
Inapproximability of Combinatorial
Problems in Subexponential-Time

Bundit Laekhanukit

Doctor of Philosophy

School of Computer Science

McGill University

Montreal,Quebec

2014-23-06

A thesis submitted to McGill University
in partial fulfillment of the requirements of the degree of

Doctor of Philosophy

c© Bundit Laekhanukit, 2014

DEDICATION

This thesis is dedicated to my family, especially, my grandfather who passed

away a year prior to the finishing of this dissertation.

ii

ACKNOWLEDGMENTS

First and foremost, I would like to thank my advisor, Adrian Vetta, who has

continuously supported me throughout my Ph.D. study. I would like to express my

sincere gratitude to him for his help, guidance and support, and also for his patience.

Without him, this thesis would have never been done. My sincere thanks also go

to my former advisors, Joseph Cheriyan and Jittat Fakcharoenphol who supported

and patiently supervised me during my masters (M.Math and M.Eng). I also would

like to thank Bruce Shepherd for his guidance. Two of the most important people I

would like to thank are my friends and colleagues, Danupon Nanongkai and Parinya

Chalermsook. The results in this thesis are the product of our collaborations over

many years. During Summer 2012 and while writing this thesis, I have been partly

supported by Fabrizio Grandoni. I would like to thank him for his generous support.

I would also like to thank the committee members and examiners, Hamed Hatami,

Jochen Könemann, Luc Devroye, Sergey Norin, Alyson Fournier and Muthucumaru

Maheswaran. Last but not least, I would like to thank to my family for supporting

me throughout my life.

iii

Contribution of the author

The materials in this thesis come from [17, 18], which are joint work with Parinya

Chalermsook and Danupon Nanongkai. The results from [17] appear partly in Chap-

ter 6. The results from [18] appear in Chapter 7 and Chapter 8. In [17], The author

worked as a part of the team and contributed in verifying the results. In [18], the key

idea in proving “new property of dispersers” came from the author. The author also

fine-tuned and and simplified the analysis of the proofs in [18]. The approximation

scheme in [18] also came from the observation of the author. The author recently

proved new results in Chapter 5 and some results in Chapter 6 to bind the mate-

rials from the two articles together. More precisely, to the best of our knowledge,

the proof of subexponential-time approximation hardness using the graph product

technique has not been known prior to this thesis.

iv

ABSTRACT

Many natural combinatorial optimization problems turn out to be NP-hard. A

standard way to cope with these problems is to design an algorithm that outputs an

approximate solution and still runs in polynomial-time. Although a decent solution

can sometime be found, many of the natural problems that we encounter, e.g., the

maximum independent set and graph coloring problems, resist almost every approx-

imation algorithm. In fact, assuming P 6= NP, there exists a barrier that prevents

us to get arbitrarily close to an optimal solution. Thus, understanding the limit in

which one can find an approximate solution is an important subject in theoretical

computer science. This thesis studies the inapproximability of combinatorial opti-

mization problems in the fashion of time-approximability trade-off. In particular,

assuming the exponential-time hypothesis, we show that even allowing an algorithm

to run in subexponential-time, some problems cannot be approximated to within

some factors.

v

ABRÉGÉ

Beaucoup de problèmes d’optimisation combinatoire naturelle s’avèrentêtre des

problèmes NP. Une méthode standard pour faire face à ces problèmes consiste à

concevoir un algorithme qui fournit une solution approchée et qui fonctionne toujours

en temps polynomial. Même si une solution dècente peut parfois être trouvée, de

nombreux problèmes physiques que nous rencontrons, par exemple, un ensemble

indépendant maximal et des problmes de coloration des graphes, résistent à presque

chaque algorithme d’approximation. En fait, en supposant que P 6= NP, il existe une

barriére qui nous empêche d’obtenir arbitrairement proche de la solution optimale.

Ainsi, en comprenant la limite dans laquelle on peut une solution approchée est un

sujet important dans l’informatique théorique. Cette thèse étudie l’inapproximabilité

des problèmes d’optimisation combinatoire sous la forme d’un un compromis au

niveau de l’approximabilité du temps. En particulier, en nous basant sur l’hypothse

exponentielle-temps, nous montrons que même en permettant à un algorithme d’être

exécuté en temps sous-exponentiel, certains problèmes ne peuvent pas être estimés

dans certains facteurs.

vi

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGMENTS . iii

ABSTRACT . v

ABRÉGÉ . vi

LIST OF TABLES . x

LIST OF FIGURES . xi

1 Introduction . 1

1.1 The Approximability of Optimization Problems 5
1.2 Proving Hardness of Approximation 6

2 Preliminaries and Background . 9

2.1 Preliminaries . 9
2.2 Problem Definitions . 11
2.3 Complexity Terminology . 14
2.4 A Probabilistically Checkable Proof System 15

2.4.1 The FGLSS reduction . 17

3 Exponential-Time Hypothesis and Almost Linear-Size PCPs 21

3.1 Exponential-Time Hypothesis . 21
3.2 (Almost) Linear-Size PCP . 22
3.3 Randomized PCP for Graph Coloring 24

4 Graph Product . 30

4.1 Properties of Disjunctive Product 32
4.2 Randomized Graph Product . 40

vii

4.2.1 Independence Ratio of Randomized Graph Product 42
4.2.2 Chromatic Number of Randomized Graph Product 45

5 Subexponential-Time Approximation Hardness of Classical Results . . . 48

5.1 Overview . 51
5.2 Independent Set . 52
5.3 Graph Coloring . 56

6 Subexponential-Time Hardness from Graph Product 61

6.1 Our Results . 62
6.2 Overview . 64
6.3 The Proof of Subexponential-Time Approximation Hardness . . . 66
6.4 Graph Product Inequality . 69

7 Subexponential-Time Hardness of Problems on Bounded-Degree Graphs 74

7.1 Overview . 74
7.1.1 Step II: independent set → induced matching 79

7.2 An Almost-Linear Size Reduction from SAT to CSP 82
7.3 FGLSS and Dispersers Replacement 86
7.4 Tight Hardness of Semi-Induced Matching 87

7.4.1 The Reduction . 88
7.4.2 Analysis . 92
7.4.3 Subexponential Time Approximation Hardness for the

Maximum Independent Set and Induced Matching Prob-
lems . 97

7.4.4 Subexponential-Time Approximation Algorithm for In-
duced Matching . 99

8 The Hardness of Approximating k-Hypergraph Pricing 103

8.1 Overview . 104
8.1.1 The Main Reduction: SAT → pricing 104
8.1.2 An Intermediate Reduction: Induced matching → Pricing . 105

8.2 The Approximation Hardness of k-Hypergraph Pricing 105
8.2.1 From Semi-Induced Matching to Pricing Problems 107
8.2.2 Intermediate Hardness . 113
8.2.3 The Hardness Results (Proof of Theorem 8.2.1) 114

viii

8.2.4 Subexponential-Time Approximation Hardness for the
k-Hypergraph Pricing Problem 115

8.3 Approximation Scheme for k-Hypergraph Pricing 116
8.3.1 Approximation Scheme . 117
8.3.2 Cost Analysis . 118
8.3.3 Running Time Analysis . 121
8.3.4 Polynomial-Time O(

√
n log n)-Approximation Algorithm . 121

8.3.5 O(1)-Approximation in Time O((log nm)npoly(n,m)) . . . 122

9 Conclusion . 125

REFERENCES . 126

ix

LIST OF TABLES
Table page

1–1 Results in this thesis . 5

x

LIST OF FIGURES
Figure page

2–1 An example of the FGLSS reduction. 19

6–1 Example of graphs G, H, B[G], B[H] and B[G ∨H]. 70

6–2 Illustration of the sets of edges EG and EH 72

xi

CHAPTER 1
Introduction

An abundance of real-world computational tasks require the optimization of an

objective function. Consequently, optimization has become a fundamental area of

research in theoretical computer science.

For many optimization problems, a solution can be obtained via an efficient

algorithm, that is, one that runs in time polynomial in the input size. In contrast,

some problems seem to be solvable only using a super-polynomial amount of running

time. Such problems are classified as hard. In particular, many natural problems

are NP-hard and, to date, no polynomial-time algorithms are known that can solve

an NP-hard problem optimally. Indeed, it is widely believed that no such algorithm

can exist – this belief is formalized in the conjecture that P 6= NP.

As a result, computer scientists have studied alternative ways of solving hard

problems, for example, approximation algorithms and heuristics, which output ap-

proximate rather than optimal solutions. Unfortunately, sometimes even finding

an approximate solution is hard! Specifically, for some problems obtaining a solu-

tion with an approximation guarantee better than a specified factor is equivalent to

solving an NP-hard problem. The most infamous example of this is the traveling

salesperson problem: for general distance functions, finding an approximate solution

is as hard as finding an exact solution. In other words, no efficient algorithm can yield

any worst case approximation guarantee for the traveling salesperson problem unless

1

P = NP. Two other examples are the graph coloring problem and the maximum

independent set problem.

In the 1970s, during the time when the theory of NP-completeness was being

developed [24, 52, 49], Johnson [48] gave an O(n/ log n)-approximation algorithm

for the graph coloring problem, where n is the number of vertices in the graph.

It took two decades to improve the approximation guarantee. Even then, the im-

provement was very slight: the current best bound is O(n(log log n)2/(log n)3) due

to Halldórsson [40]. Thus, despite a huge amount of effort little substantial progress

was made on the problem. The situation was even worse for the maximum inde-

pendent set problem. There, the first non-trivial approximation algorithm was only

discovered in 1990 by Boppana and Halldórsson [9], and the best approximation ratio

is still only O(n(log log n)2/(log n)3) by Feige [32]. The question of whether these

two fundamental graph problems, graph coloring and maximum independent set,

admit decent approximations was finally answered in the negative. First, in seminal

work Feige et al. [33] showed that the maximum independent set problem cannot be

approximated to within a factor of 2log1−ε n unless NP ⊆ DTIME(2polylogn). the lower

bound has since been steadily improved in a sequence of works [3, 2, 6, 8, 42]. Sec-

ond, the inapproximability of the graph coloring problem was proven by Lund and

Yanakakis [57]. Based upon the hardness of the maximum independent set problem,

they proved that the graph coloring problem does not admit an nδ-approximation al-

gorithm, for some fixed constant δ > 0, unless P = NP. Later works lead to a better

understanding of approximation thresholds for these problems. It is now known that

2

both the graph coloring and the maximum independent set problems admit no n1−ε-

approximation algorithm, for all ε > 0, unless NP = ZPP. These theorems are due to

H̊astad [42] and Feige and Kilian [34], respectively. Furthermore, these results were

derandomized by Zuckerman [70]. Thus, the required complexity assumption is now

simply P 6= NP. We remark that the best known approximation lower bounds of the

two problems is n/2log3/4+ε n, for any ε > 0, assuming NP (BPTIME(2polylogn), due

to Khot and Ponnuswami [51]. This essentially rules out the possibility of improving

upon the best known approximation guarantees for the two problems.

So, both the independent set and graph coloring problems are almost inapprox-

imable. The lower bounds described above, however, only apply to polynomial-time

algorithms. This prompts the question as to whether the approximation guarantee

can be improved by allowing an algorithm to run in superpolynomial (but, subex-

ponential) time. The answer is yes – it was shown that the independent set and

graph coloring problems both admit r-approximation algorithms that run in time

O(2n/rpoly(n)) (see [25, 11, 10]). These bounds break the approximation barrier of

n1−ε for polynomial-time algorithms. What are the limits of this approach? Specifi-

cally, are there any lower bounds on the quality of subexponential-time algorithms?

This question is open but the exponential-time hypothesis (ETH) of Impagliazzo and

Paturi [45] conjectures that 3-SAT cannot be solved in subexponential time. As-

suming the ETH, any problem that has an almost linear-size reduction from 3-SAT

inherits the same subexponential-time lower bound. In particular, Moshkovitz and

Raz [59] recently gave an almost linear-size reduction from 3-SAT to its maximiza-

tion version, Max 3-SAT, with a hardness gap of 8/7− o(1). So, given that solving

3

3-SAT requires exponential-time, approximating Max 3-SAT to within a factor of

8/7− o(1) requires exponential-time as well. One can further deduce from the result

of Moshkovitz and Raz [59] that, assuming the ETH, neither independent set nor

graph coloring can be approximated to within a factor of n1−ε in subexponential-time.

In this thesis, we extend the ground breaking result of Moshkovitz and Raz [59].

To wit, we quantify the trade-off between time and approximation for subexponential-

time algorithms. For example, given a running time of O(2n
1/2−ε

), it is not possible

to approximate the maximum independent set problem to within a factor of n1/2−ε,

for any ε > 0, assuming the exponential-time hypothesis. A similar hardness result

also holds for the graph coloring problem. These results extend to the maximum

bipartite induced matching problem and the k-hypergraph pricing problem.

Our contributions are two-fold. First, we develop a “framework” for proving

subexponential-time approximation hardness. Two techniques used in the framework

are (1) graph product and (2) CSP-level gap amplification. (The latter works at the

level of the constraint satisfaction problem (CSP).) Second, we prove lower bounds on

the running time of r-approximation algorithms for independent set, graph coloring,

bipartite induced matching and k-hypergraph pricing as listed in Table 1. Our results

for the maximum independent problem significantly improves upon that of Chitnis,

Hajiaghayi and Kortsarz [22]. Furthermore, our results imply subexponential-time

approximation hardness for numerous other problems whose approximation hardness

are derived from maximum independent set or maximum induced matching.

4

Problem Running-Time of Value of r
r-Approximation

Independent Set Ω(2n
1−ε1/r1+ε2) r0 ≤ r ≤ n1−ε

Independent Set (max deg. = D) Ω(2n
1−ε1/r1+ε2) r = D1−ε

Graph Coloring Ω(2n
1−ε1/r1+ε2) r0 ≤ r ≤ n1−ε

Bip. Induced Matching Ω(2n
1−ε1/r1+ε2) r0 ≤ r ≤ n1−ε

Bip. Induced Matching (max deg. = D) Ω(2n
1−ε1/r1+ε2) r = D1−ε

k-Hypergraph Pricing polynomial time r = k1−ε, k < n1/2

polynomial time r = n1/2−ε

Ω(2(logn)(1−δ−ε1)/δ
) r = nδ, 0 < δ < 1

Table 1–1: The table summarizes our results. Here ε is any positive constant. The
values of ε1, ε2 are between 0 and 1 and depend on the values of r and ε.

1.1 The Approximability of Optimization Problems

We have seen that the approximability of optimization problems is of major sig-

nificance in theoretical computer science. But what exactly do we mean by approx-

imability? To formalize this concept, consider an instance φ of an optimization prob-

lem Π, and let opt denote the cost of an optimal solution. Then, an r-approximation

algorithm for the problem π is an algorithm that outputs a feasible solution I whose

cost, denoted by cost(I), satisfies:

Maximization problem: cost(I) ≥ opt

r

Minimization problem: cost(I) ≤ r · opt

Here the slight difference in definition for maximization and minimization prob-

lems ensures that r > 1. The standard notion of an r-approximation algorithm

requires polynomial running time. In this thesis, we relax this requirement to in-

clude subexponential-time algorithms. We refer to an r-approximation algorithm

5

that runs in superpolynomial-time by a subexponential-time approximation algo-

rithm. More specifically, we refer to a t(n)-time r-approximation algorithm, where

t(n) denotes the running time.

The existence of an r-approximation algorithm gives an upper bound on the ap-

proximability of the problem Π. The limit of computation at which an r-approximation

algorithm does not exist is called the hardness of approximation. Such lower bounds

are dependent upon the computational power. Thus, they rely on the complexity

assumption, for example, P 6= NP, NP 6= ZPP, and NP ⊆ DTIME(2polylog(n)).

1.2 Proving Hardness of Approximation

A basic technique in proving hardness of approximation is by reduction from

an NP-complete problem. For example, there is a well-known reduction from the

satisfiability (SAT) problem to graph coloring. In fact, the reduction is from 3-

SAT to 3-coloring. The reduction implies that it is NP-hard to decide whether a

graph is 3-colorable or requires more than 4 colors. Observe that this implies an

approximation hardness of 4/3 for the graph coloring problem; an r-approximation

algorithm with r < 4/3 would produce an algorithm for 3-coloring and, thus, show

P = NP.

A powerful modern technique (which is now standard) to prove large hardness

gaps is via a reduction from a probabilistically checkable proof system (PCP). A PCP

is a proof system that validates whether a proof x (represented by a binary string) is

correct or valid by randomly reading only a small part of the proof x. The celebrated

PCP theorem [3, 2] states, informally, that one can test whether a solution x is

feasible for a problem Π by reading only a constant number of bits, unless P = NP.

6

(In fact, the theorem is stated in term of an NP-language.) The power of the PCP

theorem with respect to hardness of approximation was not totally realized until

Feige et al. in [33] showed the hardness of approximating maximum independent

set via a reduction from PCPs. The hardness factor of an NP-hard problem can be

derived from the ratio between the completeness and soundness parameters of the

PCP. (See Section 2.4 for more discussion.) Other parameters have also been shown

to play an important role in proving strong approximation hardness.

Consequently, PCPs can be viewed as a reduction rather than a proof system.

In particular, one may think that a PCP is a “reduction” from the satisfiability

problem (SAT) to another problem, for example, maximum independent set. Thus,

the existence of a PCP for SAT with (almost) linear size – the size of PCP verifier is

almost linear in the size of SAT – means that there is an almost linear-size reduction

from SAT to the designated problem Π. This view of PCPs is very important. It

implies that, if there is no algorithm with running time 2n
1−ε

to solve SAT, then it

requires more than Ω(2n
1−ε

)-time to approximate Π because the two instances have

roughly the same size. The results in this thesis are based upon this observation.

Namely, assuming that SAT has no subexponential-time algorithm, then maximum

independent set and graph coloring have no subexponential-time algorithms either.

Applying a more intricate analysis, we show that maximum independent set and

graph coloring admit no r-approximation algorithm that runs in time O(2n/r−ε),

where n is the number of vertices. Because these two problems are used to prove

approximation lower bounds for numerous problems, similar running-time versus

approximation trade-offs also hold for these other problems. We remark that it

7

is not clear whether such conclusions can be derived using existing results in the

literature. The reason for this is that we require that the reductions used must be

almost linear. If not, we cannot relate the designated problems to SAT.

8

CHAPTER 2
Preliminaries and Background

In this chapter, we discuss some backgrounds which will be needed to understand

the later chapter of this thesis, and we define some notation that will be used through

out.

2.1 Preliminaries

We use standard graph theory terminology; see for example Diestel’s Graph

Theory book [28]. The vertex and edge sets of a graph G are denoted by E(G) and

V (G), respectively. Correspondingly, when context is clear, we may simply denote

the graph by G = (V,E). An induced subgraph H of a graph G is a subgraph of G

such that, for every pair of vertices u, v ∈ V (H), there is an edge uv ∈ E(H) if and

only if there is an edge uv ∈ E(G).

Independent Set and Clique. A subset of vertices S ⊆ V (G) is independent

or stable in G if and only if there is no edge in G joining any pair of vertices in S. The

size of the maximum independent set in G is called the independence (or stability)

number of G, denoted by α(G). The ratio between the independence number and

the number of vertices of a graph, that is, α(G)/|V (G)|, is called the independence

ratio of G.

A subset of vertices Q that induces a complete subgraph in G is called a clique.

The clique number of G, denoted by ω(G), is the maximum size of a clique in G.

9

Coloring. A proper (vertex) coloring σ : V → L of G is a function mapping

vertices of G to a set of colors L such that, for any edge uv ∈ E(G), σ(u) 6= σ(v).

That is, any adjacent vertices in G receive different colors under σ. Typically, the

set L is defined as a set of integers. A set of vertices with the same color is called

a color class. It is easy to see that each color class forms an independent set in G.

The minimum number of colors required to color a graph G is called the chromatic

number of G and is denoted by χ(G). Since each color class is an independent set

in G, an equivalent definition of the chromatic number is the minimum number of

independent sets required to cover all the vertices of G (i.e, each vertex must be in

one of the color classes).

