
Worst-case Conditional Hardness and Fast Algorithms with
Random Inputs for Non-dominated Sorting

Sorrachai

Yingchareonthawornchai
∗

Institute for Clarity in Documentation

Dublin, Ohio

webmaster@marysville-ohio.com

Proteek Chandan Roy
†

Institute for Clarity in Documentation

Dublin, Ohio

trovato@corporation.com

Bundit Laekhanukit
‡

The Thørväld Group

Hekla, Iceland

larst@affiliation.org

Eric Torng

Inria Paris-Rocquencourt

Rocquencourt, France

Kalyanmoy Deb

Rajiv Gandhi University

Doimukh, Arunachal Pradesh, India

ABSTRACT
We study computational complexity aspect of non-dominated sort-

ing problem (NDS): Given a set 𝑃 of 𝑛 points in R𝑚 , and for each

point 𝑝 ∈ 𝑃 , compute ℓ the length of longest domination chain

𝑝1 ≻ 𝑝2 ≻ ⋯ ≻ 𝑝ℓ = 𝑝 where 𝑥 dominates 𝑦 (denoted as 𝑥 ≻ 𝑦)

if 𝑥 is not larger than 𝑦 in every coordinate. Non-dominated sort-

ing (NDS) has emerged as a critical component for multi-objective

optimization problems (MOPs). For small dimensions, Θ(𝑛 log𝑛)-
time is known for 𝑚 ≤ 3. For a fixed small 𝑚, the best bound is

𝑂(𝑛 log𝑚−2 𝑛 log log𝑛). For higher dimensions, the first 𝑂(𝑚𝑛
2)-

time is known in 2002. There is no improvement since then.

In this paper, we argue that the running time𝑂(𝑚𝑛
2) is optimal

by proving a matching conditional lower bound: for any constant

𝜖 > 0, and 𝜔(log𝑛) ≤𝑚 ≤ 𝑛𝑜(1), there is no 𝑂(𝑚𝑛
2−𝜖)-time algo-

rithm for NDS unless a popular conjecture in fine-grained complex-

ity theory is false. To complete our results, we present an algorithm

with average-case running time 𝑂(𝑚𝑛 + 𝑛2⇑𝑚 + 𝑛 log2 𝑛) on the

inputs that are drawn from uniform distribution.

CCS CONCEPTS
• Theory of computation→ Algorithm design techniques;

KEYWORDS
Non-dominated Sorting, Multi-objective Optimization, Complexity

Theory

ACM Reference Format:
Sorrachai Yingchareonthawornchai, Proteek Chandan Roy, Bundit Laekhanukit,

Eric Torng, and Kalyanmoy Deb. 2020. Worst-case Conditional Hardness

and Fast Algorithms with Random Inputs for Non-dominated Sorting . In

Proceedings of the Genetic and Evolutionary Computation Conference 2020

∗

The secretary disavows any knowledge of this author’s actions.

†

Dr. Trovato insisted his name be first.

‡

This author is the one who did all the really hard work.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

GECCO ’20, July 8–12, 2020, Cancun, Mexico
© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

(GECCO ’20). ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/

nnnnnnn.nnnnnnn

1 INTRODUCTION
We study the computational complexity of the non-dominated sort-

ing problem (NDS). Let 𝑃 be a set of 𝑛 points in R𝑚 . We say that

a point 𝑝 dominates1 another point 𝑞, denoted by 𝑝 ≻ 𝑞 if 𝑝𝑖 ≤ 𝑞𝑖
for positive 𝑖 ≤ 𝑚, i.e., 𝑝 is no larger than 𝑞 in every coordinate

and 𝑝 ≠ 𝑞. Note that it is possible that 𝑝 and 𝑞 are mutually non-

dominated to each other. A point 𝑝 is non-dominated w.r.t. 𝑃 if 𝑝 is

not dominated by any other points in 𝑃 . Given a set of 𝑃 points, the

non-dominated sorting problem asks to compute the rank function
𝑅 ∶ 𝑃 → N defined as follows: 𝑅(𝑝) = 1 if 𝑝 is a non-dominated

point, and 𝑅(𝑝) = 1 +max{𝑅(𝑞)∶𝑞 ≻ 𝑝}, otherwise. The rank func-

tion is also known as the layer number and front number, and the

non-dominated sorting is also known as layer-of-maxima. In the

context of multi-objective optimization, it is equivalent to say a

point or a solution, and to say an objective or an coordinate.

Non-dominated sorting has emerged as a critical component for

multi-objective optimization problems (MOPs). In contrast to single

objective optimization where we try to find the best possible solu-

tion, the desired result of anMOP is typically a set of Pareto-optimal

solutions that reflect the trade-offs among different objectives. An

NDS algorithm is a computational bottleneck for multi- and many-

objective evolutionary algorithms (MOEAs). Other key operations

such as crossover, mutation or tournament selection are typically

fast (linear time) compared to an NDS algorithm. Stated another

way, speeding up non-dominated sorting will allow MOEAs to run

with larger populations, more generations, and more objectives

leading to better solutions for most problem domains.

The non-dominated sorting problem is completely solved when

𝑚 = 2 or 3with a worst-case time complexity ofΘ(𝑛 log𝑛) [7, 26, 33,
34]. For a fixed𝑚 > 2, 𝑂(𝑛 log𝑚−1 𝑛)-time algorithms are known

using divide-and-conquer (D&C), often referred to as Jensen’s sort

[1, 3, 4, 15, 25, 28]. Recently, an improved 𝑂(𝑛 log𝑚−2 𝑛 log log𝑛)-
time algorithm is presented by [8]. However, the algorithms quickly

become intractable for even moderate𝑚. For general𝑚, the first

𝑂(𝑚𝑛
2)-time algorithm is due to Deb et al. [12]. Since then there

1

we use notion of 𝑝𝑖 ≤ 𝑞𝑖 to be consistent with the MOEA community where, in the

context of minimization, the point 𝑝 is "better" when every coordinate is smaller than

𝑞.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

GECCO ’20, July 8–12, 2020, Cancun, Mexico B. Trovato et al.

have been several algorithms achieving the sameworst-case bounds,

but focusing on practical running time in various instances [14, 18,

32, 38, 41, 42, 46, 47]. Until now, the𝑂(𝑚𝑛
2)-time bound has stood

for almost two decades for general𝑚.

1.1 Our Results
We argue that the running time 𝑂(𝑚𝑛

2) is already optimal assum-

ing the Hitting Set Conjecture. We first define Hitting Set Problem

(HS): Given two families of sets𝐴 and 𝐵 containing 𝑛 sets each over

the universe {1, . . . ,𝑚} where𝑚 = 𝜔(log𝑛), decide if there exists
a set 𝑎 ∈ 𝐴 that intersects (hits) every set 𝑏 ∈ 𝐵 at least one element.

We now state the conjecture.

Hitting Set Conjecture. For any constant 𝜖 > 0, and𝑚 where

𝜔(log𝑛) ≤𝑚 < (log𝑛)𝑂(1), there is no 𝑂(𝑚𝑛
2−𝜖)-time algorithm

for Hitting Set Problem.

We discuss why Hitting Set Conjecture is believable (and why

complexity theorists do believe) in Section 3. A quick explanation

is that it captures hardness of many other problems in similar way

as the P vs. NP conjecture does. We now state our first result:

Theorem 1.1. For any constant 𝜖 > 0, and𝑚 where Ω(log𝑛) <
𝑚 < (log𝑛)𝑂(1), there is no 𝑂(𝑚𝑛

2−𝜖)-time algorithm for non-
dominated sorting unless HS conjecture is false.

This gives theoretical explanation that the lack of the improve-

ment in last decades was that, in fact, the bound 𝑂(𝑚𝑛
2) is (con-

ditionally) optimal in the worst case. Given that the worst-case

complexity of NDS is well understood, we turn our attention to the

average-case complexity of NDS.

In fact, the average-case complexity of NDS is less understood.

Average-case means we are interested in the expected running time

over a uniform distribution of inputs. Only the special cases of

the problem are known. One natural special case is when we just

compute just first rank points. This problem is known as computing

the maxima. In this case, a 𝑂(𝑚𝑛)-time algorithm is known due

to Bentley et al. [1]. He et al. [20] consider a more general case

where we output top 𝑘 ranks. For𝑚 ∈ {2, 3}, for any constant 𝜖 > 0
depending on 𝑚, it is possible to compute first 𝑛

1⇑𝑚−𝜖
ranks in

expected time 𝑂(𝑚𝑛). For 𝑚 ≥ 4, it is possible to compute first

𝑛
1⇑(2𝑚)−𝜖

ranks in expected time 𝑂(𝑚𝑛).
In this paper, we prove the first average-case complexity of NDS

to be 𝑜(𝑚𝑛
2) whenever𝑚 = 𝜔(1) under the random input assump-

tion: each coordinate is independent, and all 𝑛! permutations are

equally likely.

