
Survivable Network Design for Group Connectivity in
Low-Treewidth Graphs

Parinya Chalermsook∗ Syamantak Das† Guy Even‡ Bundit Laekhanukit§

Daniel Vaz¶

April 20, 2018

Abstract

In the Group Steiner Tree problem (GST), we are given a (edge or vertex)-weighted graph
G = (V ,E) on n vertices, together with a root vertex r and a collection of groups {Si}i∈[h] :
Si ⊆ V (G). The goal is to find a minimum-cost subgraph H that connects the root to every
group. We consider a fault-tolerant variant of GST, which we call Restricted (Rooted) Group
SNDP. In this setting, each group Si has a demand ki ∈ [k], k ∈ N, and we wish to find a
minimum-cost subgraph H ⊆ G such that, for each group Si, there is a vertex in the group that
is connected to the root via ki (vertex or edge) disjoint paths.

While GST admits O(log2 n log h) approximation, its higher connectivity variants are known
to be Label-Cover hard, and for the vertex-weighted version, the hardness holds even when k = 2
(it is widely believed that there is no subpolynomial approximation for the Label-Cover problem
[Bellare et al., STOC 1993]). More precisely, the problem admits no 2log1−ε n-approximation
unless NP ⊆ DTIME(npolylog(n)). Previously, positive results were known only for the edge-
weighted version when k = 2 [Gupta et al., SODA 2010; Khandekar et al., Theor. Comput.
Sci., 2012] and for a relaxed variant where ki disjoint paths from r may end at different vertices in
a group [Chalermsook et al., SODA 2015], for which the authors gave a bicriteria approximation.
For k ≥ 3, there is no non-trivial approximation algorithm known for edge-weighted Restricted
Group SNDP, except for the special case of the relaxed variant on trees (folklore).

Our main result is an O(logn log h) approximation algorithm for Restricted Group SNDP
that runs in time nf (k,w), where w is the treewidth of the input graph. Our algorithm works for
both edge and vertex weighted variants, and the approximation ratio nearly matches the lower
bound when k and w are constants. The key to achieving this result is a non-trivial extension
of a framework introduced in [Chalermsook et al., SODA 2017]. This framework first embeds
all feasible solutions to the problem into a dynamic program (DP) table. However, finding the
optimal solution in the DP table remains intractable. We formulate a linear program relaxation

∗Aalto University, Finland. email: chalermsook@gmail.com
†Indraprastha Institute of Information Technology Delhi, India. email: syamantak@iiitd.ac.in
‡Tel-Aviv University, Israel. email: guy@eng.tau.ac.il
§Max-Planck-Institut für Informatik, Germany & Shanghai University of Finance and Economics, China. email:

blaekhan@mpi-inf.mpg.de
¶Max-Planck-Institut für Informatik, Germany & Graduate School of Computer Science, Saarland University,

Germany. email: ramosvaz@mpi-inf.mpg.de

1

for the DP and obtain an approximate solution via randomized rounding. This framework also
allows us to systematically construct DP tables for high-connectivity problems. As a result,
we present new exact algorithms for several variants of survivable network design problems in
low-treewidth graphs.

1 Introduction

Network design is an important subject in computer science and combinatorial optimization. The
goal in network design is to build a network that meets some prescribed properties while minimizing
the construction cost. Survivable network design problems (SNDP) are a class of problems where
we wish to design a network that is resilient against link or node failures.

These problems have been phrased as optimization problems on graphs, where we are given an
n-vertex (undirected or directed) graph G = (V ,E) with costs on edges or vertices together with
a connectivity requirement k : V × V →N. The goal is to find a minimum-cost subgraph H ⊆ G,
such that every pair u, v ∈ V of vertices are connected by k(u, v) edge-disjoint (resp., openly
vertex-disjoint) paths. In other words, we wish to design a network in which every pair of vertices
remains connected (unless k(u, v) = 0), even after removing k(u, v)− 1 edges (or vertices). The
edge-connectivity version of SNDP (EC-SNDP) models the existence of link failures and the vertex-
connectivity (VC-SNDP) models the existence of both link and node failures. These two problems
were known to be NP-hard and have received a lot of attention in the past decades (see, e.g.,
[26, 16, 32, 34]).

While VC-SNDP and EC-SNDP address the questions that arise from designing telecommunication
networks, another direction of research focuses on the questions that arise from media broadcasting
as in cable television or streaming services. In this case, we may wish to connect the global server
to a single local server in each community, who will forward the stream to all the clients in the
area through their own local network. The goal here is slightly different from the usual SNDP,
as it is not required to construct a network that spans every client; instead, we simply need to
choose a local server (or representative), which will take care of connecting to other clients in the
same group. This scenario motivates the Group Steiner Tree problem (GST) and its fault-tolerant
variant, the Rooted Group SNDP.

In Rooted Group SNDP, we are given a graph G = (V ,E) with costs on edges or vertices, a root
vertex r, and a collection of subsets of vertices called groups, S1, . . . ,Sh, together with connectivity
demands k1, . . . , kh ∈ [k], k ∈ N. The goal in this problem is to find a minimum cost subgraph
H ⊆ G such that H has ki edge-disjoint (or openly vertex-disjoint) paths connecting the root vertex
r to some vertex vi ∈ Si, for all i ∈ [h]. In other words, we wish to choose one representative from
each group and find a subgraph of G such that each representative is k-edge-(or vertex)-connected
to the root.

When k = 1, the problem becomes the well-known Group Steiner Tree (GST) problem. Here, we
are given a graph G = (V ,E) with edge or vertex costs, a root r and a collection of subsets of
vertices called groups, S1, . . . ,Sh ⊆ V , and the goal is to find a minimum-cost subgraph H ⊆ G
that has a path to some vertex in each Si, for i ∈ [h]. The GST problem is known to admit an
O(log3 n)-approximation algorithm [22] and cannot be approximated to a factor of log2−ε n unless
NP ⊆ ZPTIME(npolylog(n)) [25].

2

The Rooted Group SNDP generalizes GST to handle fault tolerance. The case where k = 2 is studied
in [27, 23], culminating in the Õ(log4 n)-approximation algorithm for the problem. For k ≥ 3, there
is no known non-trivial approximation algorithm. It is known among the experts that this problem
is at least as hard as the Label-Cover problem1.

Chalermsook, Grandoni and Laekhanukit [13] studied a relaxed version of the problem in which we
are not restricted to connect to a single vertex in each group and thus need only ki edge-disjoint
paths connecting the root vertex to the whole group Si. Despite being a relaxed condition, the
problem remains as hard as the Label-Cover problem, and they only managed to design a bicriteria
approximation algorithm.

To date, there is no known bicriteria or even sub-exponential-time poly-logarithmic approximation
for Rooted Group SNDP when k ≥ 3. The following is an intriguing open question:

What are the settings (i.e., ranges of k or graph classes) in which Rooted Group SNDP
admits a poly-logarithmic approximation?

In this paper, we focus on developing algorithmic techniques to approach the above question. We
design poly-logarithmic algorithms for a special class of graphs – graphs with bounded treewidth
– in the hope that it will shed some light towards solving the problem on a more general class
of graphs, for instance, planar graphs (this is the case for the Steiner tree problem, where a sub-
exponential-time algorithm for planar graphs is derived via decomposition into low-tree width
instances [33]).

Our main technical building block is a dynamic program (DP) that solves rooted versions of
EC-SNDP and VC-SNDP in bounded-treewidth graphs. However, a straightforward DP compu-
tation is not applicable for Restricted Rooted Group SNDP, simply because the problem is NP-hard
on trees (so it is unlikely to admit a polynomial-size DP-table). Hence, we “embed” the DP table
into a tree and apply a polylogarithmic approximation algorithm using randomized rounding of
a suitable LP-formulation by Chalermsook et al. [12]. We remark that when the cost is poly-
nomially bounded (e.g., in the Word RAM model with words of size O(logn)), polynomial-time
algorithms for EC-SNDP and VC-SNDP follows from Courcelle’s Theorem [17, 6] (albeit, with much
larger running time). However, employing the theorem as a black-box does not allow us to design
approximation algorithms for Restricted Rooted Group SNDP.

To avoid confusion between the relaxed and restricted version of Rooted Group SNDP (usually
having the same name in literature), we refer to our problem as Restricted Group SNDP. (For
convenience, we also omit the word ”rooted”.)

1.1 Related Work

SNDP problems on restricted graph classes have also been studied extensively. When k = 1, the
problems are relatively well understood. Approximation algorithms and PTAS have been developed
for many graph classes: low-treewidth graphs [1, 18], metric-cost graphs [14], Euclidean graphs [9],
planar graphs [8], and graphs of bounded genus [7]. However, when k ≥ 2, the complexity of

1The hardness for the case of directed graph was shown in [27], but it is not hard to show the same result for
undirected graphs.

3

these problems remains wide open. Borradaile et al. [7, 10] showed an algorithm for k = 1, 2, 3 on
planar graphs, but under the assumption that one can buy multiple copies of edges (which they
called relaxed connectivity setting). Without allowing multiplicity, very little is known when k ≥ 2:
Czumaj et al. [19] showed a PTAS for k = 2 in unweighted planar graphs, and Berger et al. [3]
showed an exact algorithm running in time 2O(w2)n for the uniform demand case (i.e., k(u, v) = 2
for all pairs (u, v)). Thus, without the relaxed assumption, with non-uniform demands or k > 2, the
complexity of SNDP problems on bounded-treewidth graphs and planar graphs is not adequately
understood.

The technique of formulating an LP from a DP table has been used in literature. It is known that
any (discrete) DP can be formulated as an LP, which is integral [31]. (For Stochastic DP, please
see, e.g., [30, 21, 11, 20].) However, the technique of producing a tree structure out of a DP table
is quite rare. Prior to this paper the technique of rounding LP via a tree structure was used in [24]
to approximate the Sparsest-Cut problem. The latter algorithm is very similar to us. However,
while we embed a graph into a tree via a DP table, their algorithm works directly on the tree
decomposition. We remark that our technique is based on the previous work in [12] with almost
the same set of authors.

1.2 Hardness of Approximating Restricted Group SNDP

As mentioned, it is known among the experts that vertex-cost variant of the Restricted Group
SNDP has a simple reduction for the Label-Cover problem and more generally, the k-Constraint
Satisfaction problem (k-CSP). The original construction was given by Khandekar, Kortsarz and
Nutov [27] for the Restricted Group SNDP on directed graphs. However, the same construction
applies for the Vertex-Weighted Restricted Group SNDP. The k-CSP hardness implies that even for
ki ∈ {0, 2}, Vertex-Weighted Restricted Group SNDP cannot be approximated to within a factor
of 2log1−ε n, for any ε > 0, unless NP ⊆ DTIME(npolylog(n)), and the approximation hardness is
conjectured to be polynomial on n, say nδ for some 0 < δ < 1, under the Sliding Scale Conjecture
[2]. So far, we do not know of any non-trivial approximation for this problem for k ≥ 2.