There are many generalizations of graph coloring. An important one is fractional

coloring, where each vertex may receive more than one color. To be precise, let I(G)

be the collection of independent sets in G. Then a fractional coloring function of G

is a function f : I(G)→ R+
0 such that

∑
S∈I(G):v∈S

f(S) ≥ 1, for all vertices v ∈ V (G),

That is, in a proper fractional coloring each vertex must be covered by independent

sets with fractional value at least one. The fractional chromatic number of G, denoted

by χf (G), is defined as

χf (G) = min

 ∑
S∈I(G)

f(S) s.t.
∑

S∈I(G):v∈S

f(S) ≥ 1 for all v ∈ V (G)


Lovász [56] proved the following relationship between the chromatic and fractional

chromatic numbers of a graph.

10

Lemma 2.1.1 ([56]). For any graph G,

χ(G)

1 + ln(α(G))
< χf (G) ≤ χ(G).

Matching. A matching M is a set of edges such that no two edges share an

endpoint. Thus, each vertex in M is matched to another vertex. One may think

of the matching M as a graph in which each vertex has a degree exactly one. An

induced matching M of a graph G is an induced subgraph of G that forms a matching.

That is, M is a subset of edges of G that forms a matching and, for any two edges

uv, ab ∈ M , the graph G does not contain any of the edges {ua, ub, va, vb}. The

induced matching number of G is the maximum number im(G) such that G has an

induced matching of size im(G).

2.2 Problem Definitions

In this thesis, we will prove the subexponential hardness of several problems.

To accomplish this, we will require reductions with several additional problems. The

following is a list of the problems needed for this thesis.

Maximum Independent Set. In the maximum independent set problem,

we are given a graph G and the goal is to find a independent set S of maximum

cardinality.

We will also consider a special case of the problem in which the input graph

G has a maximum degree of d. This is called the d-degree bounded independent set

problem.

11

Graph Coloring. In the graph coloring problem, we are given a graph G, and

the goal is to find a proper coloring of G with minimum number of colors.

Induced Matching. In the maximum induced matching problem, we are given

a graph G and the goal is to find an induced matching of maximum size.

Two important special cases of the maximum induced matching problem are

(i) bipartite induced matching where the input graph G is bipartite and (ii) d-degree

bounded (bipartite) induced matching where the input graph G has a maximum degree

of d.

Semi-Induced Matching. Given any graph G = (V,E) and any mapping

σ : V (G)→ [|V (G)|], we say that a matching M is a σ-semi-induced if and only if,

for any pair of edges uu′, vv′ ∈ M such that σ(u) < σ(u′) and σ(u) < σ(v) < σ(v′),

there are no edges uv′, uv in E.

In the maximum σ-semi-induced matching problem, we are given a graph G and

an ordering σ. The goal then is to find a σ-semi-induced matching of maximum size.

We may also wish to compute

sim(G) = max
σ

simσ(G)

where simσ(G) is the maximum size of of a σ-induced matching for G.

q-Constraint Satisfaction. In the q-constraint satisfaction problem (q-CSP),

we are given a set of variables and a collection of constraints where each constraint

depends on at most q variables. The goal is to find an assignment to the variables

so that all the constraints are satisfied.

12

The maximization version of q-CSP is Max q-CSP where the aim is to maximize

the total number of constraints satisfied.

The most well-known special case of q-CSP is the q-satisfiability problem (q-

SAT) where the input is a Boolean formula in conjunctive normal form (CNF). That

is, each constraint is a Boolean formula joined by the operation or. Consequently,

the q-SAT problem is sometimes called q-CNF. The maximization version of q-SAT

is dubbed Max q-SAT.

In general, our focus will be on the maximization version of q-CSP. Thus, when

the context is clear, we may abuse the terminology and use q-CSP to mean Max q-

CSP. In contrast, we will frequently use both the problems q-SAT and Max q-SAT.

So, we will use this terminology to distinguish between them. Also, unless specified,

the domain of the q-CSP variables is Boolean – each variable takes a value 0 or 1.

k-Hypergraph Pricing. In the unlimited supply k-hypergraph vertex pricing

problem [4, 12], we are given a weighted n-vertex m-edge k-hypergraph (each hy-

peredge contains at most k vertices) modeling the situation where consumers (rep-

resented by hyperedges) with budgets (represented by weights of hyperedges) have

their eyes on at most k products (represented by vertices). The goal is to find a

price assignment that maximizes the revenue. In particular, there are two variants

of this problem with different consumers’ buying rules. In the unit-demand pricing

problem (Udp-Min), we assume that each consumer (represented by a hyperedge e)

will buy the cheapest vertex of her interest if she can afford it. In particular, for

a given hypergraph H with edge weight w : E(H) → R≥0 (where R≥0 is the set of

13

non-negative reals), our goal is to find a price function p : V (H)→ R≥0 to maximize

profitH,w(p) =
∑

e∈E(H)

paye(p) where paye(p) =


minv∈e p(v) if minv∈e p(v) ≤ w(e),

0 otherwise.

The other variation is the single-minded pricing problem (Smp), where we assume

that each consumer will buy all vertices if she can afford to; otherwise, she will buy

nothing. Thus, the goal is to maximize

profitH,w(p) =
∑

e∈E(H)

paye(p) where paye(p) =


∑

v∈e p(v) if
∑

v∈e p(v) ≤ w(e),

0 otherwise.

The pricing problem naturally arose in the area of algorithmic game theory and has

important connections to algorithmic mechanism design (e.g., [5, 21]). Its general

version (where k could be anything) was introduced by Rusmevichientong et al.

[63, 64], and the k-hypergraph version (where k is thought of as some constant) was

first considered by Balcan and Blum [4]. (The special case of k = 2 has also received

a lot of attention [4, 16, 50, 60].) There will be two parameters of interest to us, that

is, n and k. Its current approximation upper bound in terms of k is O(k) [12, 4],

and the upper bound in terms of n is given in this thesis.

2.3 Complexity Terminology

A hard problem is a problem that admits no polynomial-time algorithms. So, a

problem in NP problem is hard if it is not in the class P. An NP-hard problem Π is

a problem that may not be in the class NP, but there is a polynomial-time reduction

from some NP-complete problem Ψ. By the completeness of the class NP-complete,

14

we may assume that the hardness of Π is derived from SAT. If the instance φ of Π is

obtained from an instance ψ whose answer is “Yes” (e.g., a satisfiable SAT instance),

then φ is called Yes-Instance. Otherwise, if the answer to ψ is “No”, then φ is

called No-Instance. In proving hardness of approximation, we will consider the

gap between that the optimal value of two cases Yes-Instance and No-Instance.

The case of Yes-Instance is sometimes called the completeness case, and the case

of No-Instance is sometimes called the soundness case.

2.4 A Probabilistically Checkable Proof System

A probabilistically checkable proof system (PCP) is a proof system consisting of

a verifier and a prover. The prover in this system claims that some statement is true

and then submits a proof to the verifier who will check whether the proof is correct.

For example, suppose the verifier claims that a Boolean formula is satisfiable. He

submits an assignment to the verifier as a proof. The verifier may then check the

proof (an assignment) by simply substituting the assignment to all the variables.

Observe, though, that this verification process requires that she has to read all the

bits.

Surprisingly, there is a way to rewrite the certificate so that the verifier has to

read only a constant number of bits! This is now known as the PCP theorem.

Formally, a probabilistically checkable proof system (PCP) for an NP-language

L is defined as follows. The system consists of a verifier and a prover. Given a bit

string x, the prover claims that x is a member of the language L and provides a bit

string y as a witness or a proof string. To test whether the claim is valid, the verifier

15

randomly reads q positions of y. If the q bits from y are sound, then the verifier

accepts the claim that x ∈ L. Otherwise, the verifier rejects the claim.

It has been shown that a PCP gives a characterization of an NP problem [3].

In particular, the PCP theorem says that every NP-language L has a PCP verifier

V such that if x ∈ L, then V accepts the proof string with probability at least c.

Otherwise, V rejects the proof string with probability at least 1−s (that is, V accepts

the proof string with probability at most s). The acceptance probability c is called

the completeness parameter of the PCP, and the acceptance probability s is called

the soundness parameter.

A PCP-verifier V for an NP-language L may actually involve more parameters.

We shall introduce such parameters when required.

The PCP theorem is stated as follows.

Theorem 2.4.1 (PCP Theorem. [2, 3]). Every NP-language L of size n has a PCP

system which uses O(log n) bits of randomness, O(1) queries bits in the proof, and

has completeness 1 and soundness 1− ε, for some constant ε > 0.

The PCP theorem plays a vital role in the theory of hardness of approximation

as it can be seen as a reduction from an NP-language to the q-constraint satisfaction

problem (q-CSP) with a “hardness-gap”. For example, the existence of a q-query

PCP – a PCP that reads q positions of the proof – for SAT with soundness 1/2

implies that it is NP-hard to approximate q-CSP within a factor of 1/2. To see this,

let us construct a q-CSP instance φ from the PCP. Let each bit of the certificate

corresponds to a Boolean variable. For each random string r, the decision of the

verifier depends on the q-position that she reads. So, we have one clause for each

16

random string r, which depends on q variables. Consequently, the number of random

strings that cause the verifier to accept is the same as the number of satisfiable

clauses. Now, suppose we have a q-query PCP for SAT with completeness 1 and

soundness 1/2. If the SAT instance is satisfiable, then all the clauses of the q-CSP

are satisfiable. Otherwise, at most half of the clauses are satisfiable. So, any 2-

approximation algorithm for this q-CSP would be able to distinguish between these

cases and thus solve SAT.

For clarity of presentation, we will typically view PCP as a reduction from the

decision version of 3-SAT to q-CSP, and will work with an instance of q-CSP instead

of a PCP.

2.4.1 The FGLSS reduction

The connection between PCPs and hardness of approximation was first dis-

covered by Feige, Goldwasser, Lovász, Safra and Szegedy [33]. At its heart, lies a

transformation that represents an instance of q-CSP, denoted by φ, as a graph.

We describe this representation now. First, let x1, . . . , xn and C1, . . . , Cm be

variables and clauses of φ, respectively. We say xi ∈ Cj if xi is a variable occurring

in Cj. For each clause Cj, the assignment restricted to variables in Cj is call a

configuration. For example, a bit string (0, 1, 1) is a configuration for the clause

x2 ∧ x5 ∧ x7. Note that, although we have n variables, the number of configurations

for each clause is upper bounded by 2q � 2n because each clause involves at most

q variables. A configuration a is an accepting configuration for a clause Cj if and

only if a causes Cj to be “true”. We say that two configurations a and a′ conflict if

and only if they assign different values to the same variable. The FGLSS reduction

17

transforms the CSP instance into a graph as follows. For every clause, there is a

vertex for every possible accepting configurations for that clause. There is an edge

uv in the graph if the configurations u and v conflict. That is, the FGLSS graph

G = (V,E) corresponding to the CSP instance φ is defined as

V (G) =
m⋃
j=1

{a : a is an accepting configuration for a clause Cj.}

E(G) = {uv : u, v ∈ V (G), u and v are conflicting configurations.}

Let’s illustrate the FGLSS reduction using Boolean formula C1 ∧ C2 := (x1 ∨

x2)∧ (x2 ∨ x3). First, we list all the vertices of the graph as shown in the next table.

Clause Vertices

x1 ∨ x2 v1
10∗, v

1
11∗, v

1
01∗

x2 ∨ x3 v2
∗00, v

2
∗01, v

2
∗11

Observe that, for each vertex, the superscript denotes the clause number. The

subscript denotes the accepting configuration associated with the vertex. For exam-

ple, v1
10∗ assigns x1 = 1 and x2 = 0 but makes no assignment to x3 as that variable is

not in the clause C1 = (x1∨x2). Now there is a conflict between the two vertices v1
10∗

and v2
∗11 because they proscribe different values to x2. So we list v1

10∗v
2
∗11 as an edge

of G. The graph has three other edges, namely, v1
11∗v

2
∗00, v

1
11∗v

2
∗01, v

1
01∗v

2
∗00, v

1
01∗v

2
∗01.

The entire FGLSS graph is illustrated in Figure 2–1.

Any independent set in the FGLSS graph G corresponds to a set of consistent

partial assignments, i.e., they assign the same values to the same variables. Thus,

we have the following lemma.

18

v10∗
1

v11∗
1

v01∗
1

v∗00
2

v∗01
2

v∗11
2

Figure 2–1: An example of the FGLSS graph of C1 ∧ C2 := (x1 ∨ x2) ∧ (x2 ∨ x3).

Lemma 2.4.2. Consider any q-CSP instance φ on n variables and m clauses, where

each clause has at most w accepting configurations. Let β be the maximum number

of clauses of φ that can be satisfied by any assignment. Then the FGLSS reduction,

given φ as input, constructs a graph G such that |V (G)| ≤ w · m and α(G) = β.

Moreover, if each clause has at least one accepting configuration, then α(G) ≥ m/2q.

Proof. For each clause, we have at most w accepting configurations. So, the number

of vertices that G has is at most m · w.

It is easy to see that α(G) ≥ β because if we take an assignment x∗ that

satisfied β clauses, then we can pick β accepting configurations (which are partial

assignments), one from each clause that x∗ satisfies; these β configurations are con-

sistent and thus correspond to an independent set in G. To show that α(G) ≤ β,

we assume a contradiction that there is an independent set S of size |S| > β. Since

vertices in S correspond to accepting configurations and they assign the same value

to the same variables, we can construct from S a partial assignment x̃. We extend x̃

to be a complete assignment x̂ by assigning other variables arbitrary. Then we have

a contradiction since x̂ satisfies more than β clauses. This shows that α(G) = β.

19

Next, suppose each clause has at least one accepting configuration. Then any

random assignment can satisfy each clause with probability 1/2q. Thus, the expected

number of satisfied clauses is m/2q, and there must exist an assignment that attends

this value. This proves that α(G) ≥ m/2q.

Trevisan [68] observed that every FGLSS graph G is formed by a union of

complete bipartite graphs, each corresponding to a variable of φ. Specifically, for

each variable xi of φ, we define a bipartite graph Hi = (Oi ∪ Zi;Ei) where

Oi = {u ∈ V (G) : u assigns xi = 1}

Zi = {v ∈ V (G) : v assigns xi = 0}

Ei = {uv : u ∈ Oi, v ∈ Zi}

It is easy to see that Ei are edges of G because, by the construction, G has edges

between every pair of vertices u ∈ Oi and v ∈ Zi as they are conflicting. Hence, Hi

is a complete bipartite subgraph of G. Since each vertex of G is associated with (at

least one) variable, we have that

G =
n⋃
i=1

Hi

This observation will play an important role in proving the hardness of problems

on bounded degree graphs. This, in turn, will be required in proving the hardness

of the k-hypergraph pricing problem.

20

CHAPTER 3
Exponential-Time Hypothesis and Almost Linear-Size PCPs

In this chapter, we discuss the Exponential-Time Hypothesis (ETH), almost

linear-size PCPs and their connection to subexponential-time approximation hard-

ness.

3.1 Exponential-Time Hypothesis

The exponential-time hypothesis (ETH) is a complexity assumption stronger

than P 6= NP. It states that not only can SAT not be solved in polynomial-time

but that no subexponential-time algorithm can decide SAT. The hypothesis was first

proposed by Impagliazzo and Paturi [46] in an attempt to understand the complex-

ity of SAT. There they show the implication of the assumption that SAT has no

subexponential-time algorithm. Recently, the ETH assumption has received a lot of

attention as it has been shown to be a powerful tool in proving running-time lower

bounds for many problems, especially, those in the area of parameterized complexity.

See, e.g., [54, 27, 18]. For more discussion related to the ETH, we refer readers to a

comprehensive survey by Lokshtanov et al. [55] and references therein.

The formal statement of this conjecture is as follows.

Hypothesis 3.1.1 (Exponential-Time Hypothesis (ETH)). For any integer k ≥ 3,

there is a constant 0 < q0(k) < 1 such that there is no algorithm with a running time

of 2qN , for all q < q0(k), that solves k-SAT where N is the size of the instance. In

particular, there is no subexponential-time algorithm that solves 3-SAT.

21

Indeed, the ETH was first stated in terms of the number of variables. Im-

pagliazzo, Paturi and Zane [46] showed that the statement is equivalent for all the

parameters, i.e., N in the statement can be the number of variables, the number of

clauses or the size of the instance. For our purpose, we state the theorem in terms

of the instance size.

3.2 (Almost) Linear-Size PCP

While the ETH states the running-time lower bounds for the “decision” version

of SAT, it is not clear how one can relate the assumption to the hardness of approx-

imation. The foundation technique in the area of hardness of approximation that

gives a reduction from SAT to its “maximization” version with hardness gap is known

as the PCP theorem. It implicitly states that there is a polynomial-time algorithm

that reduces 3-SAT to the gap-version of Max 3-SAT. This gives a hardness-gap of

γ, for some constant γ > 0, which is sufficient in proving approximation hardness

results. We may state the PCP theorem as a reduction as follows.

Theorem 3.2.1. There is a polynomial-time reduction from an instance φ of 3-SAT

(decision version) to an instance ψ of Max 3-SAT such that

• (Yes-Instance) If φ is satisfiable, then there is an assignment that satisfies

all the clauses of ψ.

• (No-Instance) If φ is not satisfiable, then any assignment can satisfy at most

a γ fraction of the clauses of ψ.

It is easy to see that the PCP theorem (Theorem 3.2.1) implies any “polynomial-

time” algorithm that approximates Max 3-SAT to within a factor of γ can solve the

“decision version” of SAT in polynomial-time as well. Now, to add the ETH into

22

the picture, the size of the reduction must be preserved. Ideally, we wish to have a

linear-size reduction from 3-SAT to Max 3-SAT. We need, in particular, a linear-size

PCP for 3-SAT, which would imply the following:

3-SAT of size N︸ ︷︷ ︸
no gap

=⇒ Max 3-SAT of size cN︸ ︷︷ ︸
gap = γ

Here c and γ are constants. To simplify the presentation, let us assume that c = 1.

Now, suppose we have the “ideal” reduction. Then we would have that any r-

approximation algorithm with r < γ that runs in t(N)-time can also solve 3-SAT with

the same running time. Thus, assuming the ETH, there is no such r-approximation

algorithm that runs in subexponential-time.

Whilst the existence of a linear-size PCP is still a conjecture, in most of the

applications, it suffices to use an almost linear-size PCP. The foundation of our

subexponential-time approximation hardness results are based on the following break-

through result by Moshokovitz and Raz [59].

Theorem 3.2.2 ([59]). For every ε > 0, there exists an alphabet σ with log |σ| ≤

poly(1
ε
), such that 3-SAT has a PCP-verifier that uses (1 + o(1)) · logN + O(log 1

ε
)

random bits. Moreover, the PCP verifier makes two-query projection tests.

The result of Moshokovitz and Raz can be combined with the PCP of Samorod-

nitsky and Trevisan [65] to obtained the PCP with an optimal query complexity as in

Theorem 3.2.3. which also appears as Corollary 14 in [59]. In terms of CSP, optimal

query complexity means that the ratio between the inverse of soundness and the

maximum number of accepting configurations can be set to be arbitrarily low.

23

Theorem 3.2.3 ([59] + [65]). For any sufficiently large constant ` ≥ ω(1), 3SAT

on input of size N has a PCP-verifier that uses (1 + ε) logN random bits to pick

q = `2 + 2` queries to a binary proof, such that only 2` of the queries are free, i.e.,

for each random string, there are 22` possible satisfying assignments of the queried

bits in the proof. The verifier has completeness 1 − ε and soundness error at most

2−`
2+1. Moreover, the acceptance predicate is linear.

In short, the theorem says that there is a polynomial-time reduction from

an instance φ of 3-SAT of size N to an instance of q-CSP of size N1+o(1) with

a hardness gap s = 2`
2−2 and each clause has at most w = 22` possible accept-

ing configurations. Moreover, each constraint (i.e., the predicate) is linear, e.g.,

x0 + x1 + x2 = 1 (mod 2). The above PCP is required to prove the hardness of

approximating the maximum independent set problem. For the case of the graph

coloring problem, we need a PCP with an additional property.

3.3 Randomized PCP for Graph Coloring

Feige and Kilian introduced the notion of the covering parameter of a PCP

and showed that the existence of a PCP with small covering parameter implies the

hardness of the graph coloring problem.