Theorem 1.2. Under the random input assumption, there is an
algorithm that takes as input a set of points 𝑃 in R𝑚 , and outputs
the rank function (as defined in non-dominated sorting problem)
in expected time 𝑂(𝑛2⇑𝑚 +𝑚𝑛 + 𝑛 log2 𝑛), which is linear when
𝑚 = Ω(⌋︂𝑛).

Organization. We discuss related work in MOEA communities

in Section 2. Then, we provide a brief background for the new

emerging field known as fine-grained complexity theory in Section

3. We prove Theorem 1.1 in Section 4. We prove Theorem 1.2 by

describing algorithms which we call Minimum Multi-Sort (MMS)

in Section 5, and analyzing its worst-case and average-case time

complexity in Section 6. Finally, we conclude in Section 7.

2 RELATEDWORK
Most MOEAs generate a new population of solutions from the

current population where only the “best” solutions of the current

population contribute to the next population. These MOEAs such as

NSGA, NSGA2, SPEA2, PAES, PESA, EPCS, MOEA/DD, RVEA[10–

12, 27, 30, 37, 40, 48, 49] use NDS to identify the “best” solutions of

the current generation. How they define the best solution differs

by algorithm. Some use all fronts; others use only the first front.

Apart from the area ofmulti-objective optimization, non-dominated

sorting has been studied in other application areas such as gene

selection and data clustering [6, 19, 21, 29, 36]. In these applications,

they use only on the first front. In the next section, we discuss pre-

vious state-of-the-art solutions to this problem and mention our

contribution to this field.

Srinivas and Deb provided the first non-dominated sorting algo-

rithm in their MOEA named NSGA which ran in 𝑂(𝑚𝑛
3) time and

requires𝑂(𝑛) space [40]. This was improved to𝑂(𝑚𝑛
2) time at the

cost of using 𝑂(𝑛2) space in the NSGA-II algorithm [12]. Several

methods improved upon NSGA-II by eliminating some unnecessary

comparisons by inferring some dominance relationships using the

results of already completed comparisons and intelligently choos-

ing which solutions to compare next. These include Tang et al.’s
arena principle non-dominated sorting algorithm [41], Clymont

and Keedwell’s deductive sort [32], Wang and Yao’s corner sort

[42], and Fang et al.’s [14] domination tree– all of which run in

𝑂(𝑚𝑛
2) time and use 𝑂(𝑛) space, in the worst case.

An alternative approach is to use divide-and-conquer (D&C),

often referred to as Jensen’s sort [1, 3, 4, 15, 25, 28]. For𝑚 > 2, D&C
requires 𝑂(𝑛 log𝑚−1 𝑛) time which is good for small𝑚 but quickly

becomes intractable for even moderate𝑚.

Zhang et al. identified the following key issue with almost ev-

ery existing non-dominated sorting algorithm [46]: they work by

computing each front in order. Zhang et al. presented an improved

algorithm, ENS, that overcomes this issue by first sorting all the

solutions using a single objective. Sorting requires 𝑂(𝑛 log𝑛) time.

They then process the solutions in this sorted order comparing

each solution against the solutions located before its position in the

sorted list to determine its exact front. Despite this clever optimiza-

tion for ENS and the ability to eliminate half of the comparisons

in the worst case, ENS still has a worst-case time complexity of

𝑂(𝑚𝑛
2) and a space complexity of 𝑂(𝑛).

Several papers have proposed improvements to ENS by adding

a data structure to capture non-domination information to more

quickly identify when solutions in a front do not dominate each

other. These efforts includeGustavasson et al.’s variant of a bucket𝑘-
dimensional tree (𝑘−𝑑 tree) [17] and Zhang et al.’s non-domination

tree (ND-tree) [47].

Roy et al. proposed the best order sort (BOS) algorithm [38]

which improves upon ENS by sorting the solutions by each ob-

jective and then only comparing the current solution against the

solutions that are better than current solution’s best objective (pro-

vided by partial rank). BOS requires more time for up front sorting

𝑂(𝑚𝑛 log𝑛) than ENS but is able to prune away more solution

in later comparisons. Roy et al. showed that BOS performs well

empirically in many different settings, but they did not provide

any theoretical analysis of BOS performance. We build upon BOS

Worst-Case Conditional Hardness of Non-Dominated Sorting GECCO ’20, July 8–12, 2020, Cancun, Mexico

and the ND-tree tree to provide a new NDS algorithm that we call

Minimum Multi-sort or MMS.

Some approaches [13, 24, 31] deal with the problem of dynamic

or online update of the non-dominated set. These algorithms require

more time than static NDS algorithms since the addition or removal

of one point may disrupt the non-domination structure.

3 FINE-GRAINED COMPLEXITY THEORY
The theory of NP-completeness is one of the most successful theory

in complexity, which classifies computational problems into those

that can be decided in polynomial time and those that might not ad-

mit a polynomial-time algorithm. This gives a notion of “easy” and

“hard” problems, i.e., onemay deemproblems that admit polynomial-

time algorithms easy, while the others are hard. However, an easy

problem might not be as easy as it sounds. For example, although

we can say that a problem tractable in𝑂(𝑛100)-time is easy theoret-

ically, this running time is too impractical as it would take forever

to solve a problem even on input of size 𝑛 = 2. Therefore, one wish
to have an algorithm that runs in reasonable ranges of time, e.g.,

quadratic, linear or even sublinear time. Is this always possible? To

date, we know that some problems like Sorting admit no linear-time

algorithm on comparison-based machines, while many fundamen-

tal problems like All-Pairs Shortest Paths, although we cannot prove

it, does not seem to admit a subcubic-time algorithm. This motivates

the study of running-time lower-bounds for easy problems, which

is now emerged into the area of fine-grained complexity. Roughly
speaking, the goal in fine-grained complexity is to study the best

possible running times for solving “easy problems”.

The development of fine-grained complexity theory follows

the seminal results of Williams [43], which binds the running

time of solving a polynomial-time solvable problem to that of the

subexponential-time algorithm for solving 𝑘-SAT. To be specific

Williams [43] shows that the existence of an algorithm that solves

a fundamental problem like finding a furthest-pair of points in

truly subquadratic-time (i.e.,𝑂(𝑛2−𝜖) time for some constant 𝜖 > 0)
would imply a surprising algorithm that solves 𝑘-SAT faster than

2
(1−𝜖)𝑛

, for some constant 𝜖 > 0 depending on 𝑘 , which would con-

tradict the believe that no such algorithm for 𝑘-SAT exists [9, 22, 23].

The conjecture on the running time lower bound of 𝑘-SAT is known

as the Strong Exponential-Time Hypothesis (SETH) [9].
To date, many popular hypotheses have been raised as bases

to prove conditional lower bounds of “easy” problems, e.g., the

All-Pair Shortest Paths (APSP) conjecture, the Orthogonal Vectors
(OV) conjecture, and the Hitting Set (HS) conjecture; please see

[44, 45] and references therein. While many researchers do not

have strong faith in SETH, most of them still believe that the APSP,

OV and HS conjectures are likely to be true. One reason is that

these conjectures imply that it is impossible to improve the running

times of many fundamental problems in which the best running

times are from trivial algorithms (and no improvement since then).

For example, the HS conjecture [2] that we use in this paper implies

that there is no truly subquadratic-time algorithm for computing

the radius of a sparse graph [2] or computing Earth Mover Distance
[35] of two sets of points. This (partially) answers the question why

there have been no improvements over trivial algorithms for these

two problems. The HS conjecture is also studied in [16].

4 CONDITIONAL HARDNESS OF
NON-DOMINATED SORTING

Before we prove Theorem 1.1, we introduce the following interme-

diate problem.