To be formal, the approximation hardness of Vertex-Weighted Restricted Group SNDP is stated
below. While the hardness result is considered a folklore, we are aware that this fact might not be
clear for the readers. Thus, we provide the proof sketch in Appendix F.

Theorem 1.1 (Folklore). Consider the Vertex-Weighted Restricted Group SNDP problem when ki
are bounded for all i. The problem admits no 2log1−ε n-approximation algorithm, for any constant
ε > 0, unless NP ⊆ DTIME(npolylog(n)). Moreover, assuming the Sliding Scale Conjecture, there
exists a constant 0 < δ < 1 such that the problem admits no nδ-approximation algorithm.

The edge-cost variant has been studied in [27, 23], and a polylogarithmic approximation is known
for the case k = 2 [27]. For k > 3, there is no known non-trivial approximation algorithm. The
relaxed variant where the k disjoint paths from the root may end at different vertices in each group
Si has also been studied in [27, 23]. Chalermsook, Grandoni and Laekhanukit proposed a bicriteria
approximation algorithm for the Relaxed Restricted Group SNDP [13]; however, their technique is
not applicable for the restricted version. Note that the hardness of the edge-cost variant of Relaxed
Restricted Group SNDP is k1/6−ε, for any ε > 0 [13]. It is not hard to construct the same hardness

4

result for Restricted Group SNDP. We believe that Restricted Group SNDP is strictly harder than
the relaxed variant.

1.3 Our Results & Techniques

Our main result is the following approximation result for Restricted Group SNDP.

Theorem 1.2. There is a randomized algorithm that runs in time nf (w,k), for some function f ,
and returns, with high probability, a feasible solution to Restricted Group SNDP that has expected
cost at the most O(logn log h) times the cost of an optimal solution. Moreover, the algorithm works
for both edge and vertex weighted variants.

The proof of this theorem relies on the technique introduced in [12]. We give an overview of this
technique and highlight how this paper departs from it.

In short, this technique “bridges” the ideas of dynamic program (DP) and randomized LP rounding
in two steps2. Let us say that we would like to approximate optimization problem Π. In the first
step, a “nice” DP table that captures the computation of the optimal solution is created, and there
is a 1-to-1 correspondence between the DP solution and the solution to the problem. However, since
the problem is NP-hard (in our case, even hard to approximate to within some poly-logarithmic
factor), we could not follow the standard bottom-up computation of DP solutions. The idea of the
second step is to instead write an LP relaxation that captures the computation of the optimal DP
solution, and then use a randomized dependent rounding to get an approximate solution instead;
the randomized rounding scheme is simply the well-known GKR rounding [22]. Roughly speaking,
the size of the DP table is n ·wO(w), while the LP relaxation has nO(w logw) variables and constraints,
so we could get an O(logn log h) approximation in time nO(w logw).

The main technical hurdle that prevents us from using this technique to Restricted Group SNDP
directly is that there was no systematic way to generate a “good” DP table for arbitrary connectivity
demand k. (The previous result was already complicated even for k = 1.) This is where we need
to depart from the previous work. We devise a new concept that allows us to systematically create
such a DP table for any connectivity demand k. Our DP table has size n · f(k,w) for some function
k and w, and it admits the same randomized rounding scheme in time ng(k,w), therefore yielding
the main result.

As by-products, we obtain new DP algorithms for some well-studied variants of SNDP, whose
running time depends on the treewidth of the input graph (in particular, n · f(k,w)).

Subset connectivity problems: Subset k-Connectivity is a well-studied SNDP problem (Subset
k-EC and Subset k-VC for edge and vertex connectivity, respectively). In this setting, all pairs of
terminals have the same demands, i.e., k(u, v) = k for all u, v ∈ T . This is a natural generalization
of Steiner tree that has received attention [14, 32, 29].

Theorem 1.3. There are exact algorithms for Subset k-EC and Subset k-VC that run in time
f1(k,w)n for some function f1. This result holds for vertex- or edge-costs.

2One may view our result as a “tree-embedding” type result. Please see [12] for more discussion along this line.
Here we choose to present our result in the viewpoint of DP & LP.

5

Rooted SNDP: Another setting that has been studied in the context of vertex connectivity
requirements is the Rooted SNDP [15, 32]. In this problem, there is a designated terminal vertex
r ∈ T , and all positive connectivity requirements are enforced only between r and other terminals,
i.e. k(u, v) > 0 only if u = r or v = r. For the edge connectivity setting, Rooted SNDP captures
Subset k-EC3.

Theorem 1.4. There are exact algorithms for Rooted EC-SNDP and Rooted VC-SNDP that run in
time f2(k,w)n for some function f2. This result holds for costs on vertices or edges.

Further technical overview: Let us illustrate how our approach is used to generate the DP
table, amenable for randomized rounding. The following discussion assumes a certain familiarity
with the notion of treewidth and DP algorithms in low-treewidth graphs.

Given graph G = (V ,E), let T be a tree decomposition of G having width w, i.e. each node
t ∈ V (T) corresponds to a bag Xt ⊆ V (G) : |Xt| ≤ w. Let Tt denote the subtree of T rooted at t.
For each t ∈ V (T), let Gt denote the subgraph induced on all bags belonging to the subtree of T
rooted at t, i.e. Gt = G[

⋃
t∈Tt Xt]. At a high level, DPs for minimization problems in low-treewidth

graphs proceed as follows. For each node t ∈ V (T), there is a profile πt ∈ Π, and we define a DP
cell c[t,πt] for each possible such profile, which stores the minimum-cost of a solution (a subgraph
of Gt) that is consistent with the profile πt. Then, a recursive rule is applied: Let t′, t′′ be the
left and right children of t in T respectively. The DP makes a choice to “buy” a subset of edges
Y ⊆ E(G[Xt]) (that appear in bag Xt) and derives the cost by minimizing over all profiles πt′ ,πt′′
that are “consistent” with πt:

c[t,πt] = min
πt′ ,πt′′ ,Y :(πt′ ,πt′′ ,Y)./πt

(cost(Y) + c[t′,πt′] + c[t′′,πt′′])

where the sign (πt′ ,πt′′ ,Y) ./ πt represents the notion of consistency between the profiles. Different
optimization problems have different profiles and consistency rules. Often, consistency rules that
are designed for connectivity-1 problems (such as Steiner tree) are not easily generalizable to higher
connectivity problems (such as SNDP).

In this paper, we devise a new consistency rule (abbreviated by m) for checking “reachability”
(or connectivity 1) in a graph, which allows for easy generalization to handle high connectivity
problems.

Roughly speaking, our consistency rule m solves the Steiner tree problem (connectivity-1 problem).
To solve a connectivity-k problem, we have a DP cell c[t,~π] for each ~π ∈ Πk. Then the consistency
check is a “direct product” test for all coordinates, i.e.,

(~πt′ ,~πt′′ , ~Y)mk~πt ⇐⇒ (∀j ∈ [k])(πt′,j ,πt′′,j ,Yj)mπt,j

In this way, our new concept makes it a relatively simple task to generalize a DP for connectivity-1
problems to a DP for connectivity-k problems (and facilitate the proof of correctness). There is a
slight change in the way DPs are designed for each problem, but they follow the same principle.

Organization: We develop our techniques over several sections, and along the way, show non-
trivial applications for various SNDP problems. Section 2 provides some notation and important

3This is due to the transitivity of edge-connectivity. Specifically, any vertices u, w that have k edge-disjoint paths
connecting to the root r also have k edge-disjoint paths between themselves.

6

definitions. Section 3 presents the new viewpoint for designing DP and presents a simple showcase
by deriving (known) results. Section 4 presents algorithms for EC-SNDP. Lastly, Section 5 presents
an approximation algorithm for group connectivity problems.

2 Preliminaries

Tree decomposition: Let G be any graph. A tree decomposition of G is a tree T with a collection
of bags {Xt}t∈V (T) ⊆ 2V (G) (i.e., each node of T is associated with a subset of nodes of V (G)) that
satisfies the following properties:

• V (G) =
⋃
t∈V (T)Xt

• For any edge uv ∈ E(G), there is a bag Xt such that u, v ∈ Xt.

• For each vertex v ∈ V (G), the collection of nodes t whose bags Xt contain v induces a
connected subgraph of T . That is, T [{t ∈ V (T) : v ∈ Xt}] is a subtree of T .

The treewidth of G, denoted tw(G), is the minimum integer k for which there exists a tree decom-
position (T , {Xt}t∈V (T)) such that max |Xt| ≤ k+ 1 (max |Xt| − 1 is the width of T).

Fix a tree decomposition (T , {Xt}) with the stated properties. For each node t ∈ V (T), denote
by Tt the subtree of T rooted at t. We also define Gt as the subgraph induced by Tt; that is,
Gt = G

[⋃
t′∈Tt Xt′

]
.

For each v ∈ V , let tv denote the topmost node for which v ∈ Xtv . For each t ∈ V (T), we say that
an edge uv ∈ E(G) appears in the bag Xt if u, v ∈ Xt, and only if t is the topmost node in which
this happens. We denote the edges inside the bag Xt by Et. For a subset S ⊆ V (T), we define
XS :=

⋃
t∈S Xt.

We will use the following result, which shows that a tree decomposition of G of width O(tw(G)) is
computable in time O(2O(tw(G))n).

Theorem 2.1 ([5]). There is an algorithm that, given a graph G, runs in time O(2O(tw(G))n) and
finds the tree decomposition (T , {Xt}t∈V (T)) such that |Xt| ≤ 5tw(G) for all t.

In order to simplify notation, we assume that T is a binary tree. Furthermore, we require the height
of T to be O(logn) in Section 5. The following lemma, based on the results of Bodlaender [4],
summarizes the properties we assume.

Lemma 2.2 (in [12], based on [4]). Given a tree decomposition (T ′, {X ′t}t∈V (T ′)), we can transform
it into a tree decomposition (T , {Xt}t∈V (T)) with the following properties: (i) the height of T is at
most O(logn); (ii) each bag Xt satisfies |Xt| ≤ O(w); (iii) every leaf bag has no edges (Et = ∅ for
leaf t ∈ T); (iv) every non-leaf has exactly 2 children. Furthermore, this transformation runs in
linear time.

Connection sets and operators: Let S ⊆ V . A connection set Λ over S is a subset of S × S
which will be used to list pairs that are connected via a path, i.e., (u, v) ∈ Λ if there is a path
connecting u to v.

7

Let Λ be a connection set over S. The transitive closure operator, denoted by tc(·), is defined natu-
rally such that tc(Λ) contains all pairs (w,w′) for which there is a sequence (w = w0,w1, . . . ,wq =
w′) and (wi,wi+1) ∈ Λ for all i < q. Let S′ ⊆ S. The projection operator “|” is defined such that
Λ
∣∣∣
S′

= Λ ∩ (S′ × S′). See Figure 1 for an illustration.