To be precise, let us define the covering parameter in terms of q-CSP. We say

that a q-CSP instance has a covering parameter ρ if, in the Yes-Instance (i.e.,

the instance of is obtained from a satisfiable instance of 3-SAT), there is a set of

assignments {A1, A2, . . . , Aρ} that covers all the accepting configurations, i.e., each

accepting configuration (which is a partial assignment) is a part of one of these

assignments. If we apply the FGLSS reduction to the q-CSP instance φ, then we

24

will have a graph G with a collection of independent sets S1, . . . , Sρ where each set

Si corresponds to the assignment Ai, and
⋃ρ
i=1 Si = V (G). So, each vertex of G is

covered by some set Si, thus implying that the fractional chromatic number of G is

at most ρ.

Feige and Kilian also presented in [34] a general technique to construct a ran-

domized PCP with a small covering parameter from a long code based PCP.

The long-code based technique is a standard way in constructing a PCP. The

two important components of this kind of construction are 2-CSP, namely, the label

cover problem, and the long-code encoding of an assignment to CSP.

Formally, the label cover problem is a 2-CSP on a non-Boolean domain. The

input to the label cover problem consists of a bipartite graph G = (U,W,E) with a

set of labels (a.k.a., alphabet) Σ = ΣU ∪ΣW , where ΣU and ΣW are labels for U and

W , respectively, and a projection constraint πuw : ΣU → ΣW on each edge uw ∈ E.

A labeling is a pair of functions f1 : U → ΣU and f2 : W → ΣW that assign a

label to each vertex of G. We say that the labeling (f1, f2) covers an edge uw ∈ E if

πuw(f(u)) = f(w). The goal in the label cover problem is to find a labeling that covers

the maximum number of edges. A standard scheme in constructing a PCP is to apply

the long-code based technique to the label cover problem. The long-code encoding

of a string j ∈ [n] is the truth table of the Boolean function f : {0, 1}n → {0, 1}

such that f(x1, . . . , xn) = xj (which is called a dictator function). So, the long code

represents an log n-bit string using 2n bits.

The following long-code based scheme is used in constructing a q-query PCP

and thus proving the hardness of approximation.

25

(1) Start with an instance L of the label-cover problem on the domain (or alphabet)

Σ = ΣU ∪ ΣW .

(2) Take an assignment A of the label-cover instance L and encode the entries of

A using long code, resulting in a proof string σ.

(3) Construct a PCP-verifier that randomly picks a set of constraints from L and

then reads q bits from σ to decide whether the proof string σ encodes an

assignment that satisfies the chosen constraints.

To get the PCP with small covering parameter, Feige and Kilian add randomness

to the proof string: For each label (or character) a ∈ Σ, we concatenate a with

random strings of length r, so we have 2r labels (a, 1), . . . , (a, 2r) that all project to

the same label a. Hence, after the process, for each assignment A, we have 2r other

assignments. This process is call randomizing the PCP. Feige and Kilian showed

that, after alternating the label-cover instances with large enough r, provided that

the construction does not requires any special structure of the underlying 2-CSP, the

randomized long-code based PCP-verifier will automatically produce a CSP with a

small covering parameter.

In their paper, Feige and Kilian randomize the PCP of H̊astad [42] to prove

tight hardness of the graph coloring problem. Later, Engebretsen and Holmerin

showed in [30] that the technique of Feige and Kilian can also be applied to the

PCP of Samorodnitsky and Trevisan in [65]. Both of the previous results, apply the

randomization technique to the label cover problem with small hardness gap and

then amplify the gap using parallel repetition [61].

26

With the breakthrough of Moshkovitz and Raz [59], the label cover instance in

the proof of [30] can be replaced with the label cover instance of Moshkovitz and

Raz. In fact, Theorem 3.2.2 is equivalent to the hardness of the label cover problem:

Theorem 3.3.1 ([59]). For every n, and every ε > 0 (that can be any function of n)

the following holds. Solving 3-SAT on inputs of size n can be reduced to distinguishing

between the case that a label-cover instance of size n1+o(1) · poly(1/ε) and parameters

|ΣU |, |ΣW | such that log |ΣU | ≤ poly(1/ε), is completely satisfiable and the case that

at most an ε fraction of its edges are satisfiable.

Take an instance L = (G = (U,W,E),ΣU ,ΣW , {πuw}uw∈E) of the label cover

problem in Theorem 3.3.1 where the soundness parameter ε of L is chosen to be a

small enough constant. We randomize the label-cover instance L by alternating the

set of labels and constraints on edges. Let r be a parameter. We construct a new

set of labels, namely Σ′:

Σ′ = {(a, i) : a ∈ Σ, i ∈ [2r]}.

Then we construct a new constraint Π′uw on each edge uw ∈ E:

Π′uw((a, i)) = (Πuw(a), i) for all a ∈ Σ, for all i ∈ [2r]

So, we have the altered instance L′ = (G = (U,W,E),Σ′U ,Σ
′
W , {π′uw}uw∈E) of the

label-cover problem. It is easy to see that the modification does not effect com-

pleteness and soundness. To be precise, let val(L) denote the maximum number of

edges of L that can be covered by any labeling. We show in the following claim that

val(L) = val(L′).

27

Claim 3.3.2. The modification of a label-cover instance L as above outputs a label-

cover instance L′ with val(L) = val(L′).

Proof. First, we show that val(L) ≤ val(L′). Given an optimal labeling (f1, f2) of L,

we construct a labeling (f ′1, f
′
2) of L′:

f ′1((u, 1)) = f1(u) for all u ∈ U

f ′2((w, 1)) = f1(w) for all w ∈ U

It is easy to see that (f ′1, f
′
2) and (f1, f2) cover the same number of edges.

Next, we show that val(L) ≥ val(L′). Given an optimal labeling (f ′1, f
′
2) of L′,

we project (f ′1, f
′
2) to a labeling (f1, f2) of L:

f ′1(u) = (a, i) =⇒ f1(u) = a for all u ∈ U

f ′2(w) = (b, j) =⇒ f2(w) = b for all w ∈ W

By construction, for every edge uw in the instance L′ that (f ′1, f
′
2) covers, we must

have

π′uw(f ′1(u)) = f ′2(w) =⇒ π′uw((f1(u), i)) = (f2(w), i) =⇒ πuw(f1(u)) = f2(w).

So, (f1, f2) also covers uw in the instance L, proving that val(L) ≥ val(L′). Therefore,

val(L) = val(L′) as claimed.

We recall that the long-code base PCP construction starts from a label-cover

instance. Feige and Kilian showed in [34] that if the construction yields a q-CSP

28

whose maximum number of accepting configurations is w, then the above modifica-

tion to the label-cover instance with a sufficiently large r results in a q-CSP with a

covering parameter at most O(w). See Lemma 5 in [34] and Lemma 10.10 in [30] for

the setting of r.

Now let us combine everything together. We apply the above modification to

the label-cover instance of Moshkovitz and Raz [59] in Theorem 3.3.1. Then we plug

it into the PCP construction of Samorodnitsky and Trevisan [65] as in the result

of Engebretsen and Holmerin [30]. We choose a parameter ε in Theorem 3.3.1 to

be O(2−`
2+1) and choose r to be a sufficiently large constant, say r > 100 log(Σ).

The change only effects the size of the PCP by a constant factor. Therefore, we

have a PCP with almost linear-size, optimal query complexity and small covering

parameter:

Theorem 3.3.3. For any sufficiently large constant ` ≥ ω(1), 3SAT on input of size

N has a PCP-verifier that uses (1 + ε) logN random bits to pick q = `2 + 2` queries

to a binary proof, such that only 2` of the queries are free, i.e., for each random

string, there are 22` possible satisfying assignments of the queried bits in the proof.

The verifier has completeness 1 − ε and soundness error at most 2−`
2+1. Moreover,

the acceptance predicate is linear.

29

CHAPTER 4
Graph Product

The study of binary operators in graph theory has been a fundamental topic

of research for several decades. A basic question is whether or not a property in

two graphs is maintained in their product. For example, the independence number

of the disjunctive product1 has been shown to amplify the independence number of

graphs multiplicatively. In particular, the k-wise disjunctive product of a graph G

has independence number α(G)k; a similar property holds for the chromatic number

of product graphs [53].

But, why are graph products of interest in this thesis? It turns out that the

multiplicative properties of graph products can be exploited to amplify hardness gaps

for approximation algorithms. An early application is due to Garey and Johnson [37]

who amplified the hardness gap of the graph coloring problem from 4/3 to 2 − ε.

Subsequent developments illustrated many more applications of graph products; see,

for example, [37, 53, 8, 31, 17, 18, 19]. In fact, the seminal n1−ε approximation

hardness results for independent set and graph coloring are, in some sense, obtained

via graph product techniques.

1 This graph product is also known as the co-normal product, the inclusive prod-
uct and the OR product.

30

Numerous graph product operators have been studied in literature. For the

comprehensive survey of graph products, we refer the reader to [41]. The graph

product that we will use as a tool in this thesis is the disjunctive product. The term

“graph product” will sometimes abuse to mean the disjunctive product as it is the

only graph product operation mentioned in this thesis.

Let’s now formally define the disjunctive product. Given two graphs G and H,

we have:

Disjunctive Product:

V (G ∨H) = V (G)× V (H)

E(G ∨H) = {(u, x)(v, y) : (uv ∈ E(G)) or (xy ∈ E(H)))}

We will often need to apply the product operation multiple times. Specifically,

we define the k-wise disjunctive product as follows.

The k-wise Disjunctive Product:

Gk = Gk−1 ∨G for k ≥ 2 and G1 = G

Important properties of the graph products that we require are:

α(G ∨H) = α(G) · α(H) (4.1)

χf (G ∨H) = χf (G) · χf (H) (4.2)

For completeness, in Section 4.1, we prove Equation 4.1 and Equation 4.2.

31

We will also use randomized versions of the disjunctive product, and this will

possess similar properties to their deterministic version. A discussion on the ran-

domized graph product is provided in Section 4.2.

4.1 Properties of Disjunctive Product

An important property of the disjunctive product is that it amplifies the inde-

pendence and chromatic numbers of graphs multiplicatively. We prove in this section

the following equations and an inequality.

α(G ∨H) = α(G) · α(H) (Theorem 4.1.1)

χf (G ∨H) = χf (G) · χf (H) (Theorem 4.1.4)

χf (G) · χ(H) ≤ χ(G ∨H) ≤ χ(G) · χ(H) (Theorem 4.1.3)

The following theorems are standard. The independence number of the disjunc-

tive product was proven in [31], and the proofs for the chromatic number can be seen

in [31, 67].

Theorem 4.1.1 (Independence Number of Disjunctive Product). For any graphs G

and H,

α(G ∨H) = α(G) · α(H).

Thus, for any integer k ≥ 1, α(Gk) = α(G)k, where Gk is the k-wise disjunctive

product of G.

Proof. Consider the graph G ∨ H. First, we prove the upper bound: α(G ∨ H) ≤

α(G) ·α(H). Let SG and SH be maximum independent sets in G and H, respectively.

Consider the set SG×H = SG×SH . Clearly, SG×H ⊆ V (G∨H). For any two vertices

(u, x), (v, y) ∈ SG×H , we know that uv /∈ E(G) and xy /∈ E(H) because SG and

32

SH are independent in G and H. Thus, there is no edge (u, x)(v, y) in G ∨ H by

the definition of the disjunctive product. Therefore, SG×H is independent in G ∨H.

Thus, the maximum independence set in G∨H has cardinality at least |SG×H |. The

upper bound follows.

Next we prove the lower bound: α(G ∨ H) ≥ α(G) · α(H). Let SG∨H be a

maximum independent set in G ∨ H. We know that any vertex in SG∨H must be

of the form (u, x), where u ∈ V (G) and x ∈ V (H). So, we may project vertices in

SG∨H into vertices of H and into vertices of G as

SG = {u : (u, x) ∈ SG∨H}, SuH = {x : (u, x) ∈ SG∨H} for u ∈ SG.

By the definition of the disjunctive product, since SG∨H is independent in G ∨ H,

there is no edge joining any two vertices u, v in SG. Otherwise, we would have an

edge (u, x)(v, y) in G∨H for some vertices x, y ∈ V (H). Thus, SG is an independent

set in G, implying that |SG| ≤ α(G). Now, consider the set SuH . Observe that vertices

in SuH are projected from vertices of G ∨H in SG∨H whose first coordinates are the

same. Thus, by definition, there is no edge between any two vertices x, y ∈ SuH

because (u, x)(v, y) /∈ G ∨H. In other words, each SuH is independent in H. Hence,

|SuH | ≤ α(H) for all u ∈ SG. Putting this together, we have

|SG∨H | =
∑
u∈SG

|SuH |· ≤ |SG|
(

max
u∈SG
|SuH |

)
≤ α(G) · α(H)

This gives the lower bound, and so α(G ∨H) = α(G) · α(H).

33

It follows from Theorem 4.1.1 that any maximum independent S set in G ∨H

is the Cartesian product of maximum independent sets SG and SH in G and H,

respectively.

Corollary 4.1.2. Any independent set S in G ∨H can be written in the form S =

SG × SH , where SG and SH are independent sets in G and H, respectively. In

particular, S is a maximum independent set in G ∨H if and only if SG and SH are

maximum independent sets in G and H.

Theorem 4.1.3 (Chromatic Number of Disjunctive Product). For any graphs G

and H,

χf (G) · χ(H) ≤ χ(G ∨H) ≤ χ(G) · χ(H)

In particular, for any integer k ≥ 1, χ(G)k

2 log |V (G)| ≤ χ(Gk) ≤ χ(G)k, where Gk is the

k-wise disjunctive product of G.

Proof. First we prove the upper bound: χ(G∨H) ≤ χ(G) · χ(H). Let σG : V (G)→

[χ(G)] and σH : V (H) → [χ(H)] denote minimum proper colorings of G and H,

respectively. We define a function

σG∨H : V (G ∨H)→ [χ(G)]× [χ(H)] where σG∨H((u, x)) = (σG(u), σH(v)).

We may think that σG∨H maps from V (G∨H) to integers since there is a one-to-one

map from [χ(G)]× [χ(H)] to [χ(G) ·χ(H)]. We claim that σG∨H is a proper coloring

of G ∨ H, that is, any adjacent vertices (u, x) and (v, y) in G ∨ H receive different

colors under σG∨H . By the definition of the disjunctive product, if (u, x) and (v, y)

are adjacent in G∨H, then we must have an edge uv ∈ E(G) or an edge xy ∈ E(H).

34

So either σG(u) 6= σG(v) or σH(x) 6= σH(y). Therefore,

σG∨H((u, x)) = (σG(u), σH(x)) 6= (σG(v), σH(y)) = σG∨H((v, y))

Thus, we can color V ∨G by at most χ(G) ·χ(H) colors. This proves the upper

bound.

Next, we prove the lower bound: χ(G ∨ H) ≥ χf (G) · χ(H). We will map

a minimum proper coloring of V ∨ G to a “fractional” coloring of G. Let σG∨H :

V (G ∨ H) → [χ(G ∨ H)] denote the minimum proper coloring of G ∨ H. For each

vertex u ∈ V (G), define

cu = |{σG∨H((u, x)) : x ∈ V (H)}|

The number cu denotes the number of different colors that σG∨H assigns to vertices

of G∨H that have u as the first coordinate (i.e., vertices of the form (u, x)). Define

c∗ = min
u∈V (G)

cu.

Observe that each vertex u ∈ V (G) inherits at least c∗ colors from vertices of

the form (u, x) under σG∨H . Thus, intuitively, if we scale the value of each color

by 1/c∗, then we would have that each vertex of G receives at least “one” color

from (1/c∗) · σG∨H . Hence, the scaled colors form a proper fractional coloring of G.

Moreover, c∗ ≥ χ(H) because, for any vertex u ∈ V (G), vertices (u, x) and (u, y) of

G ∨H receive different colors from σG∨H if x and y are adjacent in H as it implies

(u, x)(v, y) ∈ E(G ∨H), by the definition of disjunctive product.

35

To formalize the above discussion, we define a color class for each color j ∈

[χ(G ∨H)]:

Ij = {u ∈ V (G) : there is x ∈ V (H) such that σG∨H((u, x)) = j}.

Let I(G) denote the collection of all independent sets in G. We define a fractional

coloring function

βG : I(G)→ R where βG(Ij) =
1

c∗
for all j ∈ [χ(G ∨H)].

We claim that each Ij is independent in G. Otherwise, there is a color j ∈ [χ(G∨H)]

such that two vertices u, v ∈ Ij are adjacent in G. This contradicts the definition of

disjunctive product since vertices (u, x) and (v, y) must be adjacent in G∨H for all

x, y ∈ V (H); thus, u, v cannot be in the same color class for G ∨ H. Now βG is a

proper fractional coloring of G because

∑
S∈I(G):u∈S

βG(S) =
∑

j∈[χ(G∨H)]:u∈Ij

βG(Ij) =
∑

j∈[χ(G∨H)]:u∈Ij

1

c∗
=

cu
c∗
≥ 1

As βG is a proper fractional coloring of G, we have

χf (G) =
∑
S∈I(G)

βG(S) ≤ 1

c∗
· χ(G ∨H) ≤ χ(G ∨H)

χ(H)

Thus, χf (G) · χ(H) ≤ χ(G ∨H).

Now, consider Gk. We have

χf (G) · χ(Gk−1) ≤ χ(Gk) ≤ χ(G)k

36

By the relationship between χ(G) and χf (G) in Lemma 2.1.1, we then obtain

χ(G)k

2 log |V (G)|
≤ χ(Gk) ≤ χ(G)k

When we only consider the fractional chromatic number, the bound is actually

tight in the sense that the multiplicative bound holds in equality.

Theorem 4.1.4 (Fractional Chromatic Number of Disjunctive Product). For any

graphs G and H,

χf (G) · χf (H) = χf (G ∨H).

In particular, for any integer k ≥ 1, χf (G
k) = χf (G)k, where Gk is the k-wise

disjunctive product of G.

Proof. The proof is similar to that for the (integral) chromatic number. First, we

prove the upper bound: χf (G ∨ H) ≤ χf (G) · χf (H). For any graph G, let I(G)

denote the set of all independent sets in G. Let βG : I(G)→ R+
0 and βH : I(H)→ R+

0

denote minimum proper fractional colorings of G and H, respectively. We define a

function

βG∨H : I(G)× I(H)→ R+
0

where

βG∨H(S) = βG(SG) · βH(SH) for all S = SG × SH , SG ∈ I(G), SH ∈ I(H).

37

We claim that βG∨H is a proper fractional coloring of G ∨ H. By Corol-

lary 4.1.2, we have that S = SG × SH is independent in G ∨ H. So, it only re-

mains to show that every vertex (u, x) ∈ V (G ∨ H) is covered by βG∨H (that is,∑
S∈I(G∨H):(u,x)∈S β(G∨H)(S) ≥ 1). Summing the fractional value assigned to all the

independent sets in G ∨H containing (u, x), we have

∑
S∈I(G∨H):(u,x)∈S

βG∨H(S) =
∑

SG∈I(G):u∈SG

∑
SH∈I(H):x∈SH

βG∨H(SG × SH)

=
∑

SG∈I(G):u∈SG

∑
SH∈I(H):x∈SH

βG(SG) · βH(SH)

=
∑

SG∈I(G):u∈SG

βG(SG) ·

 ∑
SH∈I(H):x∈SH

βH(SH)


≥

∑
SG∈I(G):u∈SG

βG(SG)

≥ 1

The final two inequalities follow as βG and βH are proper fractional colorings. Thus

χf (G ∨H) ≤ χf (G) · χf (H).

Next, we prove the lower bound: χf (G ∨ H) ≥ χf (G) · χf (H). We will map

a minimum proper fractional coloring of G ∨H to fractional colorings of G and H,

respectively. Let βG∨H : I(G∨H)→ R+
0 be a minimum fractional proper coloring of

G ∨H. Define two projections projuH : V (G ∨H)→ V (H) and projG : V (G ∨H)→

38

V (G) as

projuH(S) = {x ∈ V (H) : there is a vertex (u, x) ∈ S.}

projG(S) = {u ∈ V (G) : there is a vertex (u, x) ∈ S.}

The function projuH projects vertices of G∨H whose the first coordinate is u to

vertices of H, and the function projG projects vertices of G ∨H to vertices of G.

Now consider a vertex u ∈ V (G) and a set of vertices SH ⊆ V (H). By Corol-

lary 4.1.2, the set u× SH ∈ V (G ∨H) is independent in G ∨H if and only if SH is

independent in H.