Bichromatic BinaryNon-DominatingProblem (BBND).Given
two sets of points 𝐴 and 𝐵 where ⋃︀𝐴⋃︀ = ⋃︀𝐵⋃︀ = 𝑛, and each point is

a vector over {0, 1}𝑚 where𝑚 = Ω(log𝑛), decide if there exists a
point 𝑎 ∈ 𝐴 that is not dominated (i.e., there exists a positive 𝑖 ≤𝑚
such that 𝑎𝑖 < 𝑏𝑖) by any point 𝑏 ∈ 𝐵.

Lemma 4.1 (Reduction from HS to BBND). If BBND can be
solved in time 𝑇 (𝑚,𝑛), then HS can be solved in time 𝑂(𝑇 (𝑚,𝑛)).

Proof. By representing each set as a binary vector, we can de-

scribe an equivalent formulation of the hitting set problem in terms

of two sets of vectors: Given two sets 𝐴, 𝐵 of vectors over {0, 1}𝑚
where𝑚 = 𝜔(log𝑛), decide if there exists a vector 𝑎 ∈ 𝐴 such that

for all 𝑏 ∈ 𝐵, ∑𝑚
𝑖=1 𝑎𝑖 ⋅ 𝑏𝑖 > 0.

Now, given an input instance (𝐴, 𝐵) for HS, we create a new set

𝐴
′ ∶= {𝑎′∶𝑎 ∈ 𝐴}where 𝑎′𝑖 = 1 if 𝑎𝑖 = 0, and 𝑎′𝑖 = 0 if 𝑎𝑖 = 1 for 𝑖 ≤𝑚.

The instance for BBND is then (𝐴′, 𝐵). Clearly, this construction
takes linear time. We now prove the completeness and soundness

of the reduction. For completeness, assume that (𝐴, 𝐵) is a yes-

instance to HS. That is, there exists 𝑎 ∈ 𝐴 such that for all 𝑏 ∈ 𝐵,
∑𝑚
𝑖=1 𝑎𝑖 ⋅ 𝑏𝑖 > 0. This means there is a positive 𝑖 ≤ 𝑚 such that

𝑎𝑖 = 𝑏𝑖 = 1. By construction (since we flip bitwise from 𝑎 to 𝑎
′
),

for the same 𝑖 , we have 𝑎
′

𝑖 = 0, but 𝑏𝑖 = 1, and thus 𝑎
′

𝑖 < 𝑏𝑖 . This
holds for every 𝑏 ∈ 𝐵. Therefore, this particular vector 𝑎′ ∈ 𝐴′ is not
dominated by any 𝑏 ∈ 𝐵, which is a yes-instance for BBND . Next,

we prove the soundness. Assume that (𝐴′, 𝐵) is a yes-instance to
BBND. So, there is a point 𝑎

′ ∈ 𝐴′ that is not dominated by any

point 𝑏 ∈ 𝐵. This means for each 𝑏 ∈ 𝐵, there is a positive 𝑖 ≤𝑚 such

that 𝑎
′

𝑖 < 𝑏𝑖 . Since 𝑎′ and 𝑏 are binary vectors, the only possibility

is when 𝑎
′

𝑖 = 0 and 𝑏𝑖 = 1. By construction, we have 𝑎𝑖 = 1 and

𝑏𝑖 = 1 for the same 𝑖 . This holds for every 𝑏 ∈ 𝐵. Hence, this vector
𝑎 has the property that ∑𝑚

𝑖=1 𝑎𝑖 ⋅ 𝑏𝑖 > 0 for all 𝑏 ∈ 𝐵, which is a

yes-instance for HS. □

Nextwe show thatwe can solve𝐵𝐵𝑁𝐷 by using a non-dominated

sorting algorithm. In particular, it is enough to compute all first

rank solutions.

Lemma 4.2. The input (𝐴, 𝐵) for BBND is a yes-instance if and
only if there exists 𝑎 ∈ 𝐴 such that 𝑅𝐴∪𝐵(𝑎) = 1 in the solution
population 𝐴 ∪ 𝐵 where 𝑅𝐴∪𝐵(𝑝) is the rank of a solution 𝑝 in the
population 𝐴 ∪ 𝐵.

Proof. We first show the backward direction. Let 𝑃 ∶= 𝐴 ∪ 𝐵 be

the solution population. Since there is 𝑎 ∈ 𝐴 with 𝑅𝐴∪𝐵(𝑎) = 1, the
definition of rank implies that 𝑎 is not dominated by any point in

the population 𝑃 . In particular, 𝑎 is not dominated by any point

𝑏 ∈ 𝐵. Therefore, (𝐴, 𝐵) is a yes-instance for BBND. We next prove

the forward direction. Since (𝐴, 𝐵) is a yes-instance for BBND,

there is 𝑎 ∈ 𝐴 such that 𝑎 is not dominated by any point 𝑏 ∈ 𝐵.
If 𝑅𝐴∪𝐵(𝑎) = 1, then we are done. We now assume otherwise.

Consider the population 𝑃 ∶= 𝐴 ∪ 𝐵. Since 𝑅𝐴∪𝐵(𝑎) > 1, we can

trace back to any point with the first rank along the domination

chain starting at 𝑎. Let 𝑥 be such a point. Clearly, 𝑅𝐴∪𝐵(𝑥) = 1

and 𝑥 dominates 𝑎. It remains to show that 𝑥 ∈ 𝐴. Suppose 𝑥 ∈ 𝐵,

GECCO ’20, July 8–12, 2020, Cancun, Mexico B. Trovato et al.

we have that 𝑎 is dominated by 𝑥 that belongs to 𝐵, which is a

contradiction. □

We now prove Theorem 1.1.

Proof of Theorem 1.1. By Lemma 4.1, it is enough to solve

BBND problem in time 𝑂(𝑚𝑛
2−𝜖). Suppose there is a 𝑂(𝑚𝑛

2−𝜖)-
time algorithm for non-dominated sorting. We prove that we can

solve BBND in time𝑂(𝑚𝑛
2−𝜖) as follows: Given an instance (𝐴, 𝐵),

we compute the rank of all populations𝐴∪𝐵, and then output yes if

there is 𝑎 ∈ 𝐴 with 𝑅𝐴∪𝐵(𝑎) = 1, and no otherwise. The correctness
follows immediately from Lemma 4.2. □

5 MINIMUMMULTI-SORT (MMS)
Our input 𝑃 is a set of solutions {𝑠 𝑗 ∈ R𝑚 ⋃︀ 1 ≤ 𝑗 ≤ 𝑛} where 𝑠𝑖𝑗 is
the value of solution 𝑗 in objective 𝑖 . Our goal is to compute the

rank of all solutions in 𝑃 . We assume without loss of generality

that solutions are unique but may have identical values in some

objectives.

We divide the problem of ranking solutions into two phases,

ordering and ranking. We first order all the solutions in 1 ≤ ℎ ≤𝑚
objectives. We discuss our choice of ℎ in our analysis section. We

then extract the minimum unprocessed solution from each of our ℎ

ordered objectives and rank that solution if it has not already been

ranked until all solutions are ranked. We build upon Zhang et al.’s
ENS method [46]. We improve upon ENS by ordering each solution

in ℎ objectives. Compared to ENS, we spend more time in ordering

but hopefully spend less time in ranking because we compare each

solution against fewer other solutions.

5.1 Ordering Phase
In the ordering phase, we order the solutions in 𝑃 based on each

objective 𝑖 for 1 ≤ 𝑖 ≤ ℎ using an ordering function <𝑖 which we

define below. We first define the lexical order of solutions in 𝑃 ,

denoted by <ℓ , using objectives 1 to𝑚 in order as follows. For any

two solutions 𝑠𝑢 and 𝑠𝑣 in 𝑃 , let 𝑘 be the smallest integer such that

𝑠
𝑘
𝑢 ≠ 𝑠𝑘𝑣 . If 𝑠𝑘𝑢 < 𝑠𝑘𝑣 , then 𝑠𝑢 <ℓ 𝑠𝑣 ; else 𝑠𝑣 <ℓ 𝑠𝑢 . It follows that <ℓ
defines a total order on the solutions in 𝑃 . Then, for 1 ≤ 𝑖 ≤ ℎ and

any two solutions 𝑠𝑢 and 𝑠𝑣 , 𝑠𝑢 <𝑖 𝑠𝑣 if (𝑠𝑖𝑢 < 𝑠𝑖𝑣) or ((𝑠𝑖𝑢 = 𝑠𝑖𝑣) and
(𝑠𝑢 <ℓ 𝑠𝑣)); otherwise 𝑠𝑣 <𝑖 𝑠𝑢 . That is, we first order 𝑠𝑢 and 𝑠𝑣 by

their values 𝑠
𝑖
𝑢 and 𝑠

𝑖
𝑣 . If that does not resolve their order, we order

𝑠𝑢 and 𝑠𝑣 by their lexical order.