Given two connection sets Λ1 of S1 and Λ2 of S2, the union Λ1 ∪Λ2 is a connection set over S1 ∪S2.

3 New Key Concept: Global ⇔ Local Checking for DP

This section introduces the key concept devised for handling all our problems systematically.

𝑆𝑆′

𝑤

𝑥

𝑦

𝑧

Figure 1: Connection sets, transitive closures and
projections.
Λ = {(w,x), (x, z), (z, y)} (dotted connections).
tc(Λ) = {(w,x), (x, y), (y, z), (w, y), (x, z), (w, z)}.
tc(Λ)

∣∣∣
S′

= {(x, y)}.

High-level intuition: Our DP will try to
maintain a pair of local and global informa-
tion about connectivity in the graph. Roughly
speaking, a local connection set Γt for t (more
precisely, for Xt) gives information about con-
nectivity of the solution inside the subgraph
Gt (the subgraph induced in subtree Tt), while
the other connection ∆t for t gives information
about connectivity of the global solution (i.e.,
the solution for the whole graph G).

For instance, if we have a tentative solution Y ⊆
E(G), we would like to have the information
about the reachability of Y inside each bag, i.e.,
∆t = tc(Y)

∣∣∣
t
, so we could check the reachability

between u and v simply by looking at whether
(u, v) ∈ ∆t. However, a DP that is executing at
node t may not have this global information, and this often leads to complicated rules to handle
this situation.

We observe that global information can be passed along to all cells in the DP with simple local
rules so that checking whether the connectivity requirements are satisfied can be done locally inside
each DP cell. In the next section, we elaborate on this more formally.

Equivalence: One could imagine having a DP cell c[t, Γt, ∆t] for all possible connection sets Γt, ∆t,
which makes a decision on Yt, the set of edges bought by the solution when executing the DP. The
roles of Γt and ∆t are to give information about local and global reachability, respectively. We are
seeking a solution Y that is “consistent” with these profiles, where Y can be partitioned based on
the tree T as Yt = Y ∩Et.

Given Y , we say that the pairs {(Γt, ∆t)}t∈V (T) satisfy the local (resp., global) connectivity definition
if, for every node t ∈ V (T) (having left and right children as t′ and t′′, respectively),

8

Local

Γt :=

∅ if t is a leaf of T
tc (Γt′ ∪ Γt′′ ∪ Yt)

∣∣∣
t

otherwise

∆t :=

Γt if t = root(T)
tc(∆p(t) ∪ Γt)

∣∣∣
t

otherwise

Global

Γt := tc (Y ∩E(Gt))
∣∣∣
t

∆t := tc (Y)
∣∣∣
t

where the projection operator on Xt is simplified as |t.

The main idea is that the local connectivity definition gives us “local” rules that enforce consis-
tency of consecutive bags, and this would be suitable for being embedded into a DP. The global
connectivity rules, however, are not easily encoded into DP, but it is easy to argue intuitively and
formally about their properties. The following lemma (proof in Appendix A) shows that the local
and global connectivity definitions are, in fact, equivalent.

Lemma 3.1. Let Yt ⊆ Et be a subset of edges and (Γt, ∆t) a pair of connectivity sets for every
t ∈ V (T). Then, the pairs (Γt, ∆t) satisfy the local connectivity definition iff they satisfy the global
connectivity definition.

The notions of local and global connectivity, as well as the equivalence between them can be
generalized both for the edge-connectivity version with vertex-costs as well as vertex-connectivity
with vertex-costs. We defer the details of this generalization to Appendix E.

A warmup application: steiner trees. We now show an approach that allows us to solve the
Steiner Tree problem exactly in nwO(w) time, given a tree decomposition of width w. We remark
that the best known algorithm due to Cygan et al. [18] runs in time 2O(w)n. In this problem, we
are given graph G = (V ,E) with edge-costs and terminals T = {v1, . . . , vh}, and the goal is to find
a min-cost subset E∗ ⊆ E that connects all the terminals. For simplicity, we denote v1 by “root”
r, and add r to every bag. The goal is now to connect the root to all other terminals in T \ r.

Our DP table has a cell c[t, Γ, ∆] for every node t ∈ V (T) and every pair of connection sets (Γ, ∆)
for t. We initialize the DP table by setting c[t, Γ, ∆] for all the leaf nodes, and setting certain cells
as invalid (by setting c[t, Γ, ∆] =∞):

• For every leaf node t and every pair (Γ, ∆), we set c[t, Γ, ∆] = 0 if Γ = ∅ and c[t, Γ, ∆] = ∞
otherwise.

• We mark the cells (root(T), Γ, ∆) as invalid if Γ 6= ∆.

• Let vi ∈ T be one of the terminals, and t ∈ V (T) a node. We mark a cell (t, Γ, ∆) as invalid
if vi ∈ Xt but (r, vi) 6∈ ∆.

For all other cells, we compute the result from their children. Let t be a node with left-child t′

and right-child t′′. Let (Γ, ∆), (Γ′, ∆′), (Γ′′, ∆′′) be pairs of connection sets for t, t′, t′′, respectively,
and Yt ⊆ Et. We say that (Γ, ∆) is consistent with ((Γ′, ∆′), (Γ′′, ∆′′)) via Yt (abbreviated by the
notation (Γ, ∆) Yt←→ ((Γ′, ∆′), (Γ′′, ∆′′))) if

Γ = tc(Γ′ ∪ Γ′′ ∪ Yt)
∣∣∣
t

∆′ = tc(∆ ∪ Γ′)
∣∣∣
t′

∆′′ = tc(∆ ∪ Γ′′)
∣∣∣
t′′

9

rr

γ1 γ2 γ1 γ2

Figure 2: Example of different partitions of edges into paths from demands γ1, γ2. On the left
(resp., right), two paths from r to γ1 (resp., γ2)

Now, for any choice of valid DP cells (t, Γt, ∆t) and edge subsets Yt ⊆ Et for every t ∈ V (T)
(notice that a DP solution uses precisely one cell per node t), we apply Lemma 3.1 to conclude that
since the local connectivity definition is satisfied for (Γt, ∆t) pairs, so does the global connectivity
definition. Since, for every valid DP cell (t, Γ, ∆) such that t contains a terminal vi, (r, vi) ∈ ∆, we
conclude that every terminal is connected to the root in the solution Y =

⋃
t∈V (T) Yt. Thus, the

cost of the optimum solution can be found at one of the cells c[root(T), Γ, ∆] (with Γ = ∆).

Conversely, given a solution F ⊆ E(G), we can define Ft := F ∩Et, and a pair (Γt, ∆t) for every
t ∈ V (T), using the global connectivity definition. Lemma 3.1 implies that the pairs (Γt, ∆t) satisfy
the local connectivity definition, and therefore define valid DP cells (notice that for every terminal
vi , F connects vi to the root, so (r, vi) ∈ ∆t for every t ∈ V (T) such that vi ∈ Xt). We thus
establish that for every valid DP solution there is a corresponding feasible solution F ⊆ E(G), and
vice-versa.

4 Extension to High Connectivity

This section shows how to apply our framework to problems with high connectivity requirements.
We focus on edge-connectivity and leave the case of vertex-connectivity to Appendix E.

When solving a problem in a high connectivity setting, there may be a requirement of k disjoint
paths. In particular, for each demand pair (u, v), there must be k(u, v) disjoint paths in the
solution. So we could start naturally with a profile of the form:

(Γt,1, . . . , Γt,k)(∆t,1, . . . , ∆t,k)

for each node t ∈ V (T), and enforce the local consistency conditions for each coordinate. Here,
each pair (Γt,j , ∆t,j) would correspond to connectivity in some subgraph Hj ⊆ G, where Hj serve
the j-th path of the demand (u, v).

However, this idea does not work as a different demand pair, say (a, b), might use a path that
belongs to different subgraphs Hj as defined above. In other words, the disjoint paths for the
demand pair (a, b) might require a different partitioning of the solution set H. Figure 2 illustrates

10

a case in which different demand pairs use different partitions. Therefore, we need to enumerate
all possible ways for the demands to “locally” partition the graph and use them to support all k
disjoint paths for each one of them. This requires a more careful local consistency check between
the DP cells.

We consider the Rooted EC-SNDP problem with edge-costs as an example to explain how to apply
our framework in high-connectivity, that is, we will prove Theorem 1.4. For convenience, we add r
to every bag. To avoid confusion, the root of the tree T will be referred explicitly as root(T).

The organization of this section is as follows. In Section 4.1, we explain the setup of the cells of
the DP table and a high-level intuition about how the DP works. In Section 4.2 we describe the
algorithm, in particular, how to compute the values of the DP table. We leave the discussion of its
correctness and running time to Appendix B.2.

4.1 Profiles

As in any standard dynamic programming approach based on tree decomposition, we have a profile
for each node t, which tries to solve the subproblem restricted to Gt in some way.

Let t ∈ V (T). A connection profile for t is a k-tuple ~Γ = (Γ1, Γ2, . . . , Γk) such that Γi ⊆ Xt ×Xt.
Let Xt be the set of all connection profiles for t. A profile Ψ of node t is a collection of pairs of
connection profiles (~Γ, ~∆), i.e., Ψ ⊆ Xt ×Xt. A partial solution F ⊆ E(Gt) is said to be consistent
with profile Ψ for t if, for all (~Γ, ~∆) ∈ Ψ,

• For each (u, v) ∈ Γi and (a, b) ∈ Γj for i 6= j, there are paths Puv,Pab ⊆ F connecting the
respective vertices in Gt such that Puv and Pab are edge-disjoint.

• There is a global solution F ′ ⊇ F such that, for each (u, v) ∈ ∆i and (a, b) ∈ ∆j for i 6= j,
there are paths Quv,Qab ⊆ F ′ connecting the respective vertices in G such that Puv and Pab
are edge-disjoint.

In other words, a solution consistent with a profile must “implement” all connectivity requirements
by ~Γ and must be extensible to satisfy ~∆.

Passing down both local and global requirements in the DP table leads to a clean and simple DP
algorithm. Our DP table has a cell c[t, Ψ] for each t ∈ V (T) and each profile Ψ for t. This cell
tentatively stores the optimal cost of a solution consistent with profile Ψ.

4.2 The DP

Valid cells: Some table entries do not correspond to valid solutions of the problem, so we mark
them as invalid and remove them from consideration (another way to think about this is that we
initialize c[t, Ψ] =∞ for all invalid cells), i.e., the following cells are invalid:

• Any leaf that has non-empty connectivity requirements is invalid. That is, c[t, Ψ] = 0 if
Ψ ⊆ {(∅, . . . , ∅)} ×Xt; otherwise, c[t, Ψ] =∞.