Next, define a function βu : I(H)→ R as

βu(SH) =
∑

S∈I(G∨H):projuH(S)=SH

βG∨H(S)

It can be seen that all the independent sets in G ∨ H containing a vertex (u, x) ∈

V (G ∨H) are in the set
⋃
SH∈I(H):x∈SH{S ∈ I(G ∨H) : projuH(S) = SH}.

Thus, for any vertex x ∈ V (H), we have

∑
SH∈I(H):x∈SH

βu(SH) ≥ 1.

In other words, βu is a proper fractional coloring of H with value
∑

SH∈I(H) βu(SH).

So, c∗ = minu∈V (G)

∑
SH∈I(H) f(SH) upper bounds the fractional chromatic number

of H.

Now, we define a fractional coloring βG : I(G)→ R of G as

βG(SG) =
1

c∗
·

∑
S∈I(G∨H):projG(S)=SG

βG∨H(S).

39

We will verify that βG is a proper fractional coloring of G. Consider any vertex

u ∈ V (G). Observe that any set S ∈ I(G ∨H) such that u ∈ projG(S) must contain

the set u× SH for some independent set SH ∈ I(H). Thus, we have

∑
SG∈I(G):u∈SG

f(SG) =
1

c∗
·

∑
SG∈I(G):u∈SG

∑
S∈I(G∨H):projG(S)=SG

βG∨H(S)

=
1

c∗
·
∑

SH∈I(H)

∑
S∈I(G∨H):projuH(S)=SH

βG∨H(S)

=
1

c∗
·
∑

SH∈I(H)

βu(SH)

≥ 1

So, βG is a proper fractional coloring of G, which implies that

χf (G) ≤
∑

SG∈I(G)

βG(SG)

=
1

c∗
·
∑

SG∈I(G)

∑
S∈I(G∨H):projG(S)=SG

βG∨H(S)

=
1

c∗
·
∑

S∈I(G∨H)

βG∨H(S)

=
χf (G ∨H)

c∗

≤ χf (G ∨H)

χf (H)

Therefore, χf (G) · χf (H) ≤ χf (G ∨H), as desired.

4.2 Randomized Graph Product

The randomized product of two graphs is defined as a random induced subgraph

of the deterministic product. Formally, a randomized disjunctive product Z of G and

40

H is an induced subgraph Z = (G∨H)[S], where S is a random subset of V (G∨H).

The k-wise randomized graph product of G is, thus, defined as an induced subgraph

Zk = Gk[S] where S is a random subset of V (Gk).

The motivation for using the randomized graph product is to sparsify the graph

Gk whilst preserving important properties, such as the independence ratio (that is,

the ratio α(G)
|V (G)|).

We may think of the randomized graph product as a function (or an algo-

rithm) RandProduct(G, k, t) that returns the graph Zk = Gk[S], where S is a set of

t vertices sampled uniformly at random from V (Gk). A trivial implementation of

RandProduct(G, k, t) runs in time O(|V (G)|2k): we first construct Gk, then randomly

sample a set S of t vertices from V (Gk), and then output the graph Zk = Gk[S].

However, the running time of this naive implementation can be huge compared to the

size of the resulting graph Zk. Observe, however, that it is not necessary to explicitly

compute Gk. A vertex (u1, . . . , uk) of Gk can be constructed by choosing k vertices

u1, . . . , uk uniformly at random from V (G). It is easy to see that this process outputs

a vertex of Gk with uniform probability. Thus, one can implement RandProduct to

run in O(k · |S|2) time, and this is linear in the size of the output graph when k is a

constant. This implementation of RandProduct is presented in Algorithm 4.2.

This fast implementation of the randomized graph product was given by Berman

and Schnitger in [8]; see also [31]. In addition, Berman and Schitger [8] showed that,

for sufficiently large t, the randomized graph product Zk = RandProduct(G, j, t)

inherits almost the same independence ratio as Gk. A similar result was shown by

41

Algorithm 1 RandProduct(G, k, t,)

S := ∅.
for i := 1 to t do

for j := 1 to k do
Uniformly and independently at random pick a vertex uj ∈ V (G).

end for
Add a vertex (u1, u2, . . . , uk) to S.

end for
Find the edge set F by checking if there is an edge between each pair of vertices
in S.
Output the graph Zk = (S, F).

Feige [31] for the chromatic number. These proofs are based upon the Chernoff

bounds. (See [58] for details on Chernoff bounds.)

Theorem 4.2.1 (Chernoff’s bounds). Let X1, X2, . . . , Xn be independent random

variables taking values 0 or 1, Let X =
∑n

i=1Xi and µ = E[X]. Then the following

hold:

(i) For 0 < δ < 1,

Pr[X > (1 + δ)µ] ≤ exp

(
−δ

2µ

3

)
and Pr[X < (1− δ)µ] ≤ exp

(
−δ

2µ

2

)
.

(ii) For R ≥ 6µ,

Pr[X > R] ≤ 2−R.

4.2.1 Independence Ratio of Randomized Graph Product

Now, we prove the sampling lemma for the independence ratio of the randomized

graph product.

Lemma 4.2.2 (Sampling Lemma for Independence Ratio [8]). Consider the k-

wise disjunctive product Gk of G. Let n = |V (G)| and α = α(G), and let Zk =

42

RandProduct(G, k, t) be the k-wise randomized graph product of G on at most t

vertices, i.e., Zk is a random subgraph of G on at most t vertices. Then, for

t ≥ k · nk

αk−1 log n, with high probability,

α(Zk)

|V (Zk)|
= Θ

(
αk

nk

)
= Θ

(
α(Gk)

|V (Gk)|

)
Proof. The intuition behind the proof is that we may think of Zk as being constructed

from Gk by randomly removing vertices, some of which must be in a maximum

independent set. Thus, the change in the size of any (maximum) independent set

is in the same proportion as the change in the number of vertices of the graph. In

other words, the random sampling maintains the independence ratio.

To prove the statement formally, we have to guarantee that all the independent

sets become smaller after the random sampling. Note that |V (G)| = nk and, by

Theorem 4.1.1, α(Gk) = αk. It is easy to prove by a standard analysis that |V (Zk)| <

t/2 with very small probability. So, we may assume that t/2 ≤ |V (Zk)| ≤ t. Let

us fix any maximum independent set I in Gk. The procedure RandProduct(G, k, t)

samples each vertex of G independently and uniformly with probability t/nk. We

may write t as

t = γ ·
(
k · nk

αk−1
· log n

)
for some γ ≥ 1.

43

Thus, the expected number of vertices of I that are also in V (Zk) is (t/nk) · |I|. So,

we have

µ = E[|I ∩ V (Zk)|] =
t

nk
· |I|

= γ

(
k ·
(

nk

αk−1

)
· log n

)(
|I|
nk

)
≤ γ

(
k ·
(

nk

αk−1

)
· log n

)(
αk

nk

)
≤ γ · k · α · log n

By Chernoff’s bounds (Theorem 4.2.1 (ii)), we have

Pr [|I ∩ V (Zk)| < 6γ · k · α · log n] ≤ 2−6γ·k·α·logn = n−6γ·k·α

Because the maximum independent set in G has cardinality α, the graph G contains

at most nα independent sets. By Corollary 4.1.2, each independent set in Gk is a

Cartesian product of k independent sets in G. Therefore, there are at most n−kα

independent sets in Gk. Since γ ≥ 1, we may apply the union bound over all

independent sets in Gk to give, with high probability, that

|I ∩ V (Zk)| < 6 · γ · k · α · log n, for all independent sets I in Gk.

That is, α(Zk) ≤ 6·γ·k·α log n with high probability. Thus, we have the independence

ratio:

α(Zk)

|V (Zk)|
≤ 6 · γ · k · α · log n

t/2
=

12 · γ · k · α · log n

γ
(
k · nk

αk−1 · log n
) =

12αk

nk
.

44

The proof for the lower bound is similar. Take a maximum independent set I

in Gk. We know that the expected size of I ∩ V (Zk) is

E[|I ∩ V (Zk)|] = γ · k · α · log n

By Chernoff’s bounds (Theorem 4.2.1 (i)), we have

Pr

[
|I ∩ V (Zk)| >

1

2
γ · k · α log n

]
≤ exp

(
1

8
γ · k · α log n

)
That is, with high probability,

α(Zk)

|V (Zk)|
≥

1
2
· γ · k · α log n

t
≥

1
2
· γ · k · α log n

γ
(
k · nk

αk−1 · log n
) =

1

2
· α

k

nk

Combining lower and upper bounds, we have that, with high probability,

1

2
· α(Gk)

|V (Gk)|
≤ α(Zk)

|V (Zk)|
≤ 12

αk

nk

In other words, α(Zk)
|V (Zk)| = Θ

(
α(Gk)
|V (Gk)|

)
as desired.

The randomized graph product that preserves independence ratio can be made

deterministic by the method of Alon, Feige, Wigderson and Zuckerman in [1].

4.2.2 Chromatic Number of Randomized Graph Product

Next we give the sampling lemma for the chromatic number of a random-

ized graph product – this was was originally proven by Feige [31]. That is, we

will show that with large enough t ≥ 0, the randomized graph product Zk =

RandProduct(G, k, t) has approximately the same chromatic number as that of Gk.

It is easy to see that the chromatic number of any subgraph Zk ⊆ Gk is χ(Gk).

However, it is not clear that Zk requires χ(Gk) colors. An alternative lower bound

45

used by Feige is the converse of the independence ratio of a graph. He showed that

χf (Zk) ≥ Θ

(
|V (Gk)|
α(Gk)

)
The above inequality, indeed, follows from the fact that any color class of G is

an independent set and, thus, has cardinality at most α(G). So, we need at least

|V (G)|/α(G) colors to color all the vertices. To be formal, let us prove the following

claim.

Claim 4.2.3. For any graph G, χf (G) ≥ |V (G)|
α(G)

.

Proof. Consider any minimum proper fractional coloring β of G. By definition, β

covers every vertex of G. That is,
∑

S∈I(G):v∈S β(G) ≥ 1 for all v ∈ V (G). Thus,

|V (G)| ≤
∑

v∈V (G)

∑
S∈I(G):v∈S

β(S)

=
∑
S∈I(G)

∑
v∈S

β(S)

=
∑
S∈I(G)

β(S) · |S|

≤
∑
S∈I(G)

β(S) · α(G)

= α(G) ·
∑
S∈I(G)

β(S)

= α(G) · χf (G)

Therefore, χf (G) ≥ |V (G)|/α(G) as claimed.

Now, we apply the sampling lemma for the independence ratio to prove the

sampling lemma for the chromatic number.

46

Lemma 4.2.4 (Sampling Lemma for Chromatic Number [31]). Consider the k-

wise disjunctive product Gk of G. Let n = |V (G)| and α = α(G), and let Zk =

RandProduct(G, k, t) be the k-wise randomized graph product of G on at most t

vertices, i.e., Zk is a random subgraph of G on at most t vertices. Then, for

t ≥ k · nk

αk−1 log n, with high probability,

Θ

(
nk

αk

)
≤ χf (Zk) ≤ χf (G

k)

In particular, if nk

αk
= Θ(χf (G

k)), then χf (Zk) = Θ(χf (G
k)).

Proof. First, note that |V (Gk)| = nk and, by Theorem 4.1.1, α(Gk) = αk.

The upper bound is trivial because Zk is a subgraph of Gk, which means that

we can use a fractional coloring of Gk to color Zk. For the lower bound, we use the

fact that the converse of the independence ratio of a graph gives a lower bound on

the chromatic number. Specifically,

χf (Zk) ≥
|V (Zk)|
α(Zk)

By Lemma 4.2.2 and the choice of t, we must have that

|V (Zk)|
α(Zk)

= Θ

(
|V (Gk)|
α(Gk)

)
= Θ

(
nk

αk

)
This completes the proof.

47

CHAPTER 5
Subexponential-Time Approximation Hardness of Classical Results

Here we consider the subexponential-time approximation hardness of indepen-

dent set and graph coloring. These classical problems were shown to be NP-hard

in the seminal work of Karp [49] and are amongst the earliest problems studied in

approximation algorithms.

First, let’s discuss the maximum independent set problem. Hardness results for

this problem have relied heavily upon probabilistically checkable proof (PCP) sys-

tems. The connection between independent set and PCPs was first discovered by

Feige et al. [33]. He showed that independent set is hard to approximate to within

a factor of 2log1−ε n, for any ε > 0, unless NP ⊆ DTIME(npolylogn). This inapprox-

imability result was improved by Arora and Safra [3], and then by Arora et al. [2] to

show polynomial hardness.

Later, Bellare and Sudan [7] introduced the notion of amortized free-bit com-

plexity of a PCP. They showed that, given a PCP with logarithmic randomness and

amortized free-bit complexity f , the maximum independent set problem is hard to

approximate to within a factor of n1/(1+f)−ε, for all ε > 0, unless NP = ZPP. In

particular, they [7] constructed a PCP with amortized free-bit complexity f = 3 + δ,

for all δ > 0, thus proving a hardness of n1/4−ε for independent set. Bellare et al. [6]

then gave an improved construction with amortized free-bit complexity f = 2 + δ.

48

Finally, H̊astad [42] constructed a PCP with arbitrary small amortized free-bit com-

plexity f > 0. This shows a tight hardness result (up to lower order terms) of n1−ε,

for all ε > 0, for independent set.

A PCP with optimal amortized free-bit complexity was first constructed by

Samorodnitsky and Trevisan [65]. Their PCP, however, has imperfect completeness,

that is, completeness of less than one. H̊astad and Khot [43] constructed a PCP

that has both perfect completeness and optimal amortized free-bit complexity. Re-

cently, Moshkovitz and Raz [59] gave a construction of a projective 2-query PCP

with almost-linear size that can be combined with the result of Samorodnitsky and

Trevisan [65] to produce a PCP with almost-linear size and optimal free-bit com-

plexity. The soundness of a PCP with optimal free-bit complexity was improved

in a recent breakthrough result of Chan [20]. We remark that the complexity as-

sumption of early tight hardness results for independent set (for example, H̊astad

[42]) was NP 6= ZPP, because of a random process used in the PCP constructions.

This process was derandomized by Zuckerman [70] to prove tight hardness under the

assumption P 6= NP.

Now let’s turn to the complexity of the graph coloring problem. The NP-

hardness of 3-coloring due to Karp [49] immediately implies that graph coloring

has a hardness factor of 4/3. To see this, observe that a graph that cannot be 3-

colored requires at least 4 colors. Garey and Johnson [37] amplified this hardness

gap to a factor 2 − ε using graph products. Linial and Vazirani [53] subsequently

showed that the graph product technique can, in fact, amplify the gap up to a factor

2log1−ε n, for any ε > 0. Whilst the hardness of the graph coloring problem can be

49

obtained by gap amplification, Lund and Yannakakis [57] described an alternative

method to prove hardness. They gave a reduction from a hard instance of indepen-

dent set to graph coloring. Their result shows, in particular, that if independent set

has an approximation hardness of nδ, for some 0 < δ < 1, then graph coloring has a

hardness of nδ
′
, for some 0 < δ′ ≤ δ. The result was improved by Fürer in [36] where

he showed that an nδ-hardness of independent set implies an n
1
3
δ-hardness of graph

coloring. More precisely, taking into account the amortized free-bit complexity of

the PCP (in the hardness proof of independent set), denoted by f , Fürer’s result

gives a hardness of n1/(max(1+2f,2)+o(1)) for the graph coloring.

Obtaining a tight hardness result for graph coloring requires a more sophis-

ticated method, due to Feige and Kilian [34], based upon both PCPs and graph

products. They introduced the covering parameter of a PCP and proved that the

long-code based PCP of H̊astad [42] (used to obtained the tight hardness of indepen-

dent set) can be modified to prove tight hardness (up to lower order terms) of graph

coloring. In particular, they showed that for some constant ρ, it is hard to decide

whether a graph is ρ-colorable or it has no large independent set of size O(n/ρ) –

and, thus, needs more than O(ρ) colors. Then, using the randomized graph product

of Feige [31], Feige and Kilian amplified the gap to give n1−ε-hardness for graph

coloring, for any ε > 0.

Furthermore, as shown by Engebretsen and Holmerin [30], the method of Feige

and Killian can also be applied to the PCP of Samorodnitsky and Trevisan [65].

Consequently, one can combine this result with that of Moshkovitz and Raz [59] on

50

the almost linear-size 2-query PCP to obtain subexponential-time hardness for graph

coloring.

5.1 Overview

We now give an overview of our proofs. Precise calculations will be deferred to

the next section.

The classical results on the hardness of the independent set and graph coloring in

[42] and [34] were obtained via a reduction from q-CSP combined with a randomized

graph product. Both results follow by the same reduction. Starting from an instance

of q-CSP on N variables and M clauses with small hardness gap, say r0, and with a

relatively small number of accepting configurations, say w � r0, we apply the FGLSS

reduction to obtain a base graph G0. The reduction guarantees that n = |V (G0)| ≤

wM and α = α(G0) ≥ r0M . We then apply the randomized graph product to

obtain the graph G = RandProduct(G0, k, kn/r
k
0) (the parameters roughly satisfy the

conditions in Lemma 4.2.2). The hardness gap we then obtain is approximately 1/r

where r = rk0 . The number of vertices of the graph G is kn/r. By taking k = t log n,

for any t > 0, we have a gap of nt and the graph G with nt+1 vertices. Thus, this

gives a |V (G)|1−ε-hardness since t can be any large constant. The hardness of the

graph coloring problem follows analogously.

For subexponential-time approximation hardness, we consider the q-CSP in-

stance obtained by applying the PCP in Theorem 3.2.3. This gives a reduction from

the decision version of 3-SAT of size N to an instance of q-CSP of size N ′ = N1+o(1).

Thus, we have a q-CSP instance with at most N ′ clauses. For clarity of presentation,

assume for now that N ′ = N . We then apply the reduction from q-CSP to indepen-

dent set (respectively, graph coloring). The size of the instance in each step evolves

51

as follows:

SAT on N vars︸ ︷︷ ︸
no gap

=⇒ q-CSP on N vars︸ ︷︷ ︸
small gap r0

=⇒ Ind.Set G0︸ ︷︷ ︸
small gap r0

=⇒ Ind.Set G & |V (G)| = rN︸ ︷︷ ︸
gap r

The final graph G has rN vertices. So, if there is an r-approximation algorithm

for independent set (respectively, graph coloring) that runs in time 2(|V (G)|/r)1−ε
, for

some ε > 0, then 3-SAT can be solved in time 2N
1−ε

, contradicting the Exponential-

Time Hypothesis.

5.2 Independent Set

We now present a formal proof of the subexponential-time approximation hard-

ness for the maximum independent set problem. We apply a reduction from an

instance ψ of 3-SAT of size N to a q-CSP instance φ of size N1+o(1) as in Theo-

rem 3.2.3. Moreover, for a given parameter ` > 0, φ has the following properties:

Parameters

Number of variables n = N1+o(1)

Number of clauses m = N1+o(1)

Number of variables in each clause q = `2 + 2`

Completeness (φ is satisfiable.) c = 1− o(1)

Soundness (φ is not satisfiable.) s ≤ 2−`
2+1

Maximum number of accepting configurations for each clause w ≤ 22`

Because each clause has at most w configurations, the FGLSS reduction gives a

graph G0 with |V (G0)| = m · w vertices. In addition,

• Completeness: If the SAT instance ψ is satisfiable then α(G0) ≥ c ·m.

52

• Soundness: If the SAT instance ψ is not satisfiable then α(G0) ≤ s ·m.

Thus, we have a hardness gap of c/s. Note that w can be arbitrarily smaller

than 1/s, and 1/c can be arbitrary smaller than w. This is the important property of

the q-CSP instance obtained from Theorem 3.2.3. Indeed, we may ignore the precise

values of c, s and w and assume that (1/c)� w � (1/s).

For future use, we state the following theorem, which follows from Theorem 3.2.3

and Lemma 2.4.2 (FGLSS Reduction). We may assume that each clause has at least

one accepting configuration; otherwise, we remove the clause.

Theorem 5.2.1 (Corollary of Theorem 3.2.3). For any constant k > 0, let c =

1 − o(1), s = 2−`
2+1, w = 22` and q = 2`

2+2`. Thus, w ≤ (c/s)1/`. Then there is a

polynomial-time reduction that, given a SAT instance φ of size N with m = N1+o(1),

outputs a graph G on wm = wN1+o(1) vertices. The graph G has α(G) ≥ m/2q, and

moreover,

• Yes-Instance: If φ is satisfiable, then α(G) ≥ cm = cN1+o(1).