For each 1 ≤ 𝑖 ≤ ℎ, we store the solutions 𝑃 ordered by <𝑖 in an or-
dering data structure 𝑄𝑖 that supports two operations: (i) construct

𝑄𝑖 given 𝑃 and <𝑖 and (ii) extract minimum which will be used dur-

ing the ranking phase. We consider two standard data structures for

𝑄𝑖 . The first is a sorted linked list or sorted array which supports

construction in𝑂(𝑛 log𝑛) time and extract minimum in𝑂(1) time.

The second is a binary heap which supports construction in 𝑂(𝑛)
time and extract minimum in 𝑂(log𝑛) time. For simplicity, it is

easier to think about the sorted linked list or sorted array, but the

binary heap may be faster, especially when we process some but

not all the solutions in 𝑄𝑖 during the ranking phase.

5.2 Ranking Phase
We perform ranking in rounds. In a round, for objective 1 ≤ 𝑖 ≤ ℎ,
we process 𝑞𝑖 which is the minimum unprocessed solution from

Algorithm 1:Minimum Multi-Sort or MMS

Input :Population 𝑃 = {𝑠 𝑗 ∈ R𝑚 ⋃︀ 1 ≤ 𝑗 ≤ 𝑛}
Output :Ranking 𝑅 of solutions in 𝑃

// Ordering phase

1 𝑅 ← {} // no solutions ranked yet

2 𝑄1 ← sort 𝑃 using lexical order ;

3 Initialize 𝐿𝑖 = ∅ ∀𝑖 = 1 to 𝑛// no solutions ranked

4 𝑄𝑖 ← 𝑂𝑟𝑑𝑒𝑟(𝑃, 𝑖), ∀𝑖 = 2 to 𝑛// construct heap

5 for 𝑗 = 1 to 𝑛 do
6 for 𝑖 = 1 to ℎ do
7 Put 𝑞𝑖 ← 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑀𝑖𝑛(𝑄𝑖) in the sorted order in 𝑄𝑖

8 if all 𝑛 solutions are extracted once then
9 𝑖𝑛𝑑𝑒𝑥 ← 𝑖

10 break out of both loops

11 end
12 end
13 end
14 𝑜𝑏 𝑗𝑆𝑒𝑞 ← Find order of objectives. Use the reverse order till

depth 𝑖𝑛𝑑𝑒𝑥 from 𝑄 , other objectives are randomly

ordered// global

15 𝐶(𝑃)← 𝑚// it counts # obj. to compare, global

16 𝐵 ← Create binary tree with rank 1

// Ranking phase

17 while ⋃︀𝑅⋃︀ < 𝑛 do
18 for 𝑖 = 1 to ℎ do
19 𝑞𝑖 ← 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑇𝑜𝑝(𝑄𝑖) // 𝑄𝑖 is already sorted till

𝑖𝑛𝑑𝑒𝑥

20 𝐶(𝑞𝑖)← 𝐶(𝑞𝑖) − 1
21 if 𝑞𝑖 ⇑∈ 𝑅 then
22 rank(𝑞𝑖)← Insert(𝐿𝑖 , 𝑞𝑖 , 𝐵)
23 𝑅 ← 𝑅 ∪ {rank(𝑞𝑖)}
24 else
25 InsertIntoRank(𝐿𝑖 , 𝑞𝑖 , rank(𝑞𝑖))
26 end
27 end
28 end
29 return 𝑅

𝑄𝑖 adding 𝑞𝑖 to a ranking data structure 𝐿𝑖 which organizes the

processed solutions from 𝑄𝑖 to facilitate fast ranking. There are

two possibilities for how we process 𝑞𝑖 . If 𝑞𝑖 is unranked (𝑞𝑖 ∉ 𝑅),
then we simultaneously rank 𝑞𝑖 and insert 𝑞𝑖 into 𝐿𝑖 and 𝑅. If 𝑞𝑖 is

already ranked (𝑞𝑖 ∈ 𝑅), then we just insert 𝑞𝑖 into 𝐿𝑖 . In both cases,

we do not modify the ranks of already ranked items.

We first consider the case where 𝑞𝑖 is unranked (𝑞𝑖 ∉ 𝑅). The key
observation (due to Zhang et al. [46]) is that no solution 𝑠 ∈ 𝑃 ∖ 𝐿𝑖
can dominate 𝑞𝑖 because 𝑞𝑖 <𝑖 𝑠 which means either 𝑞

𝑖
𝑖 < 𝑠

𝑖
or

𝑞𝑖 <ℓ 𝑠 . Thus, we only need to compute the rank of 𝑞𝑖 against the

solutions in 𝐿𝑖 . The exact details of how we compute this rank

depends on the details of 𝐿𝑖 . We assume that Insert(𝐿𝑖 ,𝑞𝑖) will insert

𝑞𝑖 into 𝐿𝑖 while determining and returning 𝑞𝑖 ’s rank.

Worst-Case Conditional Hardness of Non-Dominated Sorting GECCO ’20, July 8–12, 2020, Cancun, Mexico

We next consider the case where 𝑞𝑖 is already ranked (𝑞𝑖 ∈ 𝑅)
but was previously unprocessed in 𝑄𝑖 . In this case, we assume that

InsertIntoRank(𝐿𝑖 , 𝑞𝑖 , rank(𝑞𝑖)) will correctly insert 𝑞𝑖 into 𝐿𝑖 .

The algorithm can safely terminate if all solutions are ranked

before𝑛 rounds, so we only continue if there are unranked solutions

(⋃︀𝑅⋃︀ < 𝑛). If the algorithm can terminate after relatively few rounds,

say𝑛⇑ℎ, then the binary heap implementation of𝑄𝑖 may outperform

the sorted array or sorted linked list implementation of 𝑄𝑖 .

We now describe a basic implementation of the ranking data

structure 𝐿 using arrays of linked lists. Observe that solutions in 𝐿

can be partitioned into a list of solutions with the same rank. Let

𝐿
𝑘
be the solutions with rank 𝑘 , and 𝑟 be the maximum rank in 𝐿.

We have that 𝐿 = 𝐿1 ⊔ 𝐿2 ⊔ . . . ⊔ 𝐿𝑟 where ⊔ denotes disjoint union.
So, 𝐿

𝑘
can be indexed by 𝑘 using an array, and each 𝐿

𝑘
can be a

linked list of solutions with rank 𝑘 .

To implement InsertIntoRank(𝐿,𝑞,rank(𝑞)), we simply add the

new solution 𝑞 into 𝐿
rank(𝑞)

. One can verify that Algorithm 1 al-

ways has rank(𝑞) ≤ 𝑟 + 1. If rank(𝑞) = 𝑟 + 1, we create a new list

𝐿
𝑟+1

which will be initialized to hold just solution 𝑞.

To implement Insert(𝐿,𝑞, 𝑆𝑃), we find the rank of 𝑞 and then

insert into 𝐿
rank(𝑞)

. To find the rank of 𝑞, we use the following

domination check (DC) primitive. Given 1 ≤ 𝑗 ≤ 𝑟 and 𝑞, 𝐷𝐶(𝑗, 𝑞)
is true if any solution in 𝐿

𝑗
dominates 𝑞; otherwise 𝐷𝐶(𝑗, 𝑞) is false.

We then check 𝐷𝐶(𝑗, 𝑞) starting with 𝑗 = 1 and incrementing 𝑗

until 𝐷𝐶(𝑗, 𝑞) becomes false. Then 𝑟𝑎𝑛𝑘(𝑞) is this value of 𝑗 .

6 ANALYSIS
We first show that the worst-case running time of MMS is no worse

than brute-force search. We then show that MMS performs es-

pecially well on random input instances with many objectives;

specifically, MMS-heap can achieve an expected running time that

is linear in the input size for random input instances with Ω(⌋︂𝑛)
objectives.

6.1 Worst-Case Running Time
Proposition 1. The worst-case time complexity of MMS-sort and

MMS-heap is 𝑂(𝑚𝑛
2) time.

We divide the proof of Proposition 1 into two steps that count

the running time for each phase, ordering and ranking.

Lemma 6.1. Ordering takes𝑂(𝑚𝑛+ℎ𝑛 log𝑛) and𝑂(ℎ𝑛+𝑛 log𝑛)
time, respectively, for MMS-sort and MMS-heap.