11

• Any cell that cannot be extended into a feasible solution is invalid. If there is no pair
(~Γ, ~∆) ∈ Ψ such that (r, γi) ∈ ∆j for all j ∈ [ki], then there are fewer than ki edge-disjoint
paths between r and γi, and therefore the cell is invalid, so c[tγi , Ψ] =∞.

• The node root(T) together with profile Ψ is an invalid cell if there is a pair (~Γ, ~∆) ∈ Ψ such
that Γj 6= ∆j for some j. In this case, we set c[root(T), Ψ] =∞.

Lemma 4.1. For every t ∈ T , there are at most exp(wO(wk)) many valid cells (t, Ψ).

We remark that, though the solution can be partitioned differently for each demand, the number of
different partitions of a solution still depends on its size. Therefore, once we look at the partitions
for each bag Xt, the number of possibilities is bounded by a function of w and k.

DP computation: For all other cells, we compute their values from the values of their children.
Let t be a node with left-child t′ and right-child t′′. Let Ψ, Ψ′, Ψ′′ be their profiles respectively,
and Yt ⊆ Et. We say that Ψ is consistent with (Ψ′, Ψ′′) via Yt (abbreviated by Ψ Yt←→ (Ψ′, Ψ′′))
if the following conditions are satisfied. For each pair (~Γ, ~∆) ∈ Ψ, there are (~Γ′, ~∆′) ∈ Ψ′ and
(~Γ′′, ~∆′′) ∈ Ψ′′, together with a partition of Yt into Y1 ∪ Y2 ∪ . . .∪ Yk such that, for every j ∈ [k],

Γj = tc(Γ′j ∪ Γ′′j ∪ Yj)
∣∣∣
t

∆′j = tc(∆j ∪ Γ′j)
∣∣∣
t′

∆′′j = tc(∆j ∪ Γ′′j)
∣∣∣
t′′

Similarly, for any (~Γ′, ~∆′) ∈ Ψ′ (resp., (~Γ′′, ~∆′′) ∈ Ψ′′) there are (~Γ′′, ~∆′′) ∈ Ψ′′ (resp., (~Γ′, ~∆′) ∈ Ψ′)
plus (~Γ, ~∆) ∈ Ψ and some partition of Yt, satisfying similar conditions as above.

Then the value of c[t, Ψ] can be defined recursively among valid cells:

c[t, Ψ] = min
Ψ

Yt←→(Ψ′,Ψ′′)
(c[t′, Ψ′] + c[t′′, Ψ′′] + c(Yt))

The final solution can be computed as min
{
c[root(T), Ψ] | (∀(~Γ, ~∆) ∈ Ψ)(∀j ∈ [k])Γj = ∆j

}
. The

correctness of this DP is deferred to Appendix B.1.

5 Algorithms for Restricted Group SNDP

In Section 4, we showed how to find the optimum solution to the EC-SNDP by solving a DP. This is
only possible because we know the exact demands that correspond to a subproblem, and we mark
cells as invalid if these demands are not met. In the Restricted Group SNDP, each group can be
connected in subproblems corresponding to different part of the trees, and hence it is no longer
possible to solve the DP in a standard way.

We do, however, have sufficient technical tools to prove Theorem 1.2. Instead of simply solving
the DP, we turn the DP table into a tree instance of a variant of GST and, in a second step, apply
randomized rounding to obtain a polylogarithmic approximation to the problem. This corresponds
to the process of finding a solution in the DP, with the additional constraint that all the demands
are met.

Tree Instance: We start by showing how to transform the DP table into a tree T̃ , where
we can solve a variant of the group Steiner tree problem. The following theorem formalizes this

12

transformation, and we dedicate the rest of this section to proving the theorem. For convenience,
we add a dummy node tS with XtS = ∅ as the parent of the root node.

Theorem 5.1. Given a graph G rooted at r with treewidth w and groups Si ⊆ V , there is a tree
T̃ with groups S̃i and a set of accepted solutions X̃ such that: (i) the size of T̃ is nwO(wk) ; (ii) for
every F ⊆ E(G), there is X ∈ X̃ (and vice-versa) such that c(F) = c(X) and, for every i ∈ [h],
F ki-connects r to v ∈ Si iff X connects root(T̃) to t̃ ∈ S̃i.

For each cell of the DP table introduced in Section 4.2, we create a node in T̃ . Namely, we create
a vertex t̃[t, Ψ] for every node t ∈ V (T) and Ψ ⊆ Xt ×Xt. The root of the tree is t̃[tS , {(∅k, ∅k)}]
(this is the only connection profile for tS). For a node t ∈ T with children t′, t′′, we add connecting
nodes t̃c[t, Ψ, Ψ′, Ψ′′,Yt] connected to the nodes t̃[t, Ψ], t̃[t′, Ψ′], t̃[t′′, Ψ′′], for every Yt ⊆ Et, if Ψ Yt←→
(Ψ′, Ψ′′). If there is only one child, the connecting node has degree 2, and we consider that Ψ′′ =
{(∅k, ∅k)} for the purpose of describing the algorithm. An edge from t̃[t, Ψ] to t̃c[t, Ψ, Ψ′, Ψ′′,Yt] is
labeled with the set of edges Yt and is assigned cost c(Yt). All other edges in the instance have cost
0.

Notice that, at this point, T̃ is not a tree, but we can turn it into one by making copies of the
nodes as required. Specifically, we process the tree in a bottom-up fashion: for each node t̃, we
make the same number of copies of t̃ and its descendants as there are incoming edges of t̃ such that
each edge is incident to a different copy. In this manner, all the copies of t̃ are now the roots of
subtrees, which are disjoint.

For convenience, we denote by t̃[t, Ψ] (resp., t̃c[t, Ψ, Ψ′, Ψ′′,Yt]) any copy of the original node; when
we need to distinguish copies, we denote by copies(t̃) the set of all copies of a node t̃.

The final step in our construction is to prune the tree by removing nodes that cannot be reached or
that represent choices that cannot be part of a feasible solution. To do that, it is sufficient to apply
the following rules to exhaustion: (i) remove t̃ ∈ T̃ if it is not connected to the root; (ii) remove
a connecting node if one of its children was removed; (iii) remove t̃[t, Ψ] if it is a leaf node but
Ψ 6⊆ {(∅, . . . , ∅)} ×Xt (i.e. ~Γ 6= (∅, . . . , ∅) for some (~Γ, ~∆) ∈ Ψ).

We can now restate the goal of the problem in terms of T̃ : we want to find nodes t̃[t, Ψt] and
edge sets Yt ⊆ Et for every node t ∈ V (T), such that (Ψt′ , Ψt′′)

Yt←→ Ψt for all non-leaf node t
with children t′, t′′. Further, for every group Si, there must be a vertex γi ∈ Si and a partition of
Y :=

⋃
t∈V (T) Yt into ki sets, such that each contains a path from r to γi.

The set of nodes {t̃[t, Ψt]}t∈V (T) with the respective connecting nodes t̃[t, Ψt, Ψt′ , Ψt′′ ,Yt] (for all
non-leaf nodes t ∈ V (T)) induces a tree T̃ in T̃ . We say that such a tree T̃ is valid if every node
t̃[t, Ψ] ∈ V (T̃) has exactly one child in the graph (or none if t is a leaf), and every connecting node
t̃c[t, Ψ, Ψ′, Ψ′′,Yt] in T̃ has full-degree, i.e., all its neighbors are in the solution as well.

For every group Si, we define S̃i as follows: for every v ∈ Si and every Ψ ∈ Xt ×Xt, every element
of copies(t̃[tv, Ψ]) is in S̃i if there is (~Γ, ~∆) ∈ Ψ such that (r, v) ∈ ∆j for all j ∈ [ki].

The size of the instance follows by considering its height and maximum degree: the maximum
degree of T̃ is exp(wO(wk)) by Lemma 4.1, and there is a tree decomposition of height O(logn) by
Lemma 2.2, which implies that height(T̃) = O(logn). We conclude that |T̃ | = nw

O(wk) .

The correctness of the reduction follows from the correctness of the DP for Rooted EC-SNDP, and

13

its proof is left to Appendix B.1.

Algorithm: We now show how to obtain a valid tree T̃ , given T̃ . Let T ∗ be the min-cost valid
tree in T̃ that connects all the groups {S̃i}i∈[h]. Chalermsook et al. [12] showed that it is possible
to find a valid tree T̃ with expected cost c(T ∗), but whose probability of covering a group is just
O(1/ height(T̃)).

Using this result, we can obtain valid trees T̃1, . . . , T̃`, where ` = O(logn log h). We can then
obtain solutions Fj that k-connect the same groups and have the same cost as T̃j , for all j ∈ [`],
and finally output the solution F :=

⋃
j∈[`] Fj . Since the expected cost of each T̃i is c(T ∗), the

expected cost of F is O(logn log h)c(T ∗).

By sampling c logn log h independent valid trees, for large enough c, we ensure that each group
is covered with probability (1/ logn)` = 1/hc, and thus all the groups are covered with high
probability (by union bound). For any group that is not covered, we can add minimum-cost edge-
disjoint paths from the root (by reduction to min-cost flow) and hence ensure that every group is
covered, without increasing the expected cost of the solution. We conclude that the algorithm
outputs a randomized O(logn log h)-approximation to the problem, with high probability.

Acknowledgements. Part of this work was done while Parinya Chalermsook, Bundit Laekhanukit
and Daniel Vaz were visiting the Simons Institute for the Theory of Computing. It was partially
supported by the DIMACS/Simons Collaboration on Bridging Continuous and Discrete Optimiza-
tion through NSF grant #CCF-1740425. Parinya Chalermsook is currently supported by European
Research Council (ERC) under the European UnionâĂŹs Horizon 2020 research and innovation pro-
gramme (grant agreement No 759557) and by Academy of Finland Research Fellows, under grant
number 310415

References

[1] M. Bateni, M. T. Hajiaghayi, and D. Marx. Approximation schemes for steiner forest on planar
graphs and graphs of bounded treewidth. J. ACM, 58(5):21:1–21:37, 2011.

[2] M. Bellare, S. Goldwasser, C. Lund, and A. Russeli. Efficient probabilistically checkable
proofs and applications to approximations. In Proceedings of the Twenty-Fifth Annual ACM
Symposium on Theory of Computing, May 16-18, 1993, San Diego, CA, USA, pages 294–304,
1993.

[3] A. Berger and M. Grigni. Minimum weight 2-edge-connected spanning subgraphs in planar
graphs. In Automata, Languages and Programming, 34th International Colloquium, ICALP
2007, Wroclaw, Poland, July 9-13, 2007, Proceedings, pages 90–101, 2007.