• No-Instance: If φ is not satisfiable, then α(G) ≤ sm = sN1+o(1).

Here we use the disjunctive product as the default graph product. We then

apply the randomized graph product to obtain the graph:

G = RandProduct
(
G0, k, k · (wm logwm) · (2qw)k−1

)
First, let’s verify that these parameters satisfy the conditions in Lemma 4.2.2. Since

we use the disjunctive product, the condition α(Gk) = α(G)k holds by Theorem 4.1.1.

For the size condition, the graph G must have at least k · |V (G0)|k
α(G0)k−1 ·log |V (G0)| vertices.

53

By substituting the parameters from Theorem 5.2.1, we have

k · |V (G0)|k

α(G0)k−1
· log |V (G0)| ≤ k · (wm)k

(2−qm)k−1
· logwm

= k · (wm) logwm · (2qw)k−1.

Thus, for both the cases of Yes-Instance and No-Instance, the conditions

in Lemma 4.2.2 are satisfied, which implies that G and Gk
0 have almost the same

independence ratio, i.e.,

α(G)

|V (G)|
= Θ

(
α(Gk

0)

|V (Gk
0)|

)
= Θ

(
α(G0)k

|V (G0)|k

)
Hardness Gap. Now we analyze the hardness gap. As discussed, Lemma 4.2.2

implies that

α(G) = Θ

(
|V (G)| · α(G0)k

|V (G0)|k

)
= Θ

(
|V (G)|
|V (G0)|k

)
· α(G0)k

Since |V (G)|/|V (G0)|k are the same for both a Yes-Instance and a No-Instance,

the gap only depends on α(G0)k.

• Yes-Instance: If the SAT instance is satisfiable, then

α(G0) ≥ cm =⇒ α(G) = Θ

(
|V (G)|
|V (G0)|k

)
· α(G0)k ≥ Θ

(
|V (G)|
|V (G0)|k

)
· (cm)k

• No-Instance: If the SAT instance is not satisfiable, then

α(G0) ≤ sm =⇒ α(G) = Θ

(
|V (G)|
|V (G0)|k

)
· α(G0)k ≤ Θ

(
|V (G)|
|V (G0)|k

)
· (sm)k

Thus, the hardness gap is r = Θ((c/s)k).

54

Subexponential-Time Approximation Hardness. To prove subexponential-

time hardness, we have to calculate the number of vertices of the graph G and com-

pare it to the size of the SAT instance. Let us first calculate |V (G)|. By Lemma 4.2.2,

with high probability, we have

|V (G)| ≤ k · (wm logwm) · (2qw)k−1

≤ k · wm · (logw + logm) · (2qw)k−1

≤ 2k · wm · logm · (2qw)k−1

≤ k ·m logm · (2qw)k

We set the range of the parameter k to be 1 ≤ k ≤ O(logm). We will write

(2qw)k in terms of (c/s)k, which is the hardness gap. The values of c, s, w, q in

Theorem 5.2.1 (the same values as in Theorem 3.2.3) are c = 1−o(1), s = 2−`
2+1, w =

22`, q = 2`
2+2`. Hence, for ` ≥ 2,

2qw = 2`
2+2` · 22`

= 2`
2+4`

≤ (2−1 · 2`2−1) · (2−10/` · 210`−10/`)

= (2−1 · 2`2−1) · (2−1 · 2`2−1)10/`

≤
(c
s

)
·
(c
s

)10/`

So, (2qw)k ≤ (c/s)k(1+10/`), for ` ≥ 2. Since r = Θ((c/s)k), we may bound (2qw)k in

terms of r as (2qw)k ≤ r1+ε, where ε can be any small positive real number. Also,

55

we write |V (G)| in terms of r and m (recall that m = N1+o(1)):

|V (G)| ≤ (k ·m logm) · (2qw) = O(m log2m · r1+ε) = N1+o(1) · r1+ε

Thus, for any ε > 0, there is a gap instance G of the maximum independent set

problem such that |V (G)|/r1+ε ≤ N1+o(1), where N is the size of the input 3-SAT

instance. Recall that the ETH (Hypothesis 3.1.1) asserts that 3-SAT does not admit

a 2N
1−ε

-time algorithm, for any constant ε > 0. Thus, assuming the ETH, the above

construction rules out 2|V (G)|1−ε1/r1+ε2 -time algorithms for the maximum independent

set problem, for any constants ε1, ε2 > 0.

Theorem 5.2.2. Let G be any graph. Unless the ETH is false, for any constants

ε1, ε2, ε3 > 0, any r-approximation algorithm for the maximum independent set prob-

lem must run in time at least 2|V (G)|1−ε1/r1+ε2 , where r ranges from some sufficiently

large constant to |V (G)|1−ε3.

5.3 Graph Coloring

The proof of the subexponential-time approximation hardness for the graph

coloring problem follows the same reduction as that for the maximum independent

set problem except the q-CSP instances we choose are different. We require a q-CSP

instance with a small covering parameter, which can be obtained from Theorem 3.3.3.

Recall the definition of the covering parameter as defined in Section 3.3. We say

that a q-CSP instance has a covering parameter ρ if, in the Yes-Instance (i.e.,

the instance of is obtained from a satisfiable instance of 3-SAT), there is a set of

assignments {A1, A2, . . . , Aρ} that covers all the accepting configurations, i.e., each

56

accepting configuration (which is a partial assignment) is a part of one of these

assignments.

More precisely, Theorem 3.3.3. says that there is a polynomial-time reduction

from an instance ψ of 3-SAT of sizeN to a q-CSP instance φ of sizeN1+o(1). Moreover,

for a given parameter ` > 0, φ has the following properties:

Parameters

The number of variables n = N1+o(1)

The number of clauses m = N1+o(1)

The number of variables in each clause q = `2 + 2`

Completeness (φ is satisfiable.) c = 1− o(1)

Soundness (φ is not satisfiable.) s ≤ 2−`
2+1

The maximum number of accepting configurations for each clause w ≤ 22`

Covering parameter ρ = O(w)

The FGLSS reduction transforms each accepting configuration into a vertex.

Thus, the graph G0 has |V (G0)| = m · w vertices. Notice that each assignment

corresponds to an independent set in G0. By the definition of the covering parameter,

in Yes-Instance, there is a set of O(w) assignments that covers all the accepting

configurations. So, the fractional chromatic number of G0 of the Yes-Instance is ρ.

For the No-Instance, the fractional chromatic number of G0 can be lower bounded

by the independence ratio. Therefore,

• Completeness: If the SAT instance ψ is satisfiable, then

χ(G0) ≤ O(ρ) = O(w).

57

• Soundness: If the SAT instance ψ is not satisfiable, then

χ(G0) ≥ |V (G0)|
α(G0)

≥ w ·m
s ·m

=
w

s
.

Thus, we have a hardness gap of Ω(1/s). Recall w can be arbitrary smaller than

1/s. That is, w ≤ (1/s)3/`, for any ` ≥ 1. So, w ≤ (1/s)ε, for a chosen parameter

ε > 0.

For future use, we state the following theorem, which follows from Theorem 3.3.3

and Lemma 2.4.2 (FGLSS Reduction).

Theorem 5.3.1 (Corollary of Theorem 3.3.3). For any constant k > 0, let c =

1 − o(1), s = 2−`
2+1, w = 22`, ρ = O(w) and q = 2`+2`. Thus, w ≤ (c/s)1/`. There

is a polynomial-time reduction that, given a SAT instance φ of size N and letting

m = N1+o(1), outputs a graph G on wm = wN1+o(1) vertices. The graph G has

α(G) ≥ m/2q, and moreover,

• Yes-Instance: If φ is satisfiable, then χ(G) ≤ ρ.

• No-Instance: If φ is not satisfiable, then α(G) ≥ w/s.

Next, we apply the same reduction as that for the maximum independent set

problem. That is, we apply the randomized graph product with respect to the

disjunctive product to obtain the graph:

G = RandProduct(G0, k, k · (wm logwm) · (2qw)k−1)

We use the same parameters as before. So, it is easy to see that all the parameters

satisfy the conditions in Lemma 4.2.4. Also, by Lemma 4.1.4, χf (G
k
0) = χf (G0)k.

58

Thus, we have the graph G such that

α(G)

|V (G)|
= Θ

(
α(G0)k

|V (G0)|k

)
≤ χf (G) ≤ χf (G0)k

Hardness Gap. Now we analyze the hardness gap.

• Yes-Instance: If the SAT instance is satisfiable, then

χf (G0) ≤ ρ = O(w) =⇒ χf (G) ≤ χf (G0)k = zkwk for some constant z > 0.

• No-Instance: If the SAT instance is not satisfiable, then

α(G0) ≤ s ·m =⇒ χf (G) ≥ Θ

(
|V (G0)|k

α(G0)k

)
= Θ

(
(w ·m)k

(s ·m)k

)
= Θ

((w
s

)k)
Thus, the hardness gap is r = Ω(1/(zs)k).

Subexponential-Time Approximation Hardness. Now we calculate the

ratio |V (G)| to the hardness gap and compare it to the size of the SAT instance. As

before, the value of |V (G)| is

|V (G)| ≤ (k ·m logm) · (2qw)k

We set the range of the parameter k to be 1 ≤ k ≤ O(logm). The values of

s, w, q in Theorem 5.3.1 (the same values as in Theorem 3.3.3) are s = 2−`
2+1, w =

59

22`, q = 2`
2+2`. Hence, for ` ≥ max{2, log z},

2qw = 2`
2+2` · 22`

= 2`
2+4`

≤ (z−1 · 2`2−1) · (z−10/` · 210`−10/`)

= (z−1 · 2`2−1) · (z−1 · 2`2−1)10/`

=

(
1

zs

)
·
(

1

zs

)10/`

So, (2qw)k ≤ (1/zs)k(1+10/`), for ` ≥ max{2, log z}. Since r = Ω((1/zs)k), we

may write (2qw)k in terms of r as (2qw)k = r1+ε, where ε can be any small positive

real number. Also, we write |V (G)| in terms of r and m (recall that m = N1+o(1)):

|V (G)| ≤ k ·m logm · (2qw)k = k ·m logmr1+ε ≤ O(m log2m)r1+ε = N1+o(1) · r1+ε.

The last equality follows because m = N1+o(1). Assume the ETH (Hypothesis 3.1.1).

That is, 3-SAT does not admit a 2N
1−ε

-time algorithm, for any constant ε > 0. Then

the above construction rules out 2|V (G)|1−ε/r1+ε
-time algorithms for the graph coloring

problem, for any constant ε, ε > 0.

Theorem 5.3.2. Let G be any graph. Unless the ETH is false, for any constants

ε1, ε2, ε3 > 0, any r-approximation algorithm for the graph coloring problem must run

in time at least 2|V (G)|1−ε1/r1+ε2 , where r ranges from some sufficiently large constant

to |V (G)|1−ε3.

60

CHAPTER 6
Subexponential-Time Hardness from Graph Product

In this chapter, we present a subexponential-time approximation hardness re-

sult obtained from the randomized graph product. The problem considered in this

chapter is the maximum bipartite induced matching problem.

Our reduction is simple and is based on the well-known graph transformations,

namely the bipartite double cover, denoted by B[G], and the extended bipartite double

cover, denoted by Be[G].

We construct B[G] by making two copies of each vertex v ∈ V (G), namely, (v, 1)

and (v, 2). Then, for each edge uv ∈ E(G), we add edges (u, 1)(v, 2) and (u, 2)(v, 1).

So, B[G] is a bipartite graph with bi-partition V1, V2, where Vi = {(v, i) : v ∈ V (G)}

for i = 1, 2. To obtain Be[G], we simply add to B[G] an edge joining the two copies

of each vertex v ∈ V (G). That is, we add an edge between (v, 1) and (v, 2) for all

v ∈ V (G).

This transformation might sound familiar to many readers. The bipartite double

cover and has been used repeatedly as a natural way to transform any graph into a

bipartite graph; for example, one can use this transformation to reduce the problem

of computing cycle covers to the maximum bipartite matching problem.

61

6.1 Our Results

The hardness result in this chapter is obtained by the graph product technique

that we have developed in [17]. The key theorem that we use in the proof is the

graph product inequality:

Theorem 6.1.1 (Graph Product Inequality). For any graphs G and H,

im(B[G ∨H]) ≤ im(B[G]) + im(B[H]). (6.1)

Also, we need the following lemma implicitly proved in [29] and [44]. In fact,

the theorem follows from the observation that edges in Be[G] can be partitioned into

two sets, those that correspond to vertices of G and those that correspond to edges.

Lemma 6.1.2 (Bipatite Double Cover Inequality [29]). For any graphs G and H,

α(G) ≤ im(Be[G]) ≤ im(B[G]) + α(G). (6.2)

Theorem 6.1.1 shows the change in the graph measures after applying graph

products. Lemma 6.1.2 says that we can partition edges in the extended bipartite

double cover Be[G] into two sets, those that correspond to vertices of G and those

that correspond to edges, which are in B[G]. To see this, let us partition edges of

Be[G] into two sets E1 and E2 where

E1 = {(v, 1)(v, 2) : v ∈ V (G)}

E2 = {(v, 1)(w, 2) : v, w ∈ V (G) and v 6= w}

Each edge (v, 1)(v, 2) ∈ E1 corresponds to the vertex v ∈ V (G) while edges (v, 1)(w, 2)

and (w, 1)(v, 2) correspond to the edge vw ∈ E(G). It is easy to see that, for any

62

induced matching M in Be[G], the set E1 ∩M maps to an independent set in G.

But, it is not clear whether we can map E2∩M to an independent set in G. We thus

consider E2 ∩M as the “gabage” term. Since edges in E2 are in B[G], it suffices to

consider the gabage term in the graph B[G].

The inequality in Theorem 6.1.1 implies the tight approximation hardness for

the bipartite induced matching problem. However, the original construction does

not imply the subexponential-time approximation hardness because of the blow-up

in the size of the instances. To be more precise, the original construction outputs

the graph Be[G
k], for some large enough constant k. The graph Be[G

k] has approx-

imately Nk vertices, where N is the size of the SAT instance that is the source of

the hardness. However, the hardness gap is only r = γk for some constant γ > 0.

Thus, |V (Gk)|/r ≈ Nk/r ≈ Nk−ε, for ε > 0, meaning that the running time of

2|V (G)|/r is large enough to solve the SAT instance even if the ETH is true. We ex-

tend the technique by applying the random sampling technique (i.e., applying the

randomized graph product) to reduce the size of the instance and thus obtain the

subexponential-time approximation hardness result as stated below.

Theorem 6.1.3. Let G be any graph. Unless the ETH is false, for any constants

ε1, ε2, ε3 > 0, any r-approximation algorithm for the maximum bipartite induced

matching problem must run in time at least 2|V (G)|1−ε1/r1+ε2 , where r ranges from

some sufficiently large constant to |V (G)|1−ε3.

The organization of this chapter are as follows. We start by giving the overview

of our proofs in Section 6.2. Then we prove the subexponential-time approximation

63

hardness for the bipartite induced matching problem in Section 6.3. The proof for

the graph product inequality is deferred to Section 6.4.

6.2 Overview

In this section, we give the overview of the proofs. The presentation consists of

two subsections. The first part overviews the hardness proof using the graph product

technique that we have developed in [17]. The second part overviews the proof of

the subexponential-time approximation hardness of the bipartite induced matching

problem.

Part 1: Using Graph Product Inequality

We first sketch the idea of the n1−ε-hardness of the bipartite induced matching

problem, where n is the number of vertices. The subadditivity property of the in-

equality in Theorem 6.1.1 plays an important role in proving the hardness of approx-

imation. We build on the following connection between independence and induced

matching numbers of a graph, which was implicitly shown by Elbassioni, Raman,

Ray and Sitters in [29].

α(G) ≤ im(Be[G]) ≤ im(B[G]) + α(G) (6.3)

If im(B[G]) is relatively small, i.e., im(Be[G]) = O(α(G)), then we will already

have the hardness of n1−ε using the hardness of approximating the independence

number (e.g., [42]). However, im(Be[G]) could be as large as |V (G)|, and in such

case, we do not get any hardness result (not even NP-hardness). To remedy this, we

apply Equation (6.1) in Theorem 6.1.1 repeatedly to show that

im(B[Gk]) ≤ im(B[Gk−1]) + im(B[G]) ≤ . . . ≤ k · im(B[G]) (6.4)

64

whereGk = G∨G∨. . .∨G is a k-wise disjunctive product. Combining Inequality (6.3)

and Inequality (6.4) with the lower bound α(Gk) ≤ im(Be[G
k]), we have

α(Gk) ≤ im(Be[G
k]) ≤ k · im(B[G]) + α(Gk) .

We have from Theorem 4.1.1 that α(Gk) = (α(G))k. So, the term α(Gk) grows

exponentially in terms of k while the term im(B[G]) only grows linearly. Therefore,

for large enough k, the induced matching number and the independence number

coincide. That is, im(Be[G
k]) ≈ α(Gk).

In more detail, take a hard instance of the maximum independent set problem

with a parameter ε > 0, where the Yes-Instance has an independent set of size

|V (G)|1−ε and the No-Instance has no independent set of size |V (G)|ε. Then

setting k ≥ 1/ε gives the graph Be[G
k] that has α(Gk) ≤ Be[G

k] ≤ 2α(Gk). Now, any

hardness of approximating the independence number implies immediately roughly

the same hardness of approximating the induced matching number. This implies

the n1−ε-hardness for the induced matching problem, where n = |V (Be[G
k])| is the

number of vertices of the input graph. Moreover, the input graph is bipartite by the

definition of Be[G
k].

Part II: Subexponential-Time Approximation Hardness

The proof from the first part as used in [17] gives the tight approximation

hardness for the bipartite induced matching problem, but the size of the instance

blows up by the power of k. To obtain the subexponential time hardness, we start

with a hard instance that has a small gap which is obtained from an almost linear

time reduction from the decision version of SAT. Then we amplify the gap using the

65

graph product technique. However, the size of Gk is too large compared to the size of

the SAT instance, which means that we cannot apply the ETH assumption. So, we

invoke the randomized graph product to get a smaller graph Zk with |V (Zk)| ≈ rN ,

where r is the hardness gap and N is the size of the SAT instance. The size of

instances in each step are as below:

N -var SAT︸ ︷︷ ︸
no gap

=⇒ Ind.Set G: |V (G)| ≈ N︸ ︷︷ ︸
small gap

=⇒ Ind.Matching Zk: |V (Zk)| ≈ rN︸ ︷︷ ︸
gap = r

So, any approximation algorithm that gives an approximation ratio of r must run in

time at least 2(|V (Zk)|/r)1−ε
= 2N

1−ε
; otherwise, we would break the ETH.

6.3 The Proof of Subexponential-Time Approximation Hardness

In this section, we give the formal proof of the subexponential-time approxima-

tion hardness of the maximum bipartite induced matching problem.

The maximum induced matching problem is closely related to the maximum

independent set problem as the goal is to find a subset of edges that are, in some

sense, “independent”.

The hardness of the induced matching problem in general graphs can be derived

easily from the maximum independent set problem: Take a hard instance of the

maximum independent set problem, namely H. Then construct from H a graph G

by adding an edge vv′ hanging out from each vertex v ∈ V (H). That is, for each

vertex v ∈ V (H), we add an auxiliary vertex v′ and join v to v′ by an edge vv′. So,

any independent set S in H corresponds to an induced matching M = {vv′ : v ∈ S}

in G. Conversely, given an induced matching M in G, one can pick one vertex from

each edge e ∈ M , remove auxiliary vertices and map them to a set of vertices S in

66

H. It is not hard to check that S is independent in H. (See [23] for more detail.)

So, α(H) = im(G), showing that both the maximum induced matching problem is at

least as hard to approximate as the maximum independent set problem. However, the

graph G is not bipartite. To obtain the hardness result on bipartite graphs, especially

when proving hardness in the regime of subexponential-time, the construction needs

to be more involved.

We require Theorem 5.2.1 from Chapter 5 in the proof.

Theorem 5.2.1 For any constant k > 0, let c = 1 − o(1), s = 2−`
2+1, w = 22` and

q = 2`
2+2`. Thus, w ≤ (c/s)1/`. Then there is a polynomial-time reduction that, given

a SAT instance φ of size N with m = N1+o(1), outputs a graph G on wm = wN1+o(1)

vertices. The graph G has α(G) ≥ m/2q, and moreover,

• Yes-Instance: If φ is satisfiable, then α(G) ≥ cm = cN1+o(1).

