clearly, both endpoints of ec are
inside X since X contains both v and C (and c ∈ C). Since v is in X, each vertex u ∈ NH(v) is
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Figure 1: The vertex v has neighbors on both Y and Y ∗.

either in NH(X) or in X. Thus, no edges added to H (to form H ′) go from X to X∗. This proves
that X is a small fragment in H ′.

Next, assume that X is not a core of H ′. Then there is a small fragment Y properly contained in
X. As H ′ has the edge ec = (c, v), every fragment containing c cannot have v in its complementary
fragment. Thus, only two cases are possible: either (i) Y contains v or (ii) v lies in NH′(Y ) where
NH′(Y ) is the set of neighbors of Y in H ′. Case (i) is ruled out because of the minimality of X.

We now consider case (ii). Recall the fact that every fragment in H ′ is also a fragment in
H. So, v is also a neighbor of Y in the original graph H; that is, v ∈ NH(Y ). We use the fact
that every vertex in a minimal separator has neighbors in both sides (fragments) of the separator.
In particular, v has neighbors in both Y and Y ∗. Let u and w be neighbors of v in Y and Y ∗,
respectively. Then, by the construction, H ′ has an edge (u,w) connecting these two neighbors of
v. (See Figure 1.) Thus, Y is not a fragment in H ′, a contradiction. This rules out case (ii).

Since both cases (i) and (ii) are impossible, we have a contradiction, and the if-part follows.
For the completeness, we prove the claim that v has neighbors in both Y and Y ∗. (Readers

who are familiar with this fact may skip the rest of the proof.) Assume a contradiction that v has
no neighbors in Y or Y ∗. Since it is symmetric, we may assume that v has no neighbors in Y .
Now, consider the graph H − (NH(Y )− {v}). Then Y − {v} has no edge connecting to Y ∗ ∪ {v}.
This means that (NH(Y ) − {v}) is a separator of size ℓ − 1, contradicting to the fact that H is
ℓ-connected.

6 The Preprocessing Step

In this section, we describe a preprocessing step that reduces the number of cores to k. This
technique was introduced in [27] and was used in [33, 39].

Given an input graph G = (V,E), we first construct an auxiliary graph Ĝ. This auxiliary graph
is obtained by adding a new vertex r and joining r to any k vertices of G by zero cost edges; we
denote the set of these k vertices by R. Then we apply to Ĝ the Frank-Tardos algorithm to find a
k-outconnected spanning subgraph Ĥ with r as a root vertex. Thus, we have a subgraph Ĥ that is
k-outconnected from r. Removing r, we have a subgraph H = Ĥ − r of G. We claim that, for all
ℓ = 1, 2, . . . , k − 1, every ℓ-fragment of H, if it exists, contains a vertex of R. The claim is proved
in the next lemma.
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Lemma 6. Consider a subgraph H of G constructed as above. For all ℓ = 1, 2, . . . , k − 1, every
ℓ-fragment of H, if it exists, contains a vertex of R.

Proof. Assume a contradiction that, for some 1 ≤ ℓ < k, H has an ℓ-fragment X that does not
contain any vertex of R. Since ℓ < k, R − NH(X) 6= ∅. Thus, the complementary fragment X∗

contains some vertex of R. Now, consider the graph Ĥ. Since Ĥ is k-outconnected from r, Ĥ has
no ℓ-separators separating r from a vertex v ∈ V . So, Ĥ −NH(X) has a path P from r to X. By
the construction, any path from r has to visit some vertex of R before entering X and so does P .
We conclude that P − {r} has an edge going from X∗ to X, contradicting to the fact that X is an
ℓ-fragment.

For the case of directed graphs, we construct Ĝ by adding arcs in both direction; that is, we add
arcs (r, v) and (v, r) for each vertex v ∈ R. In this case, we have to apply Frank-Tardos algorithm
twice to make the resulting graph H to be both k-outconnected and k-inconnected from r. The
proof for the directed case is the same as that of the undirected case.

Now, we have that every ℓ-fragment contains a vertex of R. Since cores of small ℓ-fragments
are pairwise disjoint, this means that we have at most |R| = k cores. Moreover, the cost of H
is at most 2 · opt, where opt is the cost of an optimal solution to k-VCSS. This is because the
Frank-Tardos algorithm gives a solution of cost at most 2 · opt for undirected graphs and at most
opt for directed graphs (but, we apply the algorithm twice for latter case). Thus, we can add edges
of H to the graph at the start of the algorithm to reduce the number of cores to k, and adding this
preprocessing step does not increase the approximation factor of the algorithm. The next theorem
follows immediately from our discussion.

Theorem 2. There is an algorithm that reduces the number of cores to k for both undirected and
directed graphs, and the cost of edges added is at most twice the cost of an optimal solution to the
k-vertex connected spanning subgraph problem.
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