[4] H. L. Bodlaender. NC-algorithms for graphs with small treewidth. In J. van Leeuwen, edi-
tor, Graph-Theoretic Concepts in Computer Science, 14th International Workshop, WG ’88,
Amsterdam, The Netherlands, June 15-17, 1988, Proceedings, volume 344 of Lecture Notes in
Computer Science, pages 1–10. Springer, 1988.

14

[5] H. L. Bodlaender, P. G. Drange, M. S. Dregi, F. V. Fomin, D. Lokshtanov, and M. Pilipczuk.
A ck n 5-approximation algorithm for treewidth. SIAM J. Comput., 45(2):317–378, 2016.

[6] R. B. Borie, R. G. Parker, and C. A. Tovey. Automatic generation of linear-time algorithms
from predicate calculus descriptions of problems on recursively constructed graph families.
Algorithmica, 7(5&6):555–581, 1992.

[7] G. Borradaile, E. D. Demaine, and S. Tazari. Polynomial-time approximation schemes for
subset-connectivity problems in bounded-genus graphs. Algorithmica, 68(2):287–311, 2014.

[8] G. Borradaile, P. N. Klein, and C. Mathieu. An O(n log n) approximation scheme for steiner
tree in planar graphs. ACM Trans. Algorithms, 5(3):31:1–31:31, 2009.

[9] G. Borradaile, P. N. Klein, and C. Mathieu. A polynomial-time approximation scheme for
euclidean steiner forest. ACM Trans. Algorithms, 11(3):19:1–19:20, 2015.

[10] G. Borradaile and B. Zheng. A PTAS for three-edge-connected survivable network design
in planar graphs. In Approximation, Randomization, and Combinatorial Optimization. Algo-
rithms and Techniques, APPROX/RANDOM 2017, August 16-18, 2017, Berkeley, CA, USA,
pages 3:1–3:13, 2017.

[11] İ. E. Büyüktahtakin. Dynamic Programming Via Linear Programming. John Wiley & Sons,
Inc., 2010.

[12] P. Chalermsook, S. Das, B. Laekhanukit, and D. Vaz. Beyond metric embedding: Approxi-
mating group steiner trees on bounded treewidth graphs. In Proceedings of the Twenty-Eighth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel
Porta Fira, January 16-19, pages 737–751, 2017.

[13] P. Chalermsook, F. Grandoni, and B. Laekhanukit. On survivable set connectivity. In Pro-
ceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2015, San Diego, CA, USA, January 4-6, 2015, pages 25–36, 2015.

[14] J. Cheriyan and A. Vetta. Approximation algorithms for network design with metric costs.
SIAM J. Discrete Math., 21(3):612–636, 2007.

[15] J. Chuzhoy and S. Khanna. Algorithms for single-source vertex connectivity. In 49th Annual
IEEE Symposium on Foundations of Computer Science, FOCS 2008, October 25-28, 2008,
Philadelphia, PA, USA, pages 105–114, 2008.

[16] J. Chuzhoy and S. Khanna. An o(k3log n)-approximation algorithm for vertex-connectivity
survivable network design. Theory of Computing, 8(1):401–413, 2012.

[17] B. Courcelle. The monadic second-order logic of graphs. i. recognizable sets of finite graphs.
Inf. Comput., 85(1):12–75, 1990.

[18] M. Cygan, J. Nederlof, M. Pilipczuk, M. Pilipczuk, J. M. M. van Rooij, and J. O. Wojtaszczyk.
Solving connectivity problems parameterized by treewidth in single exponential time. In IEEE
52nd Annual Symposium on Foundations of Computer Science, FOCS 2011, Palm Springs,
CA, USA, October 22-25, 2011, pages 150–159, 2011.

15

[19] A. Czumaj, M. Grigni, P. Sissokho, and H. Zhao. Approximation schemes for minimum 2-edge-
connected and biconnected subgraphs in planar graphs. In Proceedings of the Fifteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2004, New Orleans, Louisiana, USA,
January 11-14, 2004, pages 496–505, 2004.

[20] D. P. de Farias and B. V. Roy. Approximate dynamic programming via linear programming.
In Advances in Neural Information Processing Systems 14 [Neural Information Processing Sys-
tems: Natural and Synthetic, NIPS 2001, December 3-8, 2001, Vancouver, British Columbia,
Canada], pages 689–695, 2001.

[21] F. d’Epenoux. A probabilistic production and inventory problem. Management Science,
10(1):98–108, 1963.

[22] N. Garg, G. Konjevod, and R. Ravi. A polylogarithmic approximation algorithm for the group
steiner tree problem. J. Algorithms, 37(1):66–84, 2000.

[23] A. Gupta, R. Krishnaswamy, and R. Ravi. Tree embeddings for two-edge-connected network
design. In Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2010, Austin, Texas, USA, January 17-19, 2010, pages 1521–1538, 2010.

[24] A. Gupta, K. Talwar, and D. Witmer. Sparsest cut on bounded treewidth graphs: algorithms
and hardness results. In Symposium on Theory of Computing Conference, STOC’13, Palo
Alto, CA, USA, June 1-4, 2013, pages 281–290, 2013.

[25] E. Halperin and R. Krauthgamer. Polylogarithmic inapproximability. In Proceedings of the
35th Annual ACM Symposium on Theory of Computing, June 9-11, 2003, San Diego, CA,
USA, pages 585–594, 2003.

[26] K. Jain. A factor 2 approximation algorithm for the generalized steiner network problem.
Combinatorica, 21(1):39–60, 2001.

[27] R. Khandekar, G. Kortsarz, and Z. Nutov. Approximating fault-tolerant group-steiner prob-
lems. Theor. Comput. Sci., 416:55–64, 2012.

[28] B. Laekhanukit. Parameters of two-prover-one-round game and the hardness of connectivity
problems. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages 1626–1643, 2014.

[29] B. Laekhanukit. An improved approximation algorithm for the minimum cost subset k-
connected subgraph problem. Algorithmica, 72(3):714–733, 2015.

[30] A. S. Manne. Linear programming and sequential decisions. Management Science, 6(3):259–
267, 1960.

[31] R. K. Martin, R. L. Rardin, and B. A. Campbell. Polyhedral characterization of discrete
dynamic programming. Operations Research, 38(1):127–138, 1990.

[32] Z. Nutov. Approximating minimum-cost connectivity problems via uncrossable bifamilies.
ACM Trans. Algorithms, 9(1):1:1–1:16, 2012.

16

[33] M. Pilipczuk, M. Pilipczuk, P. Sankowski, and E. J. van Leeuwen. Subexponential-time pa-
rameterized algorithm for steiner tree on planar graphs. In 30th International Symposium on
Theoretical Aspects of Computer Science, STACS 2013, February 27 - March 2, 2013, Kiel,
Germany, pages 353–364, 2013.

[34] D. P. Williamson, M. X. Goemans, M. Mihail, and V. V. Vazirani. A primal-dual approx-
imation algorithm for generalized steiner network problems. Combinatorica, 15(3):435–454,
1995.

A Details of the Global ⇔ Local Checking for DP

In this section, we will prove a generalized version of Lemma 3.1, that works for edge-connectivity
and vertex-connectivity, both with edge and vertex costs. In vertex-connectivity problems, we
are interested in finding internally disjoint paths. In order to handle this setting, we introduce a
modified version of transitive closure.

For a set of vertices Z and a set of edges S, we denote by tc∗Z(S) the set of all pairs (u, v) such
that there is a u-v-path in the graph (Z ∪ {u, v},S), that is, a path whose internal vertices are in
Z, and whose edges are in S. Formally,

tc∗Z(S) =
{
(u, v)

∣∣∣ ∃w1, . . . ,w` ∈ Z, ∀i ∈ [`− 1], (u,w1), (w`, v), (wi,wi+1) ∈ S
}

We then keep track, for every node, of which vertices in the bag are allowed to be used in the
solution, that is, we use triples (Z, Γ∗, ∆∗), instead of the previously used pairs (Γ, ∆).

Let Wt ⊆ Xt \Xp(t) for every t ∈ V (T), W =
⋃
t∈V (T)Wt, Yt ⊆ Et for every t ∈ V (T), Y =⋃

t∈V (T) Yt, and a triple (Zt, Γ∗t , ∆∗t) for every t ∈ V (T). For the purposes of this section, we
introduce the following definitions for local and global connectivity.

We say that the triples (Zt, Γ∗t , ∆∗t) satisfy the local (resp. global) connectivity definition if, for every
node t ∈ V (T),

Local

Zt :=

Wt if t = root(T)(
Zp(t) ∪Wt

)
∩ Vt otherwise

Γ∗t :=

∅ if t is a leaf node
tc∗Zt (Γ

∗
t′ ∪ Γ∗t′′ ∪ Yt)

∣∣∣
t

otherwise

∆∗t :=

Γ∗t if t = root(T)
tc∗Zt

(
∆∗p(t) ∪ Γ∗t

)∣∣∣
t

otherwise

Global
Zt := W ∩Xt

Γ∗t := tc∗W (Y ∩E(Gt))
∣∣∣
t

∆∗t := tc∗W (Y)
∣∣∣
t

We then prove the following lemma, proving that the given local and global connectivity definitions
are equivalent.

Lemma A.1. Let Wt ⊆ Xt \Xp(t) be a subset of vertices, Yt ⊆ Et a subset of edges and (Z, Γ∗t , ∆∗t)
a triple of profiles for every t ∈ V (T).

17

Then, the triples (Zt, Γ∗t , ∆∗t) satisfy the local connectivity definition iff they satisfy the global con-
nectivity definition.

Before proving the lemma, we show how Lemma 3.1 follows. We will prove that, if we fix Wt =
Xt \Xp(t) and Zt = Xt, the definitions of Lemmas 3.1 and A.1 are equivalent.

For this, it is sufficient to see that tc∗W (S) = tc∗V (G)(S) = tc(S), and that the common vertices in
Γ∗t′ , Γ∗t′′ , and Yt are all in Xt, thus

tc∗Zt (Γ
∗
t′ ∪ Γ∗t′′ ∪ Yt)

∣∣∣
t
= tc (Γ∗t′ ∪ Γ∗t′′ ∪ Yt)

∣∣∣
t

Similarly, since ∆∗p(t) and Γ∗t only intersect inside Xt ×Xt,

tc∗Zt
(

∆∗p(t) ∪ Γ∗t
)∣∣∣
t
= tc

(
∆∗p(t) ∪ Γ∗t

)∣∣∣
t

We conclude that when Zt = Xt, Γ∗t = Γt and ∆∗t = ∆t, the proof follows.

The following technical lemma will be useful when proving Lemma A.1.

Lemma A.2 (Path Lemma). Let G be any graph and T be a tree decomposition of G. Let t ∈ V (T)
and P be a path of length at least 2 whose endpoints x, y are the only vertices of P in t, that is,
V (P) ∩Xt ⊆ {x, y}.