Proof. For both algorithms, we start by sorting the first objec-

tive (<1 or equivalently <ℓ) which takes 𝑂(𝑚𝑛 + 𝑛 log𝑛) time [5].

For MMS-sort, we sort objective 𝑖 using <𝑖 for 2 ≤ 𝑖 ≤ ℎ. The key
observation is that for solutions 𝑠𝑢 and 𝑠𝑣 where 𝑠

𝑖
𝑢 = 𝑠𝑖𝑣 , we can

order them by <ℓ in𝑂(1) time because we have totally ordered 𝑃 by

<ℓ . Thus, MMS-sort requires 𝑂(ℎ𝑛 log𝑛) time to sort the solutions

for the remaining ℎ − 1 objectives. Similarly, MMS-heap requires

𝑂(ℎ𝑛) time to construct the remaining ℎ − 1 heaps; we assume that

MMS-heap uses the sorted list/array to store 𝑄1 since it has paid

the full cost of sorting. The result follows by summing the cost of

computing 𝑄1 and the remaining 𝑄𝑖 . □

Next, we compute the running time of the ranking phase which

depends on the number of ranking rounds 𝑘 that are needed. In the

worst case, 𝑘 = 𝑛; in the best case, 𝑘 = 𝑛⇑ℎ.

Lemma 6.2. The ranking phase with round 𝑘 runs in𝑂(𝑚𝑛𝑘) time
for both MMS-sort and MMS-heap.

Proof. Both algorithms process a total of ℎ𝑘 solutions in the

ranking phase. Extracting these ℎ𝑘 solutions takes 𝑂(ℎ𝑘) time for

MMS-sort and 𝑂(ℎ𝑘 log𝑛) time for MMS-heap. Only 𝑛 of these ℎ𝑘

solutions need to be ranked which requires 𝑂(𝑚𝑛𝑘) time for both

algorithms since each solution must be checked against at most

𝑘−1 other solutions, and each check requires at most𝑚−1 objective
value comparisons. Finally, all ℎ𝑘 solutions need to be inserted into

𝐿𝑖 which takes a total of 𝑂(ℎ𝑘) time for both algorithms. Because

𝑚𝑛𝑘 is strictly larger than ℎ𝑘 log𝑛, both algorithms have a worst-

case time complexity of 𝑂(𝑚𝑛𝑘) for the ranking phase. □

Proposition 1 follows from Lemmas 6.1 and 6.2, ℎ ≤𝑚 and 𝑘 ≤ 𝑛.

6.2 Average-Case Running Time
In the worst-case analysis, we made a few pessimistic assumptions.

First, we assumed that sorting 𝑃 to compute <ℓ requires 𝑂(𝑚𝑛 +
𝑛 log𝑛) time. Second, we assumed that the number of rounds 𝑘

in the ranking phase would be 𝑛 rather than something smaller

like 𝑂(𝑛⇑ℎ). Third, we assumed that ⋃︀𝐿𝑖 ⋃︀ = 𝑘 (note that 𝐿𝑖 are the

solutions found from𝑄𝑖 which is an ordering data structure related

to 𝑖-th objective) for each extracted solution 𝑞𝑖 that we needed to

compare in the ranking phase. Finally, in the ranking phase, we

assumed that checking whether a solution 𝑠 in 𝐿𝑖 dominates 𝑞𝑖
requires 𝑂(𝑚) time.

We now perform an average case analysis where the solutions

in 𝑃 are “random”. Specifically, we derive an upper bound on the

expected number of comparisons performed by MMS where we

make the following assumptions about the input instance. First,

we assume that no two solutions have the same value in the same

objective. Second, we assume that for each objective, all 𝑛! pos-

sible permutations are equally likely. Third, we assume that the

permutations for each objective are independent; that is, there is

no correlation between the ranking in one objective to the ranking

in a second objective.

The key analysis we will tighten is the number of comparisons

required to rank all 𝑛 solutions in the ranking phase which we

denote as 𝑅(𝑃). In Lemma 6.2, when ranking each of the 𝑛 solutions

𝑞𝑖 , we assumed that ⋃︀𝐿𝑖 ⋃︀ = 𝑘 − 1 and that it would take 𝑂(𝑚)
comparisons to determine if 𝑠𝑢 ∈ 𝐿𝑖 dominates 𝑞𝑖 or not. We now

do a more careful analysis with our assumptions.

Consider an arbitrary solution 𝑝 𝑗 at the moment which is sup-

posed to be ranked in the ranking phase. Without loss of generality,

let 𝑖 be the 𝑄𝑖 that 𝑝 𝑗 was extracted from, and let 𝑆 𝑗 = 𝐿𝑖 denote
the previously extracted solutions from𝑄𝑖 when 𝑝 𝑗 is extracted. Fi-

nally, for any 𝑠 ∈ 𝑆 𝑗 , let 𝑌(𝑠, 𝑝 𝑗) denote the number of comparisons

required to determine if 𝑠 ≻ 𝑝 𝑗 if we compare 𝑠 with 𝑝 𝑗 .

Then an upper bound on the total amount of work done for

computing the rank of all 𝑛 solutions is

𝑅(𝑃) ≤
𝑛

∑
𝑗=1

(∑
𝑠∈𝑆 𝑗

𝑌(𝑠, 𝑝 𝑗)) (1)

GECCO ’20, July 8–12, 2020, Cancun, Mexico B. Trovato et al.

This is an upper bound because we assume that we check if all

solutions 𝑠 ∈ 𝑆 𝑗 dominate 𝑝 𝑗 whereas we skip some domination

checks depending on the outcome of other checks.

We first derive an upper bound on 𝐸(︀𝑌(𝑠, 𝑝 𝑗)⌋︀.

Lemma 6.3. For any solution 𝑝 𝑗 and any 𝑠 ∈ 𝑆 𝑗 when 𝑝 𝑗 is first
extracted, 𝐸(︀𝑌(𝑠, 𝑝 𝑗)⌋︀ < 2.

Proof. Because of our assumptions that each objective is in-

dependent and all 𝑛! permutations are equally likely, the proba-

bility that 𝑝
𝑙
𝑗 < 𝑠𝑙 in any checked objective 𝑙 is 1⇑2. Since we can

stop once we find an objective 𝑙 where 𝑝
𝑙
𝑗 < 𝑠

𝑙
, this is exactly

the geometric distribution 𝑁𝐵(1, 1⇑2) which has expected value

2 except that we stop when we finish𝑚 − 1 trials; this early ter-

mination leads to a slightly smaller expected value. It follows that

𝐸(︀𝑌(𝑠, 𝑝 𝑗)⌋︀ < 𝐸(︀𝑁𝐵(1, 1⇑2)⌋︀ = 2. □

We next simplify 𝐸(︀𝑅(𝑃)⌋︀.

Lemma 6.4. 𝐸(︀𝑅(𝑃)⌋︀ ≤ 2(∑𝑛
𝑗=1 𝐸(︀⋃︀𝑆 𝑗 ⋃︀⌋︀).

Proof. We take the expectation of Equation 1 and then apply

linearity of expectations to get 𝐸(︀𝑅(𝑃)⌋︀ ≤ ∑𝑛
𝑗=1 𝐸(︀∑𝑠∈𝑆 𝑗

𝑌(𝑠, 𝑝 𝑗)⌋︀.
We evaluate 𝐸(︀∑𝑠∈𝑆 𝑗

𝑌(𝑠, 𝑝 𝑗)⌋︀ by considering each possible size

of ⋃︀𝑆 𝑗 ⋃︀ using conditional probabilities. That is, 𝐸(︀∑𝑠∈𝑆 𝑗
𝑌(𝑠, 𝑝 𝑗)⌋︀ =

𝐸(︀∑𝑛−1
𝑘=0(∑𝑠∈𝑆 𝑗

𝑌(𝑠, 𝑝 𝑗) ⋃︀ 𝑘 = ⋃︀𝑆 𝑗 ⋃︀)×𝑃𝑟(𝑘 = ⋃︀𝑆 𝑗 ⋃︀)⌋︀. We can move the

expected value inside the summation over𝑘 to get𝐸(︀∑𝑠∈𝑆 𝑗
𝑌(𝑠, 𝑝 𝑗)⌋︀ =

∑𝑛−1
𝑘=0(𝐸(︀(∑𝑠∈𝑆 𝑗

𝑌(𝑠, 𝑝 𝑗) ⋃︀ 𝑘 = ⋃︀𝑆 𝑗 ⋃︀)⌋︀ × 𝑃𝑟(𝑘 = ⋃︀𝑆 𝑗 ⋃︀)). Applying
linearity of expectations, this simplifies to 𝐸(︀∑𝑠∈𝑆 𝑗