• No-Instance: If φ is not satisfiable, then α(G) ≤ sm = sN1+o(1).

Take an instance of the maximum independent set problem as in Theorem 5.2.1.

Denote the graph obtained from Theorem 5.2.1 by G. For k ≥ 2, construct a graph

Zk by the randomized graph product:

Zk = RandProduct
(
G, k, k · (wm logwm) · (2qw)k−1

)
Then we construct the graph G = Be[Zk] as an instance of the maximum bipartite

induced matching problem.

Analysis. First, we compute the lower bound on α(Zk) by applying Lemma 4.2.2.

Let us verify that the chosen parameters satisfy the conditions in the lemma. By

67

Theorem 4.1.1, we have that α(Gk) = α(G)k, For the parameter t = |V (Zk)|, we

have by substituting the parameters from Theorem 5.2.1 that

k · |V (G)|k

α(G)k−1
· log |V (G)| ≤ k · (wm)k

(2−qm)k−1
· logwm

= k · (wm) logwm · (2qw)k−1

= t = |V (Zk)|.

So, the graph Gk has independence ratio Θ(|α(G)|k/|V (G)|k), and for k ≥ 2, we

have

α(Zk) = Θ(
α(G)k

|V (G)|k
· |V (Zk)|)

≥ Θ

(
α(G)k

|V (G)|k
· k · |V (G)|k

α(G)k−1
· log |V (G)|

)
= Θ(k · α(G) · log |V (G)|)

≥ k · (2−qm) · logwm

> k · (w ·m) (logm > w, q because w, q are constants.)

≥ k · |V (G)|.

Next, we bound the value of im(G) = im(B[Zk]). Consider Inequality (6.1).

im(B[G ∨H]) ≤ im(B[G]) + im(B[H])

It is easy to show by induction that

im(B[Gk]) ≤ im(B[Gk−1]) + im(B[G]) ≤ k · im(B[G]) ≤ k|V (G)|

68

The last inequality follows because B[G] has 2|V (G)| vertices, and the size of

any matching in G can be at most |V (G)|/2. Observe that any induced matching M

in B[Zk] is also an induced matching in B[Gk] because Zk is an induced subgraph of

Gk (that is, B[Zk][M] = B[Gk][M] = M). Thus,

im(B[Zk]) ≤ k|V (G)| while α(Zk) > k|V (G)|.

By Inequality (6.2) in Lemma 6.1.2, we have

α(Zk) ≤ im(G) = im(Be[Zk])) ≤ im(B[Zk]) + α(Zk) ≤ 2α(Zk)

In the construction of Zk, we use the same parameters as those used for the

maximum independent set problem in Chapter 5. So, we can follow the same proof

but with k ≥ 2. Indeed, we may take Zk as the hard instance in Theorem 5.2.2.

Since |V (G)| = 2|V (Zk)| and im(G) = Θ(α(Zk)), we obtain the subexponential-time

approximation hardness for the maximum bipartite induced matching problem, thus

proving Theorem 6.1.3.

6.4 Graph Product Inequality

Now, we will prove the graph product inequality in Theorem 6.1.1:

im(B[G ∨H]) ≤ im(B[G]) + im(B[H])

Let V1 and V2 be the two partitions of vertices in B[G ∨ H] and M be an

induced matching in B[G ∨ H]. Recall that each edge in B[G ∨ H] is of the form

(u, a, 1)(v, b, 2), where u, v ∈ V (G) and a, b ∈ V (H), and it appears in B[G ∨ H]

69

(a) G, H, B[G] and B[H] (b) B[G ∨ H], super vertices V x
i and an in-

duced matching MG

Figure 6–1: Example of graphs G, H, B[G], B[H] and B[G ∨ H], as well as super
vertices V x

i , set of edges EG and induced matching MG (defined in Section 6.4).
Bold edges are inMG. Solid edges (in blue, including bold edges) are edges assigned
to EG, and dashed edges (in gray) are edges assigned to EH . Observe that if we view
V x
i as a vertex (by unifying vertices in them) and consider only edges in EG, then

the graph looks exactly like B[G]. Moreover, the induced matchingMG becomes an
induced matching {V u

1 V
v

2 , V
v

1 V
w

2 } in this graph of super vertices. This is the main
fact we use to prove Inequality (6.1).

if and only if at least one of the following conditions holds: (1) uv ∈ E(G) or (2)

ab ∈ E(H). Our strategy is to consider edges satisfying each condition separately.

In particular, we let E(B[G ∨ H]) = EG ∪ EH , where EG and EH consist of

edges (u, a, 1)(v, b, 2) that satisfy the first and second condition, respectively. That

is, EG = {(u, a, 1)(v, b, 2) : uv ∈ E(G)} and EH = {(u, a, 1)(v, b, 2) : ab ∈ E(H)}.

For example, in Figure 6–1(b), EG consists of solid edges (in blue) and EH consists of

dashed edges (in gray). Note that some edges, e.g., edge (u, a, 1)(v, b, 2) in Figure 6–

1(b), are in both EG and EH . We also partition the induced matching M into

M = MG ∪MH where MG = M∩ EG and MH = M∩ EH . Obviously, |M| ≤

|MG| + |MH |. Our goal is to show that |MG| ≤ im(B[G]) and |MH | ≤ im(B[H]).

We will only show the former claim because the latter can be argued similarly.

70

To prove this claim, we partition vertices in V1 and V2 according to which vertices

in G they “inherit” from. That is, for any vertex u ∈ V (G), we let V u
1 = {(u, a, 1) :

a ∈ V (H)} and V u
2 = {(u, a, 2) : a ∈ V (H)} (e.g., see Figure 6–1(b)).

We can think of each set V u
i as a “super vertex” corresponding to a vertex

(u, i) in B[G] in the sense that if we unify all vertices in V u
i into one vertex, for all

u ∈ V (G) and i ∈ V (K2), and remove duplicate edges, then we will get the graph

B[G]. In fact, we can show more than this. We can show that if we look at MG

in the graph of super vertices, then we will get an induced matching of B[G] having

the same size as MG! For example, in Figure 6–1(b) the induced matching MG in

B[G ∨H] consisting of bold edges becomes a set of two edges {V u
1 V

v
2 , V

v
1 V

w
2 } in the

graph of super vertices, which is still an induced matching.

The key idea in proving this fact is an observation that, for any pair of super

vertices V u
1 and V v

2 , either there is no edge between any pair of vertices in V u
1 and

V v
2 , or there will be edges between all pairs of vertices in V u

1 and V v
2 . For example,

in Figure 6–1(b), there is no edge between any pair of vertices x ∈ V u
1 and y ∈ V w

2

while there is an edge between every pair of vertices x ∈ V u
1 and y ∈ V v

2 . Using this

observation, we can easily prove the two lemmas below. The first lemma says that

MG becomes a matching in the graph of super vertices, and the second one says that

this matching is, in fact, an induced matching.

Before proceeding to the proofs, recall that we write the edge set of B[G ∨H]

as E(B[G ∨ H]) = EG ∪ EH , where EG = {(u, a, 1)(v, b, 2) : uv ∈ E(G)} and

EH = {(u, a, 1)(v, b, 2) : ab ∈ E(H)}.

71

(a) G, H, B[G] and B[H] (b) B[G ∨H]

Figure 6–2: Example of graphs G, H, B[G], B[H] and B[G ∨ H], as well as super
vertices V x

i . Solid edges (in blue) are edges assigned to EG, and dashed edges (in
gray) are edges assigned to EH . (EG and EH are defined in Section 6.4.)

Lemma 6.4.1. For any u ∈ V (G) and i ∈ {1, 2}, V u
i contains an endpoint of at

most one edge in MG.

Proof. For the sake of contradiction, assume that there is a vertex u ∈ V (G)

such that V u
1 contains two endpoints of two edges in MG, say (u, a, 1)(v, b, 2) and

(u, a′, 1)(v′, b′, 2). (The case of V u
2 is proved analogously.) Since (u, a, 1)(v, b, 2) is

in EG (recall that MG = M∩ EG), we have that uv ∈ E(G) and thus (u, 1)(v, 2)

is in E(B[G]). This fact then implies that there is an edge between (u, a′, 1) and

(v, b, 2) in EG as well, contradicting the fact that MG (and thus M) is an induced

matching.

Example. Here we illustrate the proof of Lemma 6.4.1. Consider Figure 6–

2(b) and let us say thatMG contains edges (u, a, 1)(v, b, 2) and (u, b, 1)(v, a, 2) which

means that V u
1 contains endpoints of two edges inMG. Having the first edge in EG

72

means that uv ∈ E(G) and thus (u, 1)(v, 2) is in E(B[G]) (as witnessed in Figure 6–

2(a)). But then it means that the edge (u, a, 1)(v, a, 2) must be in EG as well, making

MG (and thus M) not an induced matching.

Lemma 6.4.2. For any u, u′, v, v′ ∈ V (G), if MG contains an edge between a pair

of vertices in V u
1 and V v

2 and an edge between another pair of vertices in V u′
1 and

V v′
2 , then there must be no edge between vertices in V u

1 and V v′
2 in EG.

Proof. Assume for a contradiction thatMG contains both edges (u, a, 1)(v, b, 2) and

(u′, a′, 1)(v′, b′, 2), and there is an edge, say (u, c, 1)(v′, d, 2) in E(G). Since the edge

(u, c, 1)(v′, d, 2) is in EG, we have uv′ ∈ E(G) and thus (u, 1)(v′, 2) ∈ E(B[G]).

This implies that (u, a, 1)(v′, b′, 2) is in EG, which contradicts the fact that M is an

induced matching in B[G ∨H].

Example. Here we illustrate the proof of Lemma 6.4.2. Consider Figure 6–

2(b), and let us say that the matchingMG contains (v, a, 1)(u, a, 2) and (u, a, 1)(w, a, 2)

and there is an edge (v, b, 1)(w, b, 2) which prevents MG from being an induced

matching in the graph of super vertices. Having the last edge in EG implies that

(v, 1)(w, 2) ∈ E(B[G]) which in turns implies that (v, a, 1)(w, a, 2) ∈ EG, making

MG (and thus M) not an induced matching in B[G ∨H].

73

CHAPTER 7
Subexponential-Time Hardness of Problems on Bounded-Degree Graphs

We now discuss the subexponential-time approximation hardness of problems

on bounded degree graphs. Specifically, we prove the hardness of independent set,

semi-induced matching and bipartite induced matching and on d-degree bounded

graphs. (The hardness of the bipartite induced matching will follow directly from

the hardness of the semi-induced matching.) The basic method for the proof is

similar to that used in Chapter 5. We begin with a hard instance of q-CSP that has

a small hardness-gap. Then we boost the gap multiplicatively by a gap-amplification

scheme. In Chapter 5 and Chapter 6, we used the randomized graph product as a

gap-amplification scheme. In this chapter, however, the gap-amplification scheme we

use runs at the CSP level, that is, we amplify the hardness gap before applying the

FGLSS reduction.

7.1 Overview

Our proofs involve many parameters. To motivate the importance of each pa-

rameter and the need for each tool, we give a top-down overview of our proofs in an

informal manner. As in the other chapters, this initial presentation will be imprecise,

but we hope it will aid the reader in understanding the technical proofs that follow.

Our reduction consists of two steps. In the first step, we reduce N -variable 3-

SAT (decision version) to maximum independent set on a ∆-degree bounded graph.

74

In the second step, we reduce the maximum independent set to induced matching

on a ∆-degree bounded bipartite graph.

N -var 3-SAT =⇒ ∆-deg. induc. matching with |V (G)| = ∆N︸ ︷︷ ︸
hardness gap ∆

(7.1)

∆-deg. indep. set with |V (G)| = ∆N︸ ︷︷ ︸
hardness gap ∆

=⇒ ∆-deg. induc. matching with |V (G)| = ∆N︸ ︷︷ ︸
hardness gap ∆

(7.2)

The subexponential-time approximation hardness for the maximum indepen-

dent set and bipartite induced matching problems in graphs with bounded degree

follow directly from the above connection. Suppose there is a 2o(|V (G)|/∆)-time o(∆)-

approximation algorithm for either the independent set or bipartite induced matching

on ∆-degree bounded graphs. We can then invoke this algorithm to solve 3-SAT in

time 2o(N) because the reduction in Equation (7.1) gives a hardness gap of ∆ with

|V (G)| = N∆. Such an algorithm cannot exist, assuming the ETH.

Step I: SAT → Independent Set (Eq. (7.1))

Our reduction from 3-SAT to maximum independent set is simply a sequence of

standard reductions; see, for example, [33] and [68]. We start with a 3-SAT instance

ψ, which is NP-complete but has no hardness gap. We then construct a PCP for ψ,

which outputs a CSP instance φ1 with some small gap. (Note that one may think

of a PCP as a reduction from the SAT instance with no gap to a CSP instance with

some gap.) Then we apply a gap-amplification and sparsification scheme to boost up

75

the hardness-gap to (some value) k and reduce the number of clauses to roughly the

same as the number of variables. This produces another CSP instance φ2. Finally,

we apply the FGLSS reduction to obtain an instance G of maximum independent set

with hardness-gap k. These reductions give a |V (G)|-hardness for independent set.

To obtain a hardness result for ∆-bounded-degree graphs, we follow the technique

of Trevisan [68]. He showed that by modifying the FGLSS reduction with disperser

replacement, one can obtain a graph with maximum degree ∆ ≈ k, thus, implying a

∆-hardness. This reduction is summarized below.

N -var 3-SAT ψ︸ ︷︷ ︸
(no hardness-gap)

PCP
====================⇒ N -var CSP φ1︸ ︷︷ ︸

(hardness-gap = γ)

(7.3)

gap amplifi. + sparsi.
====================⇒ N -var (kN)-clause CSP φ2︸ ︷︷ ︸

(hardness-gap = k for all k ≥ γ)

(7.4)

FGLSS + dispers. replac.
====================⇒ Indep. Set on G with |V (G)| = N∆ and ∆ = k︸ ︷︷ ︸

(hardness-gap = ∆ = k)

(7.5)

Observe that all tools we employ have been used previously. The FGLSS re-

duction with gap amplification and sparsification technique (with no disperser re-

placement) was used in [7] to prove the hardness of approximating the maximum

independent set problem. The combination of FGLSS and disperser replacement

(but with no gap amplification and sparsification) was used in [68]. Our main con-

tribution in Step I is to show how to combine all these tools together and how to

tune the parameters appropriately to get the desired subexponential-time hardness

of independent set. We emphasize that a key component of our method (that has not

76

been used before in the context of independent set) is the almost-linear size PCP of

Moshkovitz and Raz [59] and the PCP with optimal query complexity of Samorod-

nitsky and Trevisan [65]. Our reduction in a more detailed form is illustrated below.

N -var 3-SAT ψ︸ ︷︷ ︸
(no hardness-gap)

PCP (MR’10 [59] + ST’00 [65])
====================⇒ N -var CSP φ1, acc. conf. w1 = γo(1)︸ ︷︷ ︸

(hardness-gap = γ)

((7.3)∗)

gap amplification + sparsification
====================⇒ N -var (kN)-clauses CSP φ2, acc. conf. w2 = ko(1)︸ ︷︷ ︸

(hardness-gap = k = γt for any t)

((7.4)∗)

FGLSS + disperser
====================⇒ Indep. Set on G: ∆ = k and |V (G)| = (kN)w2︸ ︷︷ ︸

(hardness-gap = k)

((7.5)∗)

Here “acc. conf.” is an abbreviation for the maximum number of accepting

configurations. We note that, amongst the numerous parameters in this reduction,

two that play particularly important roles are γ and t. We now explain the above

equations. Further details behind Eq. ((7.3)∗) and Eq.((7.4)∗) can also be found in

Section 7.2 (Eq. ((7.3)∗) and Eq. ((7.4)∗) together give a almost-linear size sparse

PCP with small free-bit complexity and large degree). The details behind Eq. ((7.5)∗)

can be found in Section (7.4).

Eq. ((7.5)∗). For the additional details from Eq. (7.5) to Eq. ((7.5)∗), we have

a parameter w2 denoting the maximum number of satisfying assignments for each

clause (known as the maximum number of accepting configurations). It is well-known

that if we start with anN -variable, M -clause CSP instance φ2 with maximum number

of accepting configurations w2, then we obtain a graph G with |V (G)| = Mw2 with

77

the properties of Eq. (7.5), after applying the FGLSS reduction and the disperser

replacement (for more details, see Eq. 7.3). Since M = Nk, it follows that to obtain

a reduction as in Eq. (7.5), we need w2 to be small. For intuition, it is sufficient to

imagine that w2 = ko(1). This makes |V (G)| ≈ (Nk)ko(1) ≈ Nk (note, again, that

we are being imprecise in our calculations). This leads to the refinement of Eq. (7.5)

as in Eq. ((7.5)∗). Our next job is to obtain φ2 with the properties of Eq. ((7.5)∗).

That is, for any k ≥ γ, it has N variables, kN clauses, and maximum number of

accepting configurations w2 = ko(1).

Eq. ((7.4)∗). We have not yet formalized the precise relationship between γ

and k in Eq. (7.4) nor how to obtain w2 = ko(1). To do this, we introduce yet

another parameter t, called the gap amplification parameter. By using the standard

gap amplification technique with parameter t, we can transform a CSP instance φ1

with hardness gap γ to an instance φ2 with hardness gap k = γt with the same

number of variables. This gap amplification process increases the number of clauses

exponentially in t but we can use the standard sparsification technique to bound

the number of clauses by γtN . Moreover, if the maximum number of accepting

configurations in φ1 is w1, then we will get w2 = wt1 as the maximum number of

accepting configurations in φ2. We will show that we can obtain φ1 with w1 = γo(1),

which implies that w2 = γo(t) = ko(1). This leads to the refinement of Eq. (7.4) as

Eq. ((7.4)∗).

Eq. ((7.3)∗). Our last job is to obtain φ1 with the desired properties. That is,

it has N variables and the maximum number of accepting configurations is w1 = γo(1)

for a hardness gap of γ. After this, the combination of the almost-linear size PCP of

78

Moshkovitz and Raz [59] and the PCP with low free-bit complexity of Samorodnitsky

and Trevisan [65], as stated in [59, Corollary 14], gives us exactly what we need. Any

3-SAT formula of size N can be turned into an N1+o(1)-variable CSP with hardness

gap γ and w1 = γo(1). This gives a refined version of Eq. (7.3) as Eq. ((7.3)∗).

7.1.1 Step II: independent set → induced matching

We next reduce independent set to bipartite induced matching. The key idea

is to prove a new property of the disperser. The main result is that if we construct

a hardness instance of independent set using disperser replacement [68] (as outlined

in the previous section) then the hardness of independent set and bipartite induced

matching are essentially the same.

Theorem 7.1.1 (Informal). Let G be a graph (not necessarily bipartite) constructed

by disperser replacement. There is a bipartite graph H of roughly the same size as

G such that im(H) ≈ α(G).

The graph H is obtained by an operation, called extended bipartite double cover,

which we used in Chapter 6. Recall that a bipartite double cover of a graph G,

denoted by Be[G], is a bipartite graph H = (X, Y,E) where X and Y are copies of

V (G), and any vertices x ∈ X and y ∈ Y are adjacent in H if and only if x and y are

adjacent in G. In the extended bipartite double cover, we also have an edge joining

two vertices x, y that originate from the same vertex in G. These two operations are

natural transformations that are frequently used in transforming a graph G into a

bipartite graph. Many of its properties have been studied, mostly in graph theory

(see, for example, [14, 66, 35, 47]). In this thesis, we require a new property of this

transformation when applied to a disperser.

79

A New Property of an Old Disperser

A disperser is a bipartite graph G = (X, Y,E) with an “expanding property”,

in that it contains no large balanced bipartite independent set. Informally we have (a

formal definition can be found in Definition 7.4.3):

Definition 7.1.2 (Disperser (informal)). Let G = (X, Y,E) be a disperser with some

parameter k > 0. Then G has no independent set S such that |S ∩X| = |S ∩Y | ≥ k.