Then there is a connected (subtree) component T ′ in T \ t such that, for any edge ab ∈ E(P), T ′
has a node t′ that contains ab, i.e., every edge ab ∈ Et′ for some node t′ ∈ V (T ′).

Proof. We provide a simple proof by contradiction. Assume that there are two consecutive edges,
ab, bc ∈ E(P) that are in different connected components of T \ t (otherwise, all edges must be in
the same component). Since the set of nodes whose bags contain b must be connected in T but is
not connected in T \ {t}, b ∈ Xt, and we reach a contradiction.

Proof of Lemma A.1. We remark that the function tc∗ shares some properties with the usual defi-
nition of transitive closure, which are used throughout the proof:

Observation A.3. The function tc∗ satisfies the following properties:

• tc∗Z(tc∗Z(Y)) = tc∗Z(Y)

• tc∗Z′(Y ′) ⊆ tc∗Z(Y) if Z ′ ⊆ Z, Y ′ ⊆ Y

Equivalence for Zt: We prove that the two definitions for Z are equivalent by induction on the
depth of the node. At the root, we have that Wroot(T) = W ∩Xroot(T), so the equivalence holds.

For the induction step, let t ∈ V (T) be a node other than the root. Then(
Zp(t) ∪Wt

)
∩Xt =

(
Zp(t) ∩Xt

)
∪ (Wt ∩Xt)

⊆ (W ∩Xt) ∪ (W ∩Xt)

= W ∩Xt

18

The second step follows from the induction hypothesis, as well as the definition of W . We now
prove the converse inclusion.

W ∩Xt =
(
W ∩Xp(t) ∩Xt

)
∪
(
W ∩

(
Xt \Xp(t)

))
⊆
(
Zp(t) ∩Xt

)
∪Wt

=
(
Zp(t) ∪Wt

)
∩Xt

We use the induction hypothesis, as well as the fact that Wt ⊆ Xt.

Equivalence for Γ∗t : We prove the statement by induction on the height of a node t. Since
E(Gt) = ∅, both definitions are equivalent for every leaf t.

Let t be any node. By the induction hypothesis, Γ∗t′ , Γ∗t′′ ⊆ tc∗W (Y ∩E(Gt)). Therefore,

tc∗Zt (Γ
∗
t′ ∪ Γ∗t′′ ∪ Yt)

∣∣∣
t
⊆ tc∗W (Y ∩E(Gt))

∣∣∣
t

Here, we use that Zt = W ∩Xt ⊆W .

To prove the converse inclusion, let (u, v) ∈ tc∗W (Y ∩E(Gt))
∣∣∣
t
. By definition, there must be a path

p between u and v using internal vertices in W . Let u = w0,w1, . . . ,w` = v be all the vertices of p
(in the correct order) that are also in Xt.

Each pair (wi,wi+1) is connected by a subpath of p. By Lemma A.2, (wi,wi+1) is either an edge
in Yt, or the subpath is fully contained in Y ∩E(Gt′) or Y ∩E(Gt′′), and uses internal vertices in
W . In the first case, (wi,wi+1) ∈ Yt, while in the remaining cases, (wi,wi+1) is in Γt′ or Γt′′ , by the
induction hypothesis. We conclude that, since wi ∈ Zt = W ∩Xt, for i ∈ [l− 1], then (u, v) is in

tc∗Zt (Γ
∗
t′ ∪ Γ∗t′′ ∪ Yt)

∣∣∣
t

Equivalence for ∆∗t : We now prove that both definitions for ∆∗ are equivalent, by using induction
on the depth of the nodes. For the node root(T), we have E(Groot(T)) = E(G), and thus the base
case follows.

For the induction step, we remark that ∆∗p(t), Γ∗t ⊆ tc∗W (Y) by the induction hypothesis together
with the statement of the lemma for Γ∗. Therefore,

tc∗Zt
(

∆∗p(t) ∪ Γ∗t
)∣∣∣
t
⊆ tc∗W (Y)

∣∣∣
t

For the reverse inclusion, we fix a pair (u, v) ∈ tc∗W (Y)
∣∣∣
t
, and a path p that connects u to v in Y

using internal vertices in W . Further, let u = w0,w1, . . . ,w` = v be all the vertices of p (in the
correct order) that are also in Xt.

By Lemma A.2, (wi,wi+1) is either an edge in Y (b), or the subpath p′ of p connecting wi and
wi+1 is contained either in Y ∩E(Gt′), Y ∩E(Gt′′) or Y ∩ (E \E(Gt)). For all but the last case,
(wi,wi+1) ∈ Γ∗t , by definition. In the remaining case, it must be that the vertices of p′ are also

19

contained in XT \Tb . Specifically, because the nodes whose bags contain a given vertex must form
a connected component of T , wi,wi+1 ∈ Xp(t), which implies (wi,wi+1) ∈ tc∗W (Y)

∣∣∣
p(t)

= ∆∗p(t).

In any case, since wi ∈ Zt = W ∩Xt, for i ∈ [l− 1], we conclude that every pair (wi,wi+1) and
thus (u, v), are contained in tc∗Zt

(
∆∗p(t) ∪ Γ∗t

)∣∣∣
t
.

B Details of the DP for EC-SNDP

B.1 Correctness

The following two lemmas imply the correctness of our DP.

Lemma B.1. Let F ⊆ E(G) be a feasible solution. Then, for every node t, there is a profile Ψt

for t such that (t, Ψt) is valid; for any node t with children t′, t′′, then Ψ Yt←→ (Ψ′, Ψ′′), where
Yt = F ∩Et. Furthermore, c[root(T), Ψroot(T)] = c(F).

Proof. We first observe that for each demand (γi, ki), i ∈ [h] the solution F can be partitioned into
F =

⋃
j∈[k] F

i
j such that the partition F ij contains a path connecting γi to the root r. Note that, if

ki < k, there might not be any path in the partitions Fki+1, . . . , Fk.

Let t be a node in T . We define Ψt as follows. We define the pair (omitting the script of t for
convenience) (~Γi(t), ~∆i(t)) for all i ∈ [h] as follows.

Γij(t) = tc(F ij ∩E(Tt))
∣∣∣
t

∆ij(t) = tc(F ij)
∣∣∣
t

We now define Ψt = {(~Γi(t), ~∆i(t)) : i ∈ [h]}.

We first show that any cell (t, Ψt) is valid. For any leaf node t, Et = ∅ and hence Γij(t) = ∅, i ∈ [h],
j ∈ [k]. For the node root(T), E(Tt) = E and hence Γij(t) = ∆ij(t), i ∈ [h], j ∈ [k]. Finally, since
P ij connects r to γi for all i ∈ [h], j ∈ [ki], then (r, γi) ∈ ∆ij(tγi). We conclude that any cell (t, Ψt)
defined as above is marked valid.

Finally we define, for any node t, a set of edges Y (t) ⊆ Et along with a suitable partition of Y (t).
Let Y (t) = F ∩Et and Y i

j (t) = F ij ∩Et. The subsets Y i
j (t) indeed form a partition owing to the

disjointness of the sets F ij , for all j ∈ [ki] and a fixed i ∈ [h].

It is clear from the above definitions of Γij and ∆ij that they satisfy the global connectivity conditions
for Y i

j . Applying Lemma 3.1, the local conditions must also be satisfied for the node t along with

its children t′, t′′ and Y (t). This gives us Ψ
Y (t)←→ (Ψ′, Ψ′′) and we are done.

Notice that the c[root(T), Ψroot(T)] =
∑
t∈V (T) c(Y (t)) = c(F).

We remark that the DP uses exactly one cell per node in any valid solution.

20

Lemma B.2. Let C = {(t, Ψt) : t ∈ V (T)} be the set of cells selected by the dynamic programming
solution. Then there exists a set of edges F ⊆ E such that for each demand (γi, ki), i ∈ [h], there
exist ki edge-disjoint paths connecting r to γi. Furthermore, c(F) = c[root(T), Ψroot(T)].

Proof. First we define the set F . Consider the cells in C. Since each cell (t, Ψt) is picked by the DP,
there must exist a set of edges Yt ⊆ Et such that for some pair of children cells {(t′, Ψt′), (t′′, Ψt′′)} ∈
C, Ψt

Yt←→ (Ψt′ , Ψt′′). Define F =
⋃

(t,Ψt)∈C Yt. We prove that for any demand (γi, ki), i ∈ [h], there
exist edge-disjoint paths P ij , j ∈ [ki] in F that connect r to γi.

For a demand vertex γi, i ∈ [h], consider the node t? = tγi and the cell (t?, Ψt?) ∈ C. Since this
cell is valid, there exists a connection profile (~Γ, ~∆) ∈ Ψt? such that (r, γi) ∈ ∆j for all j ∈ [ki].

We now suitably define connection profiles (~Γt, ~∆t) and sets of edges Yt,j for every other node
t ∈ V (T), and prove that these elements satisfy the local connectivity property of Lemma 3.1. We
explicitly describe the definition for the children nodes t′ and t′′ of t?. The definition for every
other node in the subtree Tt can be carried out in a similar recursive fashion.

By definition of consistent DP cells, there exists (~Γ′, ~∆′) ∈ Ψt′ , (~Γ′′, ~∆′′) ∈ Ψt′′ and a partition
Yt? =

⋃
j∈[k] Yt?,j such that, for all j ∈ [h], the triplet (Γj , ∆j), (Γ′j , ∆′j), (Γ′′j , ∆′′j) satisfies the local

connectivity conditions for Yt?,j . We take (~Γt
′ , ~∆t′) = (~Γ′, ~∆′), (~Γt′′ , ~∆t′′) = (~Γ′′, ~∆′′).

A similar recursive definition works for all nodes in T \ Tt, starting with (~Γ, ~∆) and defining a
suitable connection profile in p(t).

We now apply the equivalence from Lemma 3.1 to conclude that the global connectivity definition
is satisfied by (Γtj , ∆tj) and edge set Yt,j for any node t ∈ V (T). As a consequence, there exist paths
connecting r to γi in

⋃
t∈V (T) Yt,j , for j ∈ [ki]. Since the sets Yt,j are disjoint for j ∈ [ki], we obtain

the required ki edge-disjoint paths in the sets Yj =
⋃
t∈V (T) Yt,j .

B.2 Running Time Analysis

To bound the running time of the DP algorithm, we start by proving a bound on the number of cells
in the DP table (Lemma 4.1), and then show how this implies the running time of the algorithm.

Proof of Lemma 4.1.

The following observations are used to prove the lemma:

Observation B.3.

1. The number of possible subsets of edges between w elements is 2w2.

2. The number of possible partitions of such a subset of edges is kw2.

3. The number of possible equivalence relations in a set of w elements is ww.

Let t ∈ T . We know that Ψ ⊆ Xt ×Xt, whose size can be up to 2kw2 . However, it is sufficient to
consider equivalence relations in the node t, as we always take the transitive closure in definitions.