𝑌(𝑠, 𝑝 𝑗)⌋︀ =
∑𝑛−1
𝑘=0(∑𝑠∈𝑆 𝑗

𝐸(︀(𝑌(𝑠, 𝑝 𝑗) ⋃︀ 𝑘 = ⋃︀𝑆 𝑗 ⋃︀)⌋︀ × 𝑃𝑟(𝑘 = ⋃︀𝑆 𝑗 ⋃︀)). Applying
Lemma 6.3, we get that 𝐸(︀∑𝑠∈𝑆 𝑗

𝑌(𝑠, 𝑝 𝑗)⌋︀ < ∑𝑛−1
𝑘=0(2𝑘 × 𝑃𝑟(𝑘 =

⋃︀𝑆 𝑗 ⋃︀)). Applying the definition of expected value, we get that

𝐸(︀∑𝑠∈𝑆 𝑗
𝑌(𝑠, 𝑝 𝑗)⌋︀ < 2𝐸(︀𝑆 𝑗 ⌋︀ and the result follows. □

We compute ∑𝑛
𝑗=1 𝐸(︀⋃︀𝑆 𝑗 ⋃︀⌋︀ bounding 𝐸(︀⋃︀𝑆 𝑗 ⋃︀⌋︀ for 1 ≤ 𝑗 ≤ 𝑛.

Lemma 6.5. 𝐸(︀⋃︀𝑆 𝑗 ⋃︀⌋︀ ≤ 𝑛
ℎ
.

Proof. Consider an arbitrary solution 𝑝 𝑗 and its associated value

𝐸(︀⋃︀𝑆 𝑗 ⋃︀⌋︀. We view the operation of MMS with respect to finding the

first occurrence of 𝑝 𝑗 as follows. In the first round, MMS performs

ℎ trials where each trial has probability 1⇑𝑛 of being solution 𝑝 𝑗
since all permutations of the 𝑛 solutions are equally likely in each

objective. If 𝑝 𝑗 appears during the first round, ⋃︀𝑆 𝑗 ⋃︀ = 0 since no

solutions are chosen before 𝑝 𝑗 . In the 𝑘th round, if 𝑝 𝑗 has not been

found in any earlier round, MMS performs ℎ trials where each

trial has probability 1⇑(𝑛 − 𝑘 + 1) of being solution 𝑝 𝑗 since all

permutations of the 𝑛 solutions are equally likely in each objective

and the assumption that 𝑝 𝑗 has not been found in any earlier round

means that there are only 𝑛 − 𝑘 + 1 solutions remaining to choose

from in each objective. If 𝑝 𝑗 appears during the𝑘th round, ⋃︀𝑆 𝑗 ⋃︀ = 𝑘−1
since 𝑘 − 1 solutions are chosen before 𝑝 𝑗 in the given objective.

In summary, MMS performs 𝑛ℎ trials where trial 𝑡 has proba-

bility 𝑃𝑟(𝑡 = 𝑝 𝑗 ⋃︀ 𝑝 𝑗 has not been selected earlier) = 1⇑(𝑛 − ⟨︀(𝑡 −
1)⇑ℎ⧹︀) of being 𝑝 𝑗 assuming we have not seen 𝑝 𝑗 in an earlier

trial, and the resulting value of ⋃︀𝑆 𝑗 ⋃︀ in the 𝑡th trial is 𝑣𝑎𝑙(𝑡) =
⟨︀(𝑡 − 1)⇑ℎ⧹︀. We denote the probability that the 𝑡 th trial is the first

occurrence of 𝑝 𝑗 as 𝑃𝑟(𝑡 = 𝑓 𝑝 𝑗) which is distinct from 𝑃𝑟(𝑡 = 𝑝 𝑗 ⋃︀

𝑝 𝑗 has not been selected earlier). Then𝐸(︀⋃︀𝑆 𝑗 ⋃︀⌋︀ = ∑𝑛ℎ
𝑡=1 𝑣𝑎𝑙(𝑡)𝑃𝑟(𝑡 =

𝑓 𝑝 𝑗).
We simplify this summation by making two modifications which

together cannot decrease the summation’s value. The first change is

to make 𝑃𝑟(𝑡 = 𝑝 𝑗 ⋃︀ 𝑝 𝑗 has not been selected earlier) = 1⇑𝑛 which

is no larger than it was before. The second is to increase the number

of trials from 𝑛ℎ to∞. These two changes increase the probability

that 𝑝 𝑗 is selected in a later trial with a larger 𝑣𝑎𝑙(𝑡).
Let 𝑝𝑟

′(𝑡 = 𝑓 𝑝 𝑗) denote the probability that trial 𝑡 is the first oc-

currence of𝑝 𝑗 with these two changes, and let𝑍
′ = ∑∞𝑡=1 𝑣𝑎𝑙(𝑡)𝑝𝑟 ′(𝑡 =

𝑓 𝑝 𝑗). We know 𝐸(︀⋃︀𝑆 𝑗 ⋃︀⌋︀ ≤ 𝑍
′
. We note that 𝑣𝑎𝑙(𝑡) ≤ 𝑡⇑ℎ, so 𝑍

′ ≤
∑∞𝑡=1 𝑡⇑ℎ 𝑝𝑟

′(𝑡 = 𝑓 𝑝 𝑗) which leads to 𝑍
′ ≤ 1⇑ℎ∑∞𝑡=1 𝑡 𝑝𝑟 ′(𝑡 = 𝑓 𝑝 𝑗).

We next observe that ∑∞𝑡=1 𝑡 𝑝𝑟 ′(𝑡 = 𝑓 𝑝 𝑗) is exactly the expected

value of the geometric distribution 𝑁𝐵(1, 1⇑𝑛). This is because we
are performing repeated trials with probability 1⇑𝑛 of success until

we get our first success. The expected value of 𝑁𝐵(1, 1⇑𝑛) = 𝑛.

Thus 𝑍
′ ≤ 𝑛⇑ℎ, and the result follows. □

Corollary 1. 𝐸(︀𝑅(𝑃)⌋︀ ≤ 2𝑛2⇑ℎ.

Proof. This follows directly from Lemmas 6.3, 6.4, and 6.5. □

We now bound the remaining comparisons performed where we

separately analyze MMS-sort and MMS-heap. For both algorithms,

computing <ℓ requires only 𝑂(𝑛 log𝑛) time because we assume

that all solutions are distinct in each objective (same running time

even when they are not distinct using three-way quicksort [39]). For

MMS-sort, performing the initial sort for the other ℎ − 1 objectives
requires𝑂(𝑛ℎ log𝑛) time using a Θ(𝑛 log𝑛) sorting algorithm like

mergesort. The extract minimum operations in the ranking phase

are done in 𝑂(𝑛ℎ) time. For MMS-heap, building the remaining

ℎ − 1 heaps requires only 𝑂(𝑛ℎ) time since constructing binary

heaps can be done in linear time. We now analyze the time required

by MMS-heap for the extract minimum operations in the ranking

phase.

Lemma 6.6. The expected cost of the extract minimum operations
performed by MMS-heap is 𝑂(𝑛 log2 𝑛).

Proof. Without loss of generality, we assume that we extract

the minimum from all ℎ heaps before checking to see if all solutions

have been found. Let𝑈 be the random variable which denotes this

quantity; note that𝑈 ≤ 𝑛.
We consider two cases: ℎ ≤ 2 ln𝑛 and ℎ > 2 ln𝑛. If ℎ ≤ 2 ln𝑛, the

worst case is we perform ℎ𝑛 extract minimum operations which

gives us a total cost of 𝑂(𝑛ℎ log𝑛) which is 𝑂(𝑛 log2 𝑛) since ℎ ≤
2 ln𝑛 and the result follows.