In this case, we say the balanced bipartite independent set number of G, denoted

by BBIS(G) is at most k. (For intuition, think of k as k = δ · |X| for some small value

δ.) The disperser plays an important role in proving hardness of approximation;

see, for example, the use of dispersers in Trevisan’s construction [68] for proving the

hardness of approximation of independent set in a bounded-degree graph. Therefore,

it is natural to study the properties of dispersers with respect to independent set and

related problems (maximum induced matching, in particular).

We show that if G is a disperser, then there is a tight connection between its

balanced bipartite independence number BBIS(G), its induced matching number,

and the induced matching number of its extended bipartite double cover im(Be[G]).

Lemma 7.1.3 (Disperser Lemma (Informal)). If G = (X, Y,E) is a disperser, then

im(B[G]) = O(im(G)) = O(BBIS(G)).

(The formal version of this lemma is given in Lemma 7.4.5.) In fact, Lemma 7.1.3

holds for any bipartite graph G, but we only need to apply it to dispersers. This

lemma is crucial in our construction. Its proof is simple so we can sketch it here.

First, we show that im(G) = O(BBIS(G)). Let M = {x1y1, . . . , xtyt} be any induced

80

matching of size t in G, where xi ∈ X and yi ∈ Y for all i. Observe that the set

S = {x1, . . . , xbt/2c} ∪ {ybt/2c+1, . . . , yt} is a balanced bipartite independent set. So,

it follows that BBIS(G) ≥ bim(G)/2c and thus im(G) = O(BBIS(G)) as desired.

Observe that our proof simply exploits the fact that G is bipartite.

Next, we prove that im(B[G]) = O(im(G)). As the equation looks natural, one

might wonder if this holds for any graph. Unfortunately, this is not the case as

there is a simple non-bipartite counter-example. (Consider a graph H with vertex

set {x1, . . . , xt} ∪ {y1, . . . , yt} where edges are of the form xiyi, xixj and yiyj, for

all i and j. In other words, the graph H consists of two equal-sized cliques that

are connected by a perfect matching. It can easily be seen that im(H) = 2 whereas

im(B[G]) ≥ t.) So, our proof must exploit the fact that G is bipartite. Take an

induced matching M in B[G]. Let U ′ and U ′′ be the two bipartitions of B[G]. For

any vertex x in the bipartition X of G, denote its copies in U ′ and U ′′ as x′ and x′′,

respectively. Similarly, for every vertex y ∈ Y . Observe that edges in B[G] are of

the form x′y′′ or x′′y′, for some x ∈ X and y ∈ Y . It follows that M (an induced

matching in B[G]) must be of the form {x′1y′′1 , . . . , x′ty′′t }∪{x′′t+1y
′
t+1, . . . , x

′′
t′y
′
t′} where,

for all i, xi ∈ X, yi ∈ Y . We can use M to construct two induced matchings in

G: M1 = {x1y1, . . . , xtyt} and M2 = {xt+1yt+1, . . . , xt′yt′} (it is not hard to show

that M1 and M2 are induced matchings). Thus, im(G) ≥ im(B[G]|), implying that

im(B[G]) = O(im(G)), as desired.

81

The property of dispersers, stated in Lemma 7.1.3, when plugged into the con-

struction of Trevisan [68], immediately implies Theorem 7.1.1. Combining Theo-

rem 7.1.1 with the hardness of independent set gives the hardness of induced match-

ing in a bipartite graph. Further details can be found in Section 7.4.

7.2 An Almost-Linear Size Reduction from SAT to CSP

This section implements the reductions in Eq. ((7.3)∗) and Eq.((7.4)∗) as out-

lined in the overview section.

Informally, given an instance of SAT on N variables, we need to construct a

CSP with the following properties:

(1) The size of the CSP instance is almost linear on N : the number of variables

and clauses are N1+o(1).

(2) The gap between completeness and soundness is large.

(3) The number of accepting configurations for each clause is small.

(4) The degree of CSP – the number of occurrences of each variable – is large.

To obtain an almost linear-size reduction, we start our reduction from the PCP

in Theorem 3.2.3. This gives us a reduction from an instance ψ of 3-SAT of size N

to an instance ϕ of q-CSP with the parameters:

82

Parameters

Number of variables n ≤ qN1+ε

Number of clauses m ≤ N1+ε

Number of variables in each clause q = `2 + 2`

Completeness (φ is satisfiable.) 1− o(1)

Soundness (φ is not satisfiable.) ≤ 2−`
2+1

Number of accepting configurations for each clause ≤ 22`

We amplify the ratio between completeness and soundness further by a gap

amplification scheme (see, e.g., [69]):

For t ≥ 2, let M = 100q2t(`
2+1)N1+ε+δ. We construct from ϕ a new CSP instance

φ on M clauses. For i = 1, 2, . . . ,M , we create a clause Ci of φ by independently

and uniformly at random choosing t clauses from the formula ϕ and join them by the

operation “AND”. Thus, we have a CSP instance φ on n variables and M clauses.

Moreover, each clause of φ depends on at most qt variables and has at most wt

accepting configurations.

The following theorem summarizes the properties of our (qt)-CSP φ′.

Theorem 7.2.1 (CSP large gap, small accepting configurations and large degree).

Let `, t be parameters and ε = 1/`. Also, let δ > 0 be any parameter. There is

a polynomial-time algorithm that transforms an instance of 3-SAT of size N to a

(tq)-CSP instance φ, where q = `2 + 2`, that satisfies the following properties:

83

Parameters

Number of variables n ≤ N1+ε

Number of clauses 100 · q · 2t(`2+1) ·N1+ε+δ.

Number of variables in each clause qt = t(`2 + 2`)

Completeness (φ is satisfiable.) ≥ c = 1/2t

Soundness (φ is not satisfiable.) ≤ s = 2t(−`
2+2)

Number of accepting configurations for each clause ≤ w = 2t(2`)

Number of clauses each variable occurs ≥ N δ2t(`
2+1).

Moreover, the CSP is balanced in the sense that the number of accepting configura-

tions that involve xj = 1 and those that involve xj = 0 are the same.

Proof. We prove that the CSP constructed from the above gap-amplification scheme

satisfies the aforementioned properties.

• Completeness: In a Yes-Instance, there is an (optimal) assignment σ of

φ that satisfies a 1− o(1) ≥ 1/2 fraction of the clauses in φ. Note that φ and

φ′ have the same set of variables. Consider the random process that constructs

φ′. The probability that each randomly generated clause of φ′ is satisfied by σ

(i.e., the probability that all the t clauses are satisfied by σ) is at least 1/2t.

So, the expected number of clauses satisfied by σ is 2−tM ≥ 100qN1+δ+ε (by

our choice of M). By Chernoff’s bound, the probability that σ satisfies less

than a 1/2t+1 fraction of clauses in φ′ is less than 1/N .

• Soundness: In a No-Instance, any assignment σ satisfies at most a 2−`
2+1

fraction of the clauses of φ. Fix an assignment σ. The expected number of

84

clauses in φ′ satisfied by σ is at most 2−t(`
2−1)M ≤ 100qN1+δ+ε. By Chernoff’s

bound, the probability that such assignment satisfies more than 2−t(`
2−2)M

clauses is at most 2−10qN1+δ+ε
. Since there are at most 2qN

1+δ+ε
such assignments

(because the number of variables is qN1+δ+ε), applying the union bound gives

the claimed soundness.

• Degree of CSP: Consider a variable xj. The probability that each random

clause contains a variable xj is at least 1/m. So, the expected number of clauses

that contain xj is at least

1

m
·M ≥ 1

qN1+ε
· 100q2t(`

2+1)N1+δ+ε ≥ 100N δ2t(`
2+1)

By applying Chernoff’s bound, the probability that we have less than N δ2t(`
2+1)

clauses containing xj is at most 1/N .

• Balanceness: Consider a variable xj and a clause C ′i involving xj. Let

Ci,1, . . . , Ci,z be clauses of φ that included in C ′j. Since each constraint is

linear, the number of accepting configurations of each Ci,k with xj = 1 and

those with xj = 0 are the same. Now, as the C ′i are formed by “AND” of

clauses from φ, the number of accepting configurations of C ′i with xj = 1 and

those with xj = 0 are also the same.

The random process can be derandomized by the result of Zuckerman in [70].

This concludes the proof of Theorem 7.2.1.

85

7.3 FGLSS and Dispersers Replacement

The FGLSS reduction has another important property, observed by Trevisan [68]:

the FGLSS graph G is formed by a union of N ′ bipartite cliques where N ′ is the num-

ber of variables of φ2, that is, G =
⋃N ′

i=1Gi. The dispersers replacement technique

exchanges each bipartite clique Gi = (Ai, Bi, E) with a d-regular bipartite graph

(with a certain property). This technique involves the following parameters of φ2.

(1) Linearity: Each constraint of φ2 is linear.

(2) Min-Degree δ: The minimum number of clauses each variable participates in.

(3) Clause-Size q: The number of literals in each clause.

Let H =
⋃N ′

i=1Hi, where Hi = (Ai, Bi, Fi) is a disperser, denote the graph

obtained after the disperser replacement. Then the following describes how the are

parameters are transformed.

Properties of φ2 Properties of G =
⋃N ′

i=1Gi Properties of H =
⋃N ′

i=1Hi

Linear Constraints ⇒ ∀iGi = (Ai, Bi, Ei) : |Ai| = |Bi| ⇒ ∀iHi = (Ai, Bi, Fi) : |Ai| = |Bi|

Min CSP Degree δ ⇒ minN ′

i=1 |V (Gi)| ≥ δ ⇒ minN ′

i=1 |V (Hi)| ≥ δ

Clause-Size q ⇒ ∆(G) ≤ q ·maxN ′

i=1 ∆(Gi) ⇒ ∆(H) ≤ q · d

We can set d such that ∆(H) ≈ k to obtain ∆-hardness. The linearity of φ2

is required because we need each bipartite clique Gi to be balanced. Also, because

the construction of dispersers is randomized, we need δ ≥ N ε, for some constant ε :

0 < ε < 1, to guarantee that each disperser can be constructed with high probability

for all hardness parameters k. This allows us to apply the union bound to show the

success probability of the entire construction. (When k = O(1) or k = poly(N), the

86

property is not needed.) To guarantee that δ ≥ N ε for all k, we modify the CSP

instance φ1 by making N ε copies of each clause in Step (4).

7.4 Tight Hardness of Semi-Induced Matching

In this section, we prove the (almost) tight hardness result of the semi-induced

matching problem on a ∆-degree bounded bipartite graph. What we prove is actually

stronger than the hardnesses of the induced and semi-induced matching problems

themselves: We show that the completeness case has a large induced matching while

the soundness case has no large semi-induced matching. The formal statement is

encapsulated in the following theorem.

Theorem 7.4.1 (Hardness of ∆-Degree Bounded Bipartite Semi-induced Matching).

Let ε > 0 be any constant and t > 0 be a positive integer. There is a randomized

algorithm that transforms a SAT formula φ of input size N into a ∆-degree bounded

bipartite graph, where ∆ = 2t(
1
ε2

+O(1
ε
)) such that:

• (Yes-Instance:) If φ is satisfiable, then im(G) ≥ |V (G)|/∆ε.

• (No-Instance:) If φ is not satisfiable, then sim(G) ≤ |V (G)|/∆1−ε.

The construction size is |V (G)| ≤ N1+ε∆1+ε, and the running time is poly(N,∆).

Moreover, as long as t ≤ 5ε2 logN , the reduction is guaranteed to be successful with

high probability.

Theorem 7.4.2 (Hardness of d-Degree-Bounded Maximum Independent Set). Let

ε > 0 be any sufficiently small constant and t > 0 be a positive integer. There is

a randomized algorithm that transforms a SAT formula φ of input size N into a

d-degree-bounded graph G, where d = 2t(
1
ε2

+O(1
ε
)) such that:

• (Yes-Instance:) If φ is satisfiable, then α(G) ≥ |V (G)|/dε.

87

• (No-Instance:) If φ is not satisfiable, then α(G) ≤ |V (G)|/d1−ε.

The construction size is |V (G)| = N1+εd1+ε, and the running time is poly(N, d).

Moreover, as long as t ≤ 5ε2 logN , the reduction is guaranteed to be successful with

high probability.

7.4.1 The Reduction

Our reduction is precisely described as follows. Take an instance φ of (qt)-CSP

as in Theorem 7.2.1 that has N variables and M clauses.

The FGLSS Graph Ĝ with Disperser Replacement. First, we construct

from φ a graph G̃ by the FGLSS construction. Then the graph G̃ will be transformed

to a graph Ĝ by the disperser replacement step. For each clause φj of φ, and for each

possible satisfying assignment C of φj, we create in G̃ a vertex v(j, C) representing the

fact that “φj is satisfied by assignment C”. Then we create an edge v(j, C)v(j′, C ′) ∈

E(G̃) if there is a conflict between the partial assignments C and C ′, that is, there

is a variable xi appearing in clauses φj and φj′ such that C assigns xi = 0 whereas

C ′ assigns xi = 1. Therefore, the total number of vertices is |V (G̃)| = w · M .

The independence number of G̃ corresponds to the number of clauses of φ that

can be satisfied. In particular, we can choose at most one vertex from each clause

φj (otherwise, we would have a conflict between v(j, C) and v(j, C ′)), and we can

choose two vertices v(j, C), v(j′, C ′) ∈ V (G̃) if and only if the assignments C and C ′

have no conflicts between variables. Thus, the number of satisfiable clauses of φ is

the same as the independence number α(G̃). Hence, in a Yes-Instance, we have

α(G̃) ≥ c ·M , and in a No-Instance, we have α(G̃) ≤ s ·M . This gives a hard

instance of independent set. Notice that the degree of G̃ can be very high.

88

Next, in order to reduce the degree of G̃, we apply the disperser replacement

step as in [68]. Consider an additional property of G̃. For each variable xi in φ, let Oi

and Zi denote the set of vertices v(j, C) corresponding to the (partial) assignments

for which xi = 1 and xi = 0, respectively. It can be deduced from Theorem 7.2.1

that |Oi| = |Zi| = Mi/2 ≥ 2t(`
2+1)N δ, for some constant δ > 0.

Since there is a conflict between every vertex of Oi and Zi, these two sets define

a complete bipartite subgraph of G̃, namely G̃i = (Oi, Zi, Ẽi), where Ẽi = {uw :

u ∈ Oi, w ∈ Zi}. Now, if we replace each subgraph G̃i of G by a d-degree bounded

bipartite graph, then the degree of a vertex in the resulting graph reduces to qtd. To

see this, we may think of each vertex u of G̃ as a vector with qt coordinates (since

it corresponds to an assignment to some clause φj which has qt related variables).

For each coordinate ` of u corresponding to a variable xi, there are d neighbors of

u having a conflict at coordinate ` (since the conflict forming in each coordinate are

edges in G̃i, and we replace G̃i by a d-degree bounded bipartite graph). Thus, each

vertex u has at most qtd neighbors. However, to preserve the independence number

of G, that is, α(Ĝ) ≈ α(G̃), we require the d-degree bounded graph to have some

additional properties. In particular, we construct the graph Ĝ by replacing each

subgraph G̃i of G̃ by a (d, γ)-disperser Hi = (Oi, Zi, Ei), defined below.

Definition 7.4.3 (Disperser). A (d, γ)-disperser H = (U ′,W ′, E ′) is a d-degree

bounded bipartite graph on n′ = |U ′| = |W ′| vertices such that, for all X ⊆ U ′, Y ⊆

W ′, if |X|, |Y | ≥ γn′, then there is an edge xy ∈ E ′ joining a pair of vertices x ∈ X

and y ∈ Y .

89

Intuitively, the important property of the disperser Hi is that any independent

set S in Hi cannot contain a large number of vertices from both Oi and Zi; otherwise,

we would have an edge joining two vertices in S.

The idea of using a disperser to “sparsify” a graph was used by Trevisan [68] to

prove the hardness of the bounded degree maximum independent set problem. The

key observation that makes this construction work for our problem is that a similar

property that holds for the size of a maximum independent set also holds for the

size of a maximum σ-semi-induced matching in Be[Hi]. Specifically, Be[Hi] cannot

contain a large σ-semi-induced matching, for any permutation σ.

Now, we proceed to make the intuition above precise. A (d, γ)-disperser can be

constructed by a randomized algorithm, as shown in the following lemma. In the

special case where d is constant, we may actually construct a (d, γ)-disperser by a

deterministic algorithm in [62] with running time exponential in d.

Lemma 7.4.4. For all γ > 0 and n ≥ (1/γ)polylog(1/γ), there is a randomized

algorithm that, with success probability 1−e−nγ(log(1/γ)−2), outputs a d-regular bipartite

graph H = (O,Z,E), |O| = |Z| = n, where d = (3/γ) log(1/γ) such that, for all

X ⊆ Z, Y ⊆ O, if |X|, |Y | ≥ γn, there is an edge (x, y) ∈ E joining some pair of

vertices x ∈ X and y ∈ Y .

The condition that ni is sufficiently large is satisfied because |Oi| = |Zi| ≥

Mi ≥ N δ2t`
2

for all i (since each variable xi appears in Mi clauses, and for each such

clause, there is at least one accepting configuration for which xi = 0 and one for which

xi = 1.) Also, since the success probability in constructing each disperser is high (at

least 2N
δ
), we can guarantee that all the dispersers are successfully constructed with

90

high probability. By selecting an appropriate value for γ (which we will do later)

and following the analysis of [68], we get the following completeness and soundness

parameters with high probability:

• (Yes-Instance:) α(Ĝ) ≥ 2−tM

• (No-Instance:) α(Ĝ) ≤ 2−t(`
2+2)M + γqt(wM)

The Final Graph G. We construct the final graph G by transforming Ĝ

into a bipartite graph as follows: first create two copies V ′ and V ′′ of vertices of Ĝ.

That is, each vertex u ∈ V (G) has two corresponding copies u′ ∈ V ′ and u′′ ∈ V ′′.

We create an edge joining two vertices u′ ∈ V ′ and w′′ ∈ V ′′ if and only if there

is an edge uw ∈ E(Ĝ) or u = w. Thus, the formal definition can be written as

G = Be[Ĝ] = (U ∪W,E = E1 ∪ E2) where

U = {(u, 1) : u ∈ V (Ĝ)},

W = {(w, 2) : w ∈ V (Ĝ)}

E1 = {(u, 1)(u, 2) : u ∈ V (Ĝ)},

E2 = {(u, 1)(w, 2) : u,w ∈ V (Ĝ) ∧ (uw ∈ E(Ĝ))}

The graph G is a (2qtd + 1)-degree bounded bipartite graph with 2|V (Ĝ)| ver-

tices. Observe that the edges in G of the form (u, 1)(u, 2) correspond to a vertex in

Ĝ. Thus, a (semi) induced matching in G whose edges are of this type corresponds

to an independent set in Ĝ. Although this is not the case for every (semi) induced

matching M in G, we will show that we can extract a (semi) induced matching M′

fromM in such a way thatM′ maps to an independent set in G, and |M′| ≥ Ω(|M|).

91

7.4.2 Analysis

We now analyze our reduction. Before proceeding, we prove some useful prop-

erties of dispersers. The next lemma gives bounds on the size of a σ-semi-induced

matching in a disperser.

Lemma 7.4.5 (Disperser Lemma). Every (d, γ)-disperser H = (O,Z,E) on 2n

vertices has the following properties.

• For any independent set S of H, S cannot contain more than γn vertices from

both O and Z, i.e.,

min(|S ∩O|, |S ∩ Z|) ≤ γn

• For any permutation (ordering) σ of the vertices of H, the graph B[H] =

(U,W,F) obtained by transforming H into a bipartite graph (using only edges

of type E2) contains no σ-semi induced matching of size more than 4γn, i.e.,

simBe[H](σ) ≤ 4γn

Proof. The first property follows from the definition of the (d, γ)-disperser H. That

is, letting X = S ∩ O and Y = S ∩ Z, if |X|, |Y | > γn, then we must have an edge

xy ∈ E(H) joining some vertex x ∈ X to some vertex y ∈ Y . This contradicts the

fact that S is an independent set in H.

Next, we prove the second property. Consider the set of edgesM that form a σ-

semi-induced matching in B[G]. We claim that |M| ≤ 4γn. By way of contradiction,

assume that |M| > 4γn. Observe that, for each edge (u, 1)(v, 2) ∈ M, either

(1) u ∈ O and v ∈ Z or (2) v ∈ O and u ∈ Z. Since the two cases are symmetric,

92

we consider only the first case, denoted by M̂. Also, we assume wlog that at least

half of the edges of M are in M̂; thus, |M̂| ≥ |M|/2 > 2γn.