21

Therefore, there are at most ww possibilities for each Γj , ∆j (Observation B.3) and at most 2w2wk

possibilities for Ψ.

Note that the algorithm itself does one of the two possible options for each cell: it either initializes
itself, for which it needs to check every element of Ψ, taking time O(w2wkkw); or it computes
the value based on children cells, for which it enumerates all sets Ψ′, Ψ′′ and checks them for
consistency. The number of such sets to check is again 2w2wk , and checking each triple of sets takes
time polynomial in wwk and kw

2 . In sum, the algorithm takes time O(n exp(wO(wk))).

C Details on the Algorithms for Restricted Group SNDP

In this section, we present Lemma C.1 and Lemma C.2, which prove the correctness of the reduction
presented in Section 5 and complete the proof of Theorem 5.1.

Lemma C.1. For every solution F ⊆ E(G), there is a valid tree T̃ ⊆ T̃ with the same cost and
that connects the same groups that F ki-connects, that is, if F contains ki edge-disjoint paths to a
vertex γi ∈ Si, then T̃ connects the root to some node t̃ ∈ S̃i.

Proof. Let {γi ∈ Si}i∈[h′], h′ ≤ h, be the group vertices that are ki-connected by F (w.l.o.g. F the
first h′ groups). For every i ∈ [h′], we partition the solution F into ki subsets that connect r to γi,
i. e. we partition F into {Fij}j∈[ki], such that each Fij contains a r-γi-path. We also define Ψt and
(~Γi(t), ~∆i(t)) ∈ Ψt for all t ∈ V (T) as is done in the proof of Lemma B.1.

By the proof of Lemma B.1, (Ψt′ , Ψt′′)
F∩Et←→ Ψt. Therefore, we can build a tree T̃ by picking one

copy of each of the nodes t̃[t, Ψt] and connecting nodes t̃c[t, Ψt, Ψt′ , Ψt′′ ,F ∩ Et], such that T̃ is
connected.

Furthermore, for the topmost node tγi containing γi, we have that t̃[tγi , Ψtγi
] ∈ S̃i, since Fij connects

r and γi, which implies that (r, γi) ∈ ∆ij(tγi), for j ∈ [ki]. Therefore, if F ki-connects a group Si,
T̃ contains a node of S̃i.

The proof that F and T̃ have the same cost follows from the proof of Lemma B.1.

Lemma C.2. For every valid tree T̃ ⊆ T̃ , there is a solution F ⊆ E(G) with the same cost and
which ki-connects a group Si if T̃ connects S̃i, that is, if T̃ connects the root to some node t̃ ∈ S̃i,
then F contains ki edge-disjoint paths to a vertex γi ∈ Si.

Proof. Let {S̃i}i∈[h′], h′ ≤ h be the groups connected by T̃ (w.l.o.g.). By the definition of S̃i, there
must be some γi ∈ Si and node t̃[tγi , Ψtγi

] ∈ S̃i ∩ V (T̃) for every i ∈ [h′].

By the definition of valid tree, T̃ contains exactly one node t̃[t, Ψt] for each t ∈ V (T), as well as
exactly one node t̃c[t, Ψt, Ψt′ , Ψt′′ ,Yt] for each non-leaf node t ∈ V (T) such that

Ψt
Yt←→ (Ψt′ , Ψt′′).

22

The above conditions suffice to apply the proof of Lemma B.2 (with demands {(γi, ki)}i∈[h′]); thus,
we can obtain a solution F such that for every i ∈ [h′], F contains ki edge-disjoint paths from r to
γi. Furthermore, F has the same cost as T̃ .

D Algorithms for VC-SNDP

In this section, we focus on vertex connectivity problems, specifically, Rooted VC-SNDP with mul-
tiple roots, where there is a subset R ⊆ V such that the connectivity requirement k(u, v) > 0 only
if u ∈ R.

We argue that any instance of Subset k-VC can be transformed into that of Rooted VC-SNDP with
k roots as follows: Let T be a terminal set for k-subset vertex connectivity. Let R ⊆ T be arbitrary
subset of terminals with |R| = k. We specify the connectivity k(r, v) = k for all r ∈ R and v ∈ T .
It is easy to verify that this instance is equivalent to the original instance. In the subsequent
discussion, we focus on Rooted VC-SNDP with at most k roots. We start by adding, for each r ∈ R,
vertex r into every node t. This increases the width of the decomposition by an additive factor of
at most k.

The organization in this section is as follows. We start by extending the framework of Section 3
to vertex-connectivity in Appendix E. In Appendix E.1, we explain how the DP table is setup and
the main ideas for the vertex-connectivity version of the problem. In Appendix E.2, we present the
DP algorithm, and how to compute the value of each cell. Finally, in Appendix E.3 we show that
the algorithm finds an optimal solution to the VC-SNDP problem. Throughout this section, we will
use the notation defined in Section 4, when applicable.

E Global ⇔ Local Checking for Vertex Connectivity

When dealing with vertex connectivity, we want to find paths that have disjoint internal vertices,
but which all share the same source and sink. Therefore, we must introduce some changes to our
connection sets and to the way they are defined.

The most important change is the use of a function tc∗, which is a modified version of transitive
closure, introduced in Appendix A. We recall its definition here:

tc∗Z(S) =
{
(u, v)

∣∣∣ ∃w1, . . . ,w` ∈ Z,∀i ∈ [`− 1], (u,w1), (w`, v), (wi,wi+1) ∈ S
}

Our previous notion of pair of sets (Γ, ∆) is now extended with a subset Z ⊆ Xt, which represents
the vertices that can be used as internal nodes in a bag. We denote the new triple (Z, Γ∗, ∆∗). Let
Wt ⊆ Xt \Xp(t) for every t ∈ V (T), W =

⋃
t∈V (T)Wt, and a triple (Z, Γ∗t , ∆∗t) for every t ∈ V (T).

Given W , we say that the triples (Zt, Γ∗t , ∆∗t) satisfy the local (resp. global) connectivity definition
if, for every node t ∈ V (T),

23

Local

Zt :=

Wt if t = root(T)(
Zp(t) ∪Wt

)
∩ Vt otherwise

Γ∗t :=

∅ t is a leaf node
tc∗Zt(Γ

∗
t′ ∪ Γ∗t′′ ∪Et)

∣∣∣
t

otherwise

∆∗t :=

Γ∗t if t = root(T)
tc∗Zt(∆

∗
p(t) ∪ Γ∗t)

∣∣∣
t

otherwise

Global
Zt := W ∩Xt

Γ∗t := tc∗W (E(Gt))
∣∣∣
t

∆∗t := tc∗W (E(G))
∣∣∣
t

As in Section 3, we prove that the the local and global connectivity definitions are equivalent
(Lemma E.1).

Lemma E.1. Let Wt ⊆ Xt \Xp(t) be a subset of vertices and (Z, Γ∗t , ∆∗t) a triple for every t ∈ V (T).
Then, the triples (Zt, Γ∗t , ∆∗t) satisfy the local connectivity definition iff they satisfy the global one.

The proof of the lemma follows from Lemma A.1, by setting Yt = Et.

The notions of local and global connectivity in Lemma E.1 are also used to design algorithms for
edge-connectivity with node-costs. However, we do not need the modified definition of transitive
closure tc∗(·) and use the tc(·) operator instead. We omit the full definition to avoid repetition.
We remark that, even though we can use tc∗(·), even for edge-connectivity, we can achieve a better
runtime using tc(·), as is shown in Section 4.

E.1 Profiles

As before, let Xt be the set of all connection profiles for t. By analogy, we say a vertex profile for
t is a k-tuple ~Z = (Z1,Z2, . . . ,Zk) is such that Zi ⊆ Xt. Additionally, let Vt denote the set of all
vertex profiles for t.

The profile Ψ of node t is now a collection of triples (~Z,~Γ∗, ~∆∗), where ~Z is a vertex profile and ~Γ∗,
~∆∗ are connection profiles, i.e., Ψ ⊆ Vt ×Xt ×Xt.

A partial solution H ⊆ V (Gt) is said to be consistent with profile Ψ for t if, for all (~Z,~Γ∗, ~∆∗) ∈ Ψ,

• For each (u, v) ∈ Γ∗i and (a, b) ∈ Γ∗j for i 6= j, there are paths Puv,Pab ⊆ H connecting the
respective vertices in Gt such that the internal vertices of Puv and Pab are disjoint. All the
internal vertices in Puv, Pab which are in Xt are contained in Zi, Zj , respectively.

• There is a global solution H ′ ⊇ H such that, for each (u, v) ∈ ∆i and (a, b) ∈ ∆j for i 6= j,
there are paths Quv,Qab ⊆ H ′ connecting the respective vertices in G such that the internal
vertices of Quv and Qab are disjoint. All the internal vertices in Quv, Qab which are in Xt are
contained in Zi, Zj , respectively.

In other words, a solution consistent with a profile must “implement” all connectivity requirements
by ~Γ and must be extensible to satisfy ~∆. Furthermore, the vertices used by the solution in Xt are
given by ~Z.

24

The DP table has a cell c[t, Ψ] for each node t ∈ V (T) and each profile Ψ for t. This cell tentatively
stores the optimal cost of a solution consistent with the profile.

E.2 The DP

Valid cells: We mark all the cells that do not correspond to valid solutions of the problem as
invalid (for example, by setting c[t, Ψ] = ∞ for invalid cells). In particular, the following cells are
invalid:

• Any leaf that has any connectivity requirements is invalid. That is, we set c[t, Ψ] = 0 if
Ψ ⊆ Vt × {(∅, . . . , ∅)} ×Xt; otherwise, c[t, Ψ] =∞.

• Any cell that cannot be extended into a feasible solution is invalid. The cell is valid if, for
every r ∈ R, there is a triple (~Z,~Γ, ~∆) ∈ Ψ such that (r, v) ∈ ∆j for all j ≤ k(r, v) and
r, v ∈

⋃
j∈[k] Zi.

Otherwise, either r or v are not in the solution, or they are not connected by k(r, v) vertex-
disjoint paths, and hence the cell is invalid.

• The root node root(T) together with profile Ψ is an invalid cell if there is a triple (~Z,~Γ, ~∆) ∈ Ψ
such that Γj 6= ∆j for some j.

DP Computation: For all other cells, we compute their values from the values of the children.
Let t be a node with left-child t′ and right-child t′′. Let Ψ, Ψ′, Ψ′′ be their profiles, respectively,
and W ⊆ Xt \Xp(t).