We now consider the second case: ℎ > 2 ln𝑛. What is the proba-

bility that𝑈 exceeds 2𝑛 ln (𝑛⇑ℎ) given ℎ > 2 ln𝑛? We first compute

the probability that a specific solution 𝑝 has not been sampled by

this value of 𝑈 . Solution 𝑝 is not sampled in one objective with

probability (𝑛 − 2𝑛 ln (𝑛⇑ℎ)) = 1 − 2 ln (𝑛⇑ℎ) since we assume the

orderings are all equally likely. To not be sampled in all ℎ objec-

tives occurs with probability (1 − 2 ln𝑛⇑ℎ)ℎ since we assume each

dimension is independent. This probability is upper bounded by

𝑒
−2 ln𝑛 = 1⇑𝑛2. This implies that the probability that any solution

is not sampled in any of the ℎ objectives is at most 𝑛⇑𝑛2 = 1⇑𝑛.

Worst-Case Conditional Hardness of Non-Dominated Sorting GECCO ’20, July 8–12, 2020, Cancun, Mexico

We can then upper bound the number of comparisons needed for

extract minimum operations as follows. With probability at most

1⇑𝑛, 𝑈 is 𝑛 which means we have ℎ𝑛 extract minimum operations.

With probability at least 1, 𝑈 is at most 2𝑛 ln𝑛⇑ℎ which means

we have at most 2𝑛 ln𝑛 extract minimum operations. Thus, the

expected cost of the extract minimum operations is at most 1⇑𝑛 ×
ℎ𝑛 × log𝑛 + 1× 2𝑛 ln𝑛 × log𝑛 = ℎ log𝑛 + 2𝑛 ln𝑛 log𝑛, and the result
follows. □

Finally, combining Corollary 1 and Lemma 6.6, we derive the

following upper bound on the expected runtime of MMS-heap

and MMS-sort. The main difference is that MMS-sort incurs a

Θ(𝑛ℎ log𝑛) term for sorting in the ordering phase.

Theorem 6.7. The expected runtime of MMS-heap
is 𝑂 (𝑛2⇑ℎ + 𝑛ℎ + 𝑛 log2 𝑛), and the expected runtime of MMS-sort is
𝑂 (𝑛2⇑ℎ + 𝑛ℎ log𝑛).

These results imply that MMS-heap achieves an expected run-

ning time that is linear in the input size for input instances with

at least

⌋︂
𝑛 objectives, and MMS-sort is slightly worse by a

⌈︂
log𝑛

factor.

Corollary 2. For𝑚 = Ω(⌋︂𝑛), the expected runtime of MMS-
heap is Θ(𝑛⌋︂𝑛) = 𝑂(𝑚𝑛) using ℎ =⌋︂𝑛, and the expected runtime
of MMS-sort is Θ(𝑛

⌈︂
𝑛 log𝑛) using ℎ =

⌈︂
𝑛⇑ log𝑛.

7 CONCLUSION
Non-dominated sorting has emerged as a critical component for

multi-objective optimization problems (MOPs). The best known

running time for general𝑚 is 𝑂(𝑚𝑛
2), and has stood for almost

two decades. In this work, we prove a matching conditional lower

bounds based on Hitting Set Conjecture, and provide the first ef-

ficient algorithm on the inputs that are drawn from uniform dis-

tribution. An open problem is to either improve the average-case

runtime or prove a conditional lower bound under inputs that are

drawn from uniform distribution.

REFERENCES
[1] 2014. A Provably Asymptotically Fast Version of the Generalized Jensen Algo-

rithm for Non-dominated Sorting. In Parallel Problem Solving from Nature - PPSN
XIII, Thomas Bartz-Beielstein, Jürgen Branke, Bogdan Filipic, and Jim Smith (Eds.).

Lecture Notes in Computer Science, Vol. 8672. Springer International Publishing.

[2] Amir Abboud, Virginia Vassilevska Williams, and Joshua Wang. 2016. Approxi-

mation and Fixed Parameter Subquadratic Algorithms for Radius and Diameter

in Sparse Graphs. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA ’16). Society for Industrial and Applied

Mathematics, USA, 377–391.

[3] Jon Louis Bentley. 1980. Multidimensional Divide-and-conquer. Commun. ACM
23, 4 (April 1980), 214–229.

[4] Jon L. Bentley, Kenneth L. Clarkson, and David B. Levine. 1990. Fast Linear

Expected-time Alogorithms for Computing Maxima and Convex Hulls. In Pro-
ceedings of the First Annual ACM-SIAM Symposium on Discrete Algorithms (SODA
’90). Society for Industrial and Applied Mathematics, Philadelphia, PA, USA,

179–187.

[5] Jon L. Bentley and Robert Sedgewick. 1997. Fast Algorithms for Sorting and

Searching Strings (SODA ’97). Society for Industrial and Applied Mathematics,

Philadelphia, PA, USA, 360–369.

[6] S. Borzsony, D. Kossmann, and K. Stocker. 2001. The Skyline operator. In Data
Engineering, 2001. Proceedings. 17th International Conference on. 421–430.

[7] Adam L. Buchsbaum and Michael T. Goodrich. 2004. Three-Dimensional Layers

of Maxima. Algorithmica 39, 4 (2004), 275–286.
[8] Maxim Buzdalov. 2019. Make Evolutionary Multiobjective Algorithms Scale

Better with Advanced Data Structures: Van Emde Boas Tree for Non-dominated

Sorting. In EMO (Lecture Notes in Computer Science), Vol. 11411. Springer, 66–77.

[9] Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. 2009. The Complexity
of Satisfiability of Small Depth Circuits. Springer-Verlag, Berlin, Heidelberg, 75–85.
https://doi.org/10.1007/978-3-642-11269-0_6

[10] R. Cheng, Y. Jin, M. Olhofer, and B. Sendhoff. 2016. A Reference Vector Guided

Evolutionary Algorithm for Many-Objective Optimization. IEEE Transactions on
Evolutionary Computation 20, 5 (Oct 2016), 773–791.

[11] David Corne, Joshua D. Knowles, and Martin J. Oates. 2000. The Pareto Envelope-

Based Selection Algorithm for Multi-objective Optimisation. In Proceedings of
the 6th International Conference on Parallel Problem Solving from Nature (PPSN
VI). Springer-Verlag, London, UK, UK, 839–848.

[12] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. 2002. A fast and elitist multiob-

jective genetic algorithm: NSGA-II. Evolutionary Computation, IEEE Transactions
on 6, 2 (Apr 2002), 182–197.

[13] M. Drozdík, Y. Akimoto, H. Aguirre, and K. Tanaka. 2015. Computational Cost

Reduction of Nondominated Sorting Using the M-Front. IEEE Transactions on
Evolutionary Computation 19, 5 (Oct 2015), 659–678.

[14] Hongbing Fang, Qian Wang, Yi-Cheng Tu, and Mark F. Horstemeyer. 2008. An

Efficient Non-dominated Sorting Method for Evolutionary Algorithms. Evol.
Comput. 16, 3 (Sept. 2008), 355–384.

[15] Félix-Antoine Fortin, Simon Grenier, and Marc Parizeau. 2013. Generalizing the

Improved Run-time Complexity Algorithm for Non-dominated Sorting. In Pro-
ceedings of the 15th Annual Conference on Genetic and Evolutionary Computation
(GECCO ’13). ACM, New York, NY, USA, 615–622.

[16] Jiawei Gao, Russell Impagliazzo, Antonina Kolokolova, and Ryan Williams. 2017.

Completeness for First-Order Properties on Sparse Structures with Algorithmic

Applications. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium
onDiscrete Algorithms (SODA ’17). Society for Industrial andAppliedMathematics,

USA, 2162–2181.

[17] Patrik Gustavsson and Anna Syberfeldt. 2017. A New Algorithm Using the Non-

Dominated Tree to Improve Non-Dominated Sorting. Evolutionary Computation
26, 1 (2017), 89–116.

[18] Patrik Gustavsson and Anna Syberfeldt. 2018. A New Algorithm Using the Non-

Dominated Tree to Improve Non-Dominated Sorting. Evolutionary Computation
26, 1 (2018).

[19] Julia Handl and Joshua Knowles. 2005. Exploiting the Trade-off — the Benefits of

Multiple Objectives in Data Clustering. In Proceedings of the Third International
Conference on Evolutionary Multi-Criterion Optimization (EMO’05). Springer-
Verlag, Berlin, Heidelberg, 547–560.

[20] Meng He, Cuong P. Nguyen, and Norbert Zeh. 2018. Maximal and Convex Layers

of Random Point Sets. In LATIN (Lecture Notes in Computer Science), Vol. 10807.
Springer, 597–610.

[21] Alfred O. Hero and Gilles Fleury. 2004. Pareto-OptimalMethods for Gene Ranking.

Journal of VLSI signal processing systems for signal, image and video technology
38, 3 (2004), 259–275.

[22] Russell Impagliazzo and Ramamohan Paturi. 2001. On the Complexity of k-SAT.

J. Comput. Syst. Sci. 62, 2 (March 2001), 367–375. https://doi.org/10.1006/jcss.

2000.1727

[23] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. 2001. Which Problems

Have Strongly Exponential Complexity? J. Comput. Syst. Sci. 63, 4 (Dec. 2001),
512–530. https://doi.org/10.1006/jcss.2001.1774

[24] A. Jaszkiewicz and T. Lust. 2018. ND-Tree-based update: a Fast Algorithm for

the Dynamic Non-Dominance Problem. IEEE Transactions on Evolutionary Com-
putation PP, 99 (2018), 1–1.

[25] M.T. Jensen. 2003. Reducing the run-time complexity of multiobjective EAs: The

NSGA-II and other algorithms. Evolutionary Computation, IEEE Transactions on
7, 5 (Oct 2003), 503–515.

[26] Sanjiv Kapoor and Prakash V. Ramanan. 1989. Lower Bounds for Maximal and

Convex Layers Problems. Algorithmica 4, 4 (1989), 447–459.
[27] J. Knowles and D. Corne. 1999. The Pareto archived evolution strategy: a new

baseline algorithm for Pareto multiobjective optimisation. In Evolutionary Com-
putation, 1999. CEC 99. Proceedings of the 1999 Congress on, Vol. 1. 105 Vol. 1.

[28] H. T. Kung, F. Luccio, and F. P. Preparata. 1975. On Finding the Maxima of a Set

of Vectors. J. ACM 22, 4 (Oct. 1975), 469–476.

[29] Kevin Leyton-Brown and Yoav Shoham. 2008. Essentials of Game Theory: A
Concise, Multidisciplinary Introduction (1st ed.). Morgan and Claypool Publishers.

[30] K. Li, K. Deb, Q. Zhang, and S. Kwong. 2015. An Evolutionary Many-Objective Op-

timization Algorithm Based on Dominance and Decomposition. IEEE Transactions
on Evolutionary Computation 19, 5 (Oct 2015), 694–716.

[31] K. Li, K. Deb, Q. Zhang, and Q. Zhang. 2017. Efficient Nondomination Level

Update Method for Steady-State Evolutionary Multiobjective Optimization. IEEE
Transactions on Cybernetics 47, 9 (Sept 2017), 2838–2849.

[32] Kent McClymont and Ed Keedwell. 2012. Deductive Sort and Climbing Sort: New

Methods for Non-dominated Sorting. Evol. Comput. 20, 1 (March 2012), 1–26.

[33] Yakov Nekrich. 2011. A Fast Algorithm for Three-Dimensional Layers of Maxima

Problem. In WADS (Lecture Notes in Computer Science), Vol. 6844. Springer, 607–
618.

[34] Franck Nielsen. 1996. Output-sensitive peeling of convex and maximal layers.

Inform. Process. Lett. 59, 5 (1996), 255 – 259.

https://doi.org/10.1007/978-3-642-11269-0_6
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1006/jcss.2001.1774

GECCO ’20, July 8–12, 2020, Cancun, Mexico B. Trovato et al.

[35] Dhruv Rohatgi. 2019. Conditional Hardness of Earth Mover Distance. In Ap-
proximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques (APPROX/RANDOM 2019) (Leibniz International Proceedings in Infor-
matics (LIPIcs)), Dimitris Achlioptas and László A. Végh (Eds.), Vol. 145. Schloss

Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 12:1–12:17.

https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.12

[36] Dan Romik. 2015. The Surprising Mathematics of Longest Increasing Subsequences
(1st ed.). Cambridge University Press.

[37] P.C. Roy, M.M. Islam, K. Murase, and Xin Yao. 2015. Evolutionary Path Control

Strategy for Solving Many-Objective Optimization Problem. Cybernetics, IEEE
Transactions on 45, 4 (April 2015), 702–715.

[38] Proteek Chandan Roy, Md. Monirul Islam, and Kalyanmoy Deb. 2016. Best

Order Sort: A New Algorithm to Non-dominated Sorting for Evolutionary Multi-

objective Optimization. In Proceedings of the 2016 on Genetic and Evolutionary
Computation Conference Companion (GECCO ’16 Companion). ACM, 1113–1120.

[39] Robert Sedgewick and Kevin Wayne. 2011. Algorithms (4th ed.). Addison-Wesley

Professional.

[40] N. Srinivas and Kalyanmoy Deb. 1994. Muiltiobjective Optimization Using Non-

dominated Sorting in Genetic Algorithms. Evol. Comput. 2, 3 (Sept. 1994), 221–
248.

[41] Suqin Tang, Zixing Cai, and Jinhua Zheng. 2008. A Fast Method of Constructing

the Non-dominated Set: Arena’s Principle. In Proceedings of the 2008 Fourth
International Conference on Natural Computation - Volume 01 (ICNC ’08). IEEE
Computer Society, 391–395.

[42] Handing Wang and Xin Yao. 2014. Corner Sort for Pareto-Based Many-Objective

Optimization. Cybernetics, IEEE Transactions on 44, 1 (Jan 2014), 92–102.

[43] RyanWilliams. 2005. A new algorithm for optimal 2-constraint satisfaction and its

implications. Theoretical Computer Science 348, 2 (2005), 357 – 365. https://doi.org/

10.1016/j.tcs.2005.09.023 Automata, Languages and Programming: Algorithms

and Complexity (ICALP-A 2004).

[44] Virginia VassilevskaWilliams. 2015. Hardness of Easy Problems: Basing Hardness

on Popular Conjectures such as the Strong Exponential Time Hypothesis (Invited

Talk). In 10th International Symposium on Parameterized and Exact Computa-
tion (IPEC 2015) (Leibniz International Proceedings in Informatics (LIPIcs)), Thore
Husfeldt and Iyad Kanj (Eds.), Vol. 43. Schloss Dagstuhl–Leibniz-Zentrum fuer In-

formatik, Dagstuhl, Germany, 17–29. https://doi.org/10.4230/LIPIcs.IPEC.2015.17

[45] Virginia Vassilevska Williams. 2018. Some Open Problems in Fine-Grained

Complexity. SIGACT News 49, 4 (Dec. 2018), 29–35. https://doi.org/10.1145/

3300150.3300158

[46] X. Zhang, Y. Tian, R. Cheng, and Y. Jin. 2015. An Efficient Approach to Non-

dominated Sorting for Evolutionary Multiobjective Optimization. Evolutionary
Computation, IEEE Transactions on 19, 2 (April 2015), 201–213.

[47] X. Zhang, Y. Tian, R. Cheng, and Y. Jin. 2018. A Decision Variable Clustering-

Based Evolutionary Algorithm for Large-Scale Many-Objective Optimization.

IEEE Transactions on Evolutionary Computation 22, 1 (Feb 2018), 97–112.

[48] X. Zhang, Y. Tian, and Y. Jin. 2015. A Knee Point-Driven Evolutionary Algorithm

forMany-Objective Optimization. IEEE Transactions on Evolutionary Computation
19, 6 (Dec 2015), 761–776.

[49] E. Zitzler, M. Laumanns, and L. Thiele. 2002. SPEA2: Improving the Strength

Pareto Evolutionary Algorithm for Multiobjective Optimization. In Evolutionary
Methods for Design, Optimisation and Control with Application to Industrial Prob-
lems (EUROGEN 2001), K.C. Giannakoglou et al. (Eds.). International Center for

Numerical Methods in Engineering (CIMNE), 95–100.

https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.12
https://doi.org/10.1016/j.tcs.2005.09.023
https://doi.org/10.1016/j.tcs.2005.09.023
https://doi.org/10.4230/LIPIcs.IPEC.2015.17
https://doi.org/10.1145/3300150.3300158
https://doi.org/10.1145/3300150.3300158

	Abstract
	1 Introduction
	1.1 Our Results

	2 Related Work
	3 Fine-grained Complexity Theory
	4 Conditional Hardness of Non-Dominated Sorting
	5 Minimum Multi-Sort (MMS)
	5.1 Ordering Phase
	5.2 Ranking Phase

	6 Analysis
	6.1 Worst-Case Running Time
	6.2 Average-Case Running Time

	7 Conclusion
	References