We say that Ψ is consistent with (Ψ′, Ψ′′) via W (abbreviated by Ψ W←→ (Ψ′, Ψ′′)) if the fol-
lowing conditions are satisfied. For each triple (~Z,~Γ, ~∆) ∈ Ψ, there are (~Z ′,~Γ′, ~∆′) ∈ Ψ′ and
(~Z ′′,~Γ′′, ~∆′′) ∈ Ψ′′, together with a partition of W into W1 ∪W2 ∪ . . .∪Wk such that, for all j ∈ [k],

• Γj = tc∗Zt(Γ
′
j ∪ Γ′′j ∪Et)

∣∣∣
t

• ∆′j = tc∗Zt′ (∆j ∪ Γ′j)
∣∣∣
t′

• ∆′′j = tc∗Zt′′ (∆j ∪ Γ′′j)
∣∣∣
t′′

• Zj ∩ (Xt \Xp(t)) = Wj

• Z ′j ∩Xt = Zj ∩Xt′

• Z ′′j ∩Xt = Zj ∩Xt′′

Similarly, for any triple (~Z ′,~Γ′, ~∆′) ∈ Ψ′ (resp., (~Z ′′,~Γ′′, ~∆′′) ∈ Ψ′′), there are (~Z ′′,~Γ′′, ~∆′′) ∈ Ψ′′

(resp., (~Z ′,~Γ′, ~∆′) ∈ Ψ′), plus (~Z,~Γ, ~∆) ∈ Ψ and some partition of W satisfying similar conditions
as above.

25

We remark that the condition Zt = (Zp(t) ∪Wt) ∩ Xt in the local connectivity definition of
Lemma E.1, can be equivalently written as Zt ∩Xp(t) = Zp(t) ∩Xt and Zt ∩ (Xt \Xp(t)) = Wt

(since Wt and Zp(t) are always disjoint). We choose to use the second formulation for convenience.

Then the value of c[t, Ψ] can be defined recursively among valid cells:

c[t, Ψ] = min
Ψ

W←→(Ψ′,Ψ′′)
(c[t′, Ψ′] + c[t′′, Ψ′′] + c(W))

Solution: The solution can be computed by

min
{
c[root(T), Ψ] | (∀(~Z,~Γ, ~∆) ∈ Ψ)(∀j ∈ [k])Γj = ∆j

}

E.3 Correctness of the DP

The following two lemmas imply correctness.

Lemma E.2. Let H ⊆ V (G) be a feasible solution. Then, for every node t, there is a profile Ψt

for t such that (t, Ψt) is valid; for any node t with children t′, t′′, then Ψ Wt←→ (Ψ′, Ψ′′), where
Wt = H ∩ (Xt \Xp(t)). Furthermore, c[root(T), Ψroot(T)] = c(H).

Proof. We fix r ∈ R, v ∈ T with k(r, v) > 0. Observe that r, v ∈ H, and the solution H can be
partitioned into H = {Hj}j∈[k] such that for j ≤ k(r, v), there is a path Pj between r and v whose
internal vertices are in Hj . Note that, if k(r, v) < k, then Hj is irrelevant, for j > k(r, v), and
might be empty.

For any node t, we define Ψt as follows. The triple (~Z(t),~Γ∗(t), ~∆∗(t)) is defined as:

Zj(t) := Hj ∩Xt

Γ∗j(t) := tc∗Hj (E(Gt))
∣∣∣
t

∆∗j(t) := tc∗Hj (E(G))
∣∣∣
t

We add to Ψt the triples (~Z(t),~Γ∗(t),~Γ∗(t)) for all r ∈ R, v ∈ T .

We first show that any cell (t, Ψt) is valid. We again fix r ∈ R, v ∈ T and take the corresponding
triples (~Z(t),~Γ∗(t), ~∆∗(t)) ∈ Ψt and partition {Hj}j∈[k].

For every leaf node t, Et = ∅ and hence Γ∗j(t) = ∅. For the root node, t = root(T), E(Tt) = E
and hence Γ∗j(t) = ∆∗j(t). Finally, for j ∈ [k(r, v), Pj connects r to γi using internal vertices in
Hj , so (r, v) ∈ ∆∗j(tv). Since, r, v ∈

⋃
j∈[k] Zj(tv), we conclude that the cells (t, Ψt) defined above

are marked valid.

For each node t ∈ V (T), we additionally define Wj(t) = Hj ∩ (Xt \Xp(t)). Observe that the
Wj(t), j = 1, 2, . . . , ki naturally induce a partition on Wt. It is clear from the definitions that
Zj(t), Γ∗j(t), ∆∗j(t) satisfy the global connectivity definitions for vertex sets Wj(t). Therefore, we
can apply Lemma E.1, for every j ∈ [k] to conclude that

Ψt
Wt←→ (Ψt′ , Ψt′′)

26

for every node t ∈ V (T) with children t′, t′′, where Wt = H ∩ (Xt \Xp(t)).

Notice that the c[root(T), Ψroot(T)] =
∑
t∈V (T) c(Wt) = c(H).

We remark that every DP solution uses exactly one cell per node t ∈ V (T).

Lemma E.3. Let {(t, Ψt)}t∈V (T) be the cells selected in a dynamic programming solution. There
exists a solution H ⊆ V with cost c(H) = c[root(T), Ψroot(T)] such that for every demand (γi, ki),
i ∈ [h], H contains ki vertex-disjoint paths from r to γi.

Proof. Let us start by defining the solution H. For every non-leaf t ∈ V (T) with children t′, t′′,
there must be some set Wt such that

Ψt
Wt←→ (Ψt′ , Ψt′′)

We take H =
⋃
t∈V (T)Wt as our solution.

Now, fix r ∈ R, v ∈ V . We will prove that H contains k(r, v) vertex-disjoint paths from r to v.
We now define, for each node t ∈ V (T), the sets (~Z(t),~Γ∗(t), ~∆∗(t)) ∈ Ψt, as well as partition
{Wj(t)}j∈[k] of the vertices in Wt, as is done in the proof of Lemma B.2.

Now, since for every j ∈ [k], Zj(t), Γ∗j (t), ∆∗j (t) satisfy the local connectivity constraints, we can
apply Lemma E.1, which implies that Zj(t), Γ∗j (t), ∆∗j (t) satisfy the global connectivity constraints
as well.

Since all cells in (t, Ψt) are valid, we know that (r, v) ∈ ∆∗j (t) for j ∈ [k(r, v)] and r, v ∈
⋃
j∈[k] Zj(t).

Therefore, Hj =
⋃
t∈V (T)Hj(t) contains the internal nodes of a path between r and v, and r, v ∈ H.

We conclude that H contains k(r, v) vertex-disjoint paths between r and v.

E.4 Running Time Analysis

The running time for the presented algorithm follows closely that for the edge-connectivity version,
with the exception that Γ∗ and ∆∗ are, in general, no longer equivalence relations, and there are
now 2(w+k)2 possibilities for each such set.

We conclude that the running time of the algorithm is O(n · exp(exp(O((w + k)2k)))). We also
remark that a very similar idea for the DP works for the edge-connectivity version of the problem
with node-costs. However, we can use the definition of tc instead of tc∗ in order to define the DP
cells and hence the runtime for that case is O(n · exp(poly(wwk)).

F Hardness of Restricted Group SNDP on General Graphs

In this section, we sketch the proof of the approximation hardness for the vertex-weighted Restricted
Group SNDP on general graphs. The reduction is from Min-k-CSP.

In Max-k-CSP, we are given a set of n variables x1, . . . ,xn over the domain [N] and a set of m
constraints (which are functions) C1, . . . ,Ch such that each Cj depends on (exactly) k variables.
The goal in the Max-k-CSP is to find an assignment to variables that maximizes the number of

27

constraints satisfied. In the minimization version, say Min-k-CSP, we are allowed to assign multiple
values (or labels) to each variable to guarantee that each constraint can be satisfied by some of
the assignments while minimizing the total number of labels. To be specific the assignment is a
function σ : {x1, . . . ,xn} → 2[N], and we wish to find an assignment such that, for every constraint
Cj depending on variables xi1 , . . . ,xik , there exist labels a1 ∈ σ(xi1), . . . , ak ∈ σ(xik) such that
Cj(a1, . . . , an) evaluates to true for all j ∈ [m]. It is know that if the hardness of Max-k-CSP is
α(n), then the hardness of the Min-k-CSP is Ω(α(n)1/k) (see, e.g., [28]). The special case of k = 2
is called the Label-Cover problem.

We reduce from Min-k-CSP to Restricted Group SNDP by representing the assignments of variables
by positive weight vertices and representing accepting configurations of each constraints by a group
of vertices. To be precise, we first construct a graph G = (V ,E) such that

V = {r} ∪ {(xi, a) : i ∈ [n], a ∈ [N]}∪
{(j, a1, . . . , ak) : j ∈ [h], a1, . . . , ak ∈ [N] and Cj(a1, . . . , ak) = true}

E = {r(xi, a) : i ∈ [n], a ∈ [N]}∪
{(xi, ai)(j, a1, . . . , ak) : (xi, ai), (j, a1, . . . , ak) ∈ V and
Cj depends on xi at the `-th argument, and a` = a}

We set the cost of each vertex of the form (xi, a) to be one and set cost of other vertices to be zero.
We define r to be the root vertex and, for each j ∈ [h], we define a group Sj = {(j, a1, . . . , ak) ∈ V }.
We set the connectivity demands kj = k for all j ∈ [h]. This finishes the construction.

Observe that every vertex that belongs to some group Sj has degree exactly k. Thus, the only
way to have k-edge disjoint paths from some vertex in Sj to the root r is to choose all of its
neighbors in {(xi, a) : Cj depends on xi, a ∈ [N]}. It is not hard to see that vertices in the
latter set corresponding to an assignment to variables in the Min-k-CSP instance and that some
vertex in Sj has k neighbors if and only if the chosen vertices correspond to an assignment that
satisfies the constraint Cj . Moreover, one may verify that a vertex v ∈ Sj has k neighbors in
an induced subgraph H ⊆ G if and only if v has k edge-disjoint paths connecting to the root
r. Consequently, this gives a reduction from Min-k-CSP to the vertex-weighted Restricted Group
SNDP. The approximation hardness then follows from the hardness of Min-k-CSP, which is 2log1−ε n

under NP 6⊆ DTIME(npolylog(n)), and nδ/k for some constant 0 < δ < 1 under the Sliding Scale
Conjecture [2].

28

	Introduction
	Related Work
	Hardness of Approximating Restricted Group SNDP
	Our Results & Techniques

	Preliminaries
	New Key Concept: Global â⁄ﬂ Local Checking for DP
	Extension to High Connectivity
	Profiles
	The DP

	Algorithms for Restricted Group SNDP
	Details of the Global â⁄ﬂ Local Checking for DP
	Details of the DP for EC-SNDP
	Correctness
	Running Time Analysis

	Details on the Algorithms for Restricted Group SNDP
	Algorithms for VC-SNDP
	Global â⁄ﬂ Local Checking for Vertex Connectivity
	Profiles
	The DP
	Correctness of the DP
	Running Time Analysis

	Hardness of Restricted Group SNDP on General Graphs