Let us denote by V (M̂) the set of vertices that are adjacent to some edges in

M̂. To get a contradiction, we prove the following claim.

Claim 7.4.6. There are two subsets X ⊆ U∩V (M̂) : |X| = γn and Y = W∩V (M̂) :

|Y | ≥ γn such that σ(x) < σ(y), for any x ∈ X and y ∈ V (M̂) \X. Moreover, there

is no M̂-edge between vertices in X and Y .

We first argue that the second property follows from Claim 7.4.6: If there were

two such sets X and Y , then we can define the “projection” of X and Y onto the

graph H by X ′ = {u ∈ V (H) : (u, 1) ∈ X} and Y ′ = {v ∈ V (H) : (v, 2) ∈ Y }.

It must be the case that X ′ ⊆ O and Y ′ ⊆ Z (due to the definition of M̂), so by

the property of the disperser, there is an edge in E(H) joining some x ∈ X ′ and

y ∈ Y ′. This implies that there must be an edge (x, 1)(y, 2) ∈ E(B[H]) where x ∈ X

and y ∈ Y . Also, there are edges (x, 1)(x′, 2) ∈ M̂ and (y′, 1)(y, 2) ∈ M̂. This

contradicts the fact thatM is a σ-semi-induced matching. Thus, it only remains to

prove the claim.

Proof of Claim 7.4.6. Recall that the ordering σ is defined on the vertices of B[H],

not on the vertices of H. We construct X and Y as follows. Order the vertices

in U ∩ V (M̂) according to the ordering σ and define X to be the first γn vertices

according to this ordering. We obtain X ⊆ U ∩ V (M̂) with the property that for

any x ∈ X and y ∈ V (M̂) \X, σ(x) < σ(y).

93

Now, we define Y ⊆ W ∩ V (M̂) as the set of vertices that are not matched by

M̂ with any vertices in X. Since |X| = γn, the number of vertices in W ∩ V (M̂)

that are matched by M̂ is only γn, so we can choose arbitrary γn vertices that are

not matched as our set Y .

Therefore, the lemma follows.

As a corollary of Lemma 7.4.5, we relate the independence number of the FGLSS

graph G̃ to the final graph G. Recall that G̃ is the graph of the independent set in-

stance, Ĝ is the graph after the disperser replacement, and G is the final construction

obtained after applying the extended bipartite double cover. Recall, also, that γ is

the parameter of the disperser construction.

Corollary 7.4.7. Let G̃ and G be the graphs constructed as above. Then, for any

permutation (ordering) σ of vertices of G,

α(Ĝ) ≤ simG(σ) ≤ α(Ĝ) + 4γ|V (Ĝ)|

Proof. Recall that the edges of G are E = E1 ∪ E2. To prove the inequality on the

left-hand-side, consider the set of edges E1. Observe that edges of E1 = {(v, 1)(v, 2) :

u ∈ V (Ĝ)} correspond to vertices of Ĝ, as G and Ĝ share the same vertex set. Let S

be an independent set in Ĝ. We claim that the set ES = {(u, 1)(u, 2) : u ∈ S}must be

an induced matching in G. This immediately implies the first inequality. To see the

claim, assume there is an edge (u, 1)(v, 2) ∈ E(G) for some (u, 1)(u, 2), (v, 1)(v, 2) ∈

ES. So we have that u, v ∈ S and that uv ∈ E(Ĝ) ⊆ E(Ĝ). This contradicts the

fact that S is an independent set.

94

Next, we prove the inequality on the right-hand-side. Let M be a σ-semi-

induced matching in G. We decomposeM intoM =M1∪M2. Now |M1| ≤ α(Ĝ).

Too see this, from the set M1, we can define a set S ⊆ V (G̃) by S = {u ∈ V (G̃) :

(u, 1)(u, 2) ∈ M1}. S must be an independent set in Ĝ; otherwise, if there is an

edge uv ∈ E(Ĝ) for u, v ∈ S, then there are edges (u, 1)(v, 2), (v, 1)(u, 2) ∈ E(G),

contradicting the fact that M1 is a σ-semi-induced matching.

It is sufficient to show that |M2| ≤ 4γ|V (Ĝ)|. We do so by partitioning M2

into M2 =
⋃N
j=1M

j
2 where Mj

2 = {(u, 1)(v, 2) ∈ M2, uv ∈ E(Hj)} (since Ĝ is the

union of edges of the subgraphs Hj). Each set Mj
2 must be a σj-induced matching

for the ordering σj obtained by projecting σ onto the vertices of B[Hj]. Thus, we

can invoke Lemma 7.4.5 to bound the size of Mj
2, that is, |Mj

2| ≤ 4γnj. Summing

over all j, we have

|M2| ≤
N∑
j=1

|Mj
2| ≤

N∑
j=1

4γnj ≤ 4γqt|V (Ĝ)|

The last inequality follows by a basic counting argument. Each vertex belongs

to exactly qt subgraphs Hj, so if we sum nj over all j = 1, 2, . . . , N , we get
∑N

j=1 nj =

qt|V (Ĝ)|.

Completeness and Soundness. The completeness and soundness proofs are

now straightforward. In a Yes-Instance, α(Ĝ) ≥ c·M implies that simG(σ) ≥ c·M ,

and in a No-Instance, we have α(Ĝ) ≤ s·M+γqtwM . This implies that simG(σ) ≤

s ·M + 5γqtwM .

95

Now, we choose γ = s/(5qtw), and this gives

d = O

(
1

γ
log

1

γ

)
= O

((
wqt

s

)
log

(
wqt

s

))
.

Therefore, the final graph G has the following properties:

Number of Vertices Degree Hardness Gap

n = 2wM ∆ = (2dq + 1) g =
c ·M

s ·M + 5γ · wM
≥ c

2s

Substituting c, s, w, q,M as in Theorem 7.2.1, we get

• The degree ∆ = O(t2`42t(`
2+2`−1)) = 2t(`

2+Θ(`)) = 2t(1/ε
2+Θ(1/ε))

• The number of vertices |V (G)| = 2t(`
2)N1+O(ε) = ∆1+O(ε)N1+O(ε)

• The hardness gap g ≥ 2t(`
2−1) ≥ ∆1−O(ε)

Remark. Notice that we cannot set 1/γ to be larger than the size of a complete

bipartite subgraph (that we replace by a (d, γ)-disperser). The chosen parameters

are feasible only because the degree of CSP, which implies the size of the complete

bipartite subgraph, is large enough. That is, each complete bipartite subgraph G̃i

has size

Ni ≥ N δ2t(`
2+1) ≥ 1

γ
≥ 2t(`

2−2`+2)

Success probability of the disperser construction. Notice that the failure

probability of the disperser construction given in Lemma 7.4.4 is large when Niγ is

small. In our case, we haveNi ≥ 2t`
2
N δ and γ ≥ 2−t(`

2+O(`)). Thus, we are guaranteed

that Niγ ≥ N δ2−O(t`) = 2δ logN−O(t`). As long as t ≤ O(δε · logN), we are guaranteed

that Niγ ≥ N δ/2, so the failure probability in Lemma 7.4.4 is at most 2−N
δ/2

. This

allows us to apply the union bound over all variables xj in the CSP and conclude

96

that the construction is successful with high probability. If we appropriately pick

δ = Θ(ε) and t ≤ 5ε2 logN , then we obtain Theorem 7.4.1.

7.4.3 Subexponential Time Approximation Hardness for the Maximum
Independent Set and Induced Matching Problems

We now present hardness results that show a trade-off between running-time

and approximation-ratio. Roughly speaking, we obtain the following results under

the Exponential Time Hypothesis: any algorithm that guarantees an approximation

ratio of r for the maximum independent set problem and the maximum bipartite

induced matching problem on bipartite graphs, for any r ≥ r0 for some constant

r0, must run in time at least 2n
1−ε/r1+ε

. This almost matches the upper bound of

2n/r given by Cygan et al. [26] for independent set and by our simple algorithm,

given in Section 7.4.4, for bipartite induced matching. These results are obtained as

by-products of the proof in Section 7.4.

Theorem 7.4.2 implies almost immediately the following corollary.

Theorem 7.4.8. Consider the maximum independent set problem on an input graph

G = (V,E). For any ε > 0 and sufficiently large r ≤ |V (G)|1/2−ε, every algorithm

that guarantees an approximation ratio of r must run in time at least 2|V (G)|1−2ε/r1+4ε

unless the ETH is false.

Proof. The intuition is very simple. Theorem 7.4.2 can be seen as a reduction from a

SAT instance of sizeN to the independent set problem whose instance size is, roughly,

|V (G)| = Nr where r is the approximability gap for the independent set problem

(ignoring the small exponent ε in the theorem). (In fact, the graph resulting from

the reduction is an r-degree-bounded graph as we will set r ≈ d.) It is immediate

97

that getting a running time of 2o(|V (G)|/r) for the maximum independent set problem

is equivalent to getting a running time of 2o(N) for SAT (since N ≈ |V (G)|/r),

contradicting the ETH. Below we give a formal proof.

Assume for a contradiction that there is an algorithm A that obtains an r-

approximation in time 2|V (G)|1−2ε/r1+4ε
, for some r ≤ |V (G)|1/2−ε and a small constant

ε > 0. Then we can use the algorithm A to decide the satisfiability of a given SAT

formula φ as follows. First, we invoke the reduction in Theorem 7.4.2 on the SAT

formula φ to construct a graph G = (V,E) with parameters t and ε, such that

d = 2t(1/ε
2+Θ(1/ε)) ≤ r1+3ε. Notice, the value of t is at most t ≤ 2ε2 log r ≤ 5ε2 logN ,

so the reduction is guaranteed to be successful with high probability.

Since d = r1+3ε, we have r < d1−ε, which means we can use the algorithm A to

distinguish between a Yes-Instance and a No-Instance in time 2|V (G)|1−2ε/r1+4ε
<

2N
1−ε

. Plugging in the values |V (G)| ≤ N1+εd1+ε and r1+4ε ≥ d gives a violation of

the ETH.

Note that, since t in Theorem 7.4.2 cannot be chosen beyond 5ε2 logN , we have

no flexibility of making r arbitrary close to |V (G)|1−ε. However, this can be easily

fixed by slightly modifying the proof of Theorem 7.4.2 and leaving some flexibility

in the choice of parameter δ, as discussed in Section 7.2. Since this is not necessary

for the hardness of the k-hypergraph pricing problem and will make the proof in

Section 7.2 more complicated, the details are omitted.

The subexponential time hardness of approximating the maximum induced

matching problem can be proved analogously, but we need Theorem 7.4.1 instead of

Theorem 7.4.2.

98

Theorem 7.4.9. Consider the maximum induced matching problem on a bipartite

graph G = (U, V,E). For any ε > 0 and sufficiently large r ≤ |V (G)|1/2−ε, every

algorithm that guarantees an approximation ratio of r must run in time at least

2|V (G)|1−2ε/r1+4ε
unless the ETH is false.

The proof of Theorem 7.4.9 is similar to that of Theorem 7.4.8, so we omit the

details.

7.4.4 Subexponential-Time Approximation Algorithm for Induced Match-
ing

In this section, we present r-approximation algorithms which run in time 2n/r ·

poly(n) in bipartite graphs and time 2(n/r) log ∆ · poly(n) in non-bipartite graphs,

where ∆ is the maximum degree. These running times are almost tight, except that

the latter one incurs an extra O(log ∆) factor in the exponent. We leave the question

of whether this extra term is necessary as an open problem.

Bipartite Graphs. For the case of bipartite graphs, we prove the following

theorem.

Theorem 7.4.10 (Algorithm on Bipartite Graphs). For any r ≥ 1, there is an r-

approximation algorithm for the maximum bipartite induced matching problem that

runs in time 2n/rpoly(n) where n is the size of the input graph.

To prove Theorem 7.4.10, we will need the following lemma, which says that we

can compute the maximum induced matching in a bipartite graph in time 2n
′

where

n′ is the cardinality of the smaller partition in the graph.

Lemma 7.4.11. For any bipartite graph G = (U,W,E), there is an algorithm that

returns a maximum induced matching in G and runs in time 2min(|U |,|W |) ·poly|V (G)|.

99

Proof. We assume without loss of generality that |U | ≤ |W |. We first need to

characterize the existence of an induced matching in terms of good neighbors, defined

as follows. Given a subset U ′ ⊆ U and a fixed u ∈ U ′, we say that w ∈ W is a

U ′-good neighbor of u if there is no other u′ ∈ U ′ (where u′ 6= u) such that u′w ∈ E.

Observe that U ′ ⊆ U forms end-vertices of some induced matching M′ if and only

if every vertex in U ′ has a U ′-good neighbor in W . To see this, if U ′ ⊆ U is a set of

end-vertices of a matching M′, then it is clear that for each uw ∈ M, the vertex w

is a U ′-good neighbor. For the converse, for any u ∈ U ′, let wu ∈ W be a U ′-good

neighbor of u. Then {uwu : u ∈ U ′} must form an induced matching.

Applying this observation, we compute a maximum induced matching in G as

follows. For each possible subset U ′ ⊆ U , we check whether the vertices in U ′ can

be end-vertices of any induced matching. This can be done in time poly(|V (G)|)

(simply by checking the existence of U ′-good neighbors). Finally we return the

maximum-cardinality subset U ′ and its corresponding induced matching M′.

From this lemma, given an input graph G = (U,W,E), we partition the vertices

of U into r sets U1, . . . , Ur in a balanced manner and define Gi = G[Ui ∪W]. That

is, Gi is an induced subgraph on vertices Ui ∪W . Our algorithm simply invokes the

lemma on each graph Gi to obtain an induced matching Mi, and finally we return

the Mi∗ with maximum cardinality among M1, . . . ,Mr. Since |Ui| ≤ dn/re, the

running time of our algorithm is at most 2dn/repolyn. The following lemma implies

that Mi∗ is an r-approximation and is feasible in G, thus completing the proof.

Lemma 7.4.12. The following holds on G and its subgraphs Gi.

• Any induced matching Mi in Gi is also an induced matching in G.

100

•
∑r

i=1 im(Gi) ≥ im(G)

Proof. Let’s prove the first fact. If Mi is not an induced matching in G, then there

must be two edges uv, ab ∈ Mi that are joined by some edge e in G. But, since

u, v, a, b ∈ Ui ∪W , the edge e must also be present in Gi, contradicting the fact that

Mi is an induced matching in Gi.

Next, we prove the second fact. LetM be a maximum induced matching in G.

For i = 1, 2, . . . , r, define Mi =M∩ E(Gi). It is clear that each Mi is an induced

matching in Gi. Thus, it follows immediately that
∑r

i=1 im(Gi) ≥
∑r

i=1 |Mi| =

|M|.

Non-Bipartite Graphs. We note that almost the same running time can be

obtained for the case of non-bipartite graphs, except that we have an extra log ∆

factor in the exponent, where ∆ is the maximum degree.

Theorem 7.4.13 (Algorithm on Non-Bipartite Graphs). For any r ≥ 1, there is an

r-approximation algorithm for the maximum induced matching problem that runs in

time 2(n/r) log ∆poly(n), where n is the size of the input graph and ∆ is the maximum

degree.

To prove Theorem 7.4.13, we give the following algorithm. Our algorithm takes

as input a graph G = (V,E) on n vertices and a parameter r. We first partition V

arbitrarily into V =
⋃r
i=1 Vi such that the sizes of the Vis are roughly equal, namely,

|Vi| = bn/rc or |Vi| = bn/rc+1. For each i = 1, . . . , r, we find a maximum-cardinality

subset of edges Mi such that Mi is an induced matching in G and every edge in Mi

has at least one end-vertex in Vi. We implement this step by checking every possible

subset of edges: We choose one edge incident to each vertex in Vi or choose none and

101

then check whether the set of chosen edges F is an induced matching in G. We select

the set F that passes the test with maximum cardinality as the set Mi. Finally, we

choose as output the set Mi that has maximum-cardinality over all i = 1, 2, . . . , r.

It can be seen that the running time of our algorithm is O(∆n/r · poly(n)) =

O(2(n/r) log ∆poly(n)), where ∆ is the maximum degree of G. For the approximation

guarantee, it suffices to show that

im(G) ≤
r∑
i=1

|Mi| ≤ r · im(G).

We shall complete the proof of Theorem 7.4.13 by proving the above inequalities as

in the following decomposition lemma.

Lemma 7.4.14. Consider any graph G = (V,E). Let V1 ∪ V2 ∪ . . . ∪ Vr be any

partition of V . For i = 1, 2, . . . , r, let Mi be a set of edges with maximum-cardinality

such that Mi is an induced matching in G and every edge in Mi has at least one

end-vertex in Vi. Then im(G) ≤
∑r

i=1 |Mi| ≤ r · im(G).

Proof. Let M be any maximum induced matching in G. Then, clearly, |Mi| ≤

|M| = im(G) for all i = 1, 2, . . . , r because Mi is an induced matching in G. Thus,∑r
i=1 |Mi| ≤ r · im(G), proving the second inequality.

For i = 1, 2, . . . , r, define Mi to be a subset of M such that each edge in Mi

has at least one end-vertex in Vi, and im(G) =
∑r

i=1 |Mi|. By the maximality of Mi,

we have |Mi| ≤ |Mi|, for all i = 1, 2, . . . , r. Thus, im(G) ≤
∑r

i=1 |Mi|.

102

CHAPTER 8
The Hardness of Approximating k-Hypergraph Pricing

In this chapter, we prove approximation hardness of the k-hypergraph pric-

ing problem. Assuming the ETH, we show that within polynomial-time there is

no approximation algorithm that yields an approximation ratio better than õ(
√
n),

where n is the number of the vertices of the hypergraph. In contrast, there exists a

quasi-polynomial-time approximation algorithm has an approximation guarantee of

Õ(nδ), for any chosen constant δ > 0. We also show an almost matching lower bound

for the running time of nδ-approximation algorithms, for every parameter δ > 1/2.

Consequently, our results show that, assuming the ETH, there is a line that sepa-

rate between the computation power of the polynomial and quasi-polynomial-time

algorithms, which were believed to have equivalent computation power.

We will use the following equivalent formulation of the k-hypergraph pricing

problem: The pricing instance is given by two sets (C, I) where C and I are the

sets of consumers and items, respectively. Each consumer c ∈ C is associated with a

budget Bc and an item set Sc ⊆ I. We have an additional constraint that |Sc| = k.

It is easy to see that this formulation is equivalent to the hypergraph formulation,

i.e., each vertex corresponds to an item and each edge corresponds to a consumer,

and the additional constraint |Sc| = k ensures that the size of each hyperedge is k.

The reason we use this formulation is because we will be dealing with other graph

problems, which might cause confusion to readers.

103

8.1 Overview

We begin with an informal overview of our method. Our presentation will show

the translation of each parameter from SAT to the k-hypergraph pricing problem.

As an intermediate problem, we require the hard instance of the bipartite induced

matching problem on bounded degree graphs

8.1.1 The Main Reduction: SAT → pricing

At a very high level, our proof makes the following connection between 3-SAT

and the h-hypergraph pricing problem. We give a reduction that transforms an N -

variable SAT formula into a h-hypergraph pricing instance (C, I) with the following

parameters: the number of items is |I| = Nh, the number of consumers is |C| =

2hpoly(N), and the hardness gap is h. The following specifies the relationships

between the parameters.

N -var 3-SAT︸ ︷︷ ︸
no gap

=⇒ h-hypergraph pricing with |I| = Nh, |C| = 2hpolyN︸ ︷︷ ︸
hardness gap h

(8.1)

The running time of our reduction is small, i.e., poly(|C|), and thus can be

ignored for now. The hardness gap of h means that any algorithm that could solve the

pricing problem with an approximation factor of o(h) would be able to solve 3-SAT

(optimally) within the same running time, thus breaking the ETH. Consequently,

we obtain a hardness of h for any h = o(N), assuming the ETH. This hardness can

be written as min(h,
√
I) since |I| = Nh. The reduction goes via an intermediate

problem: the maximum induced matching problem on a bipartite graph where the

104

input graph has maximum degree ∆. The hardness of this problem was shown in

Chapter 7.

8.1.2 An Intermediate Reduction: Induced matching → Pricing

We reduce bipartite induced matching to hypergraph pricing. Given a bipartite

graph G = (U,W,E), we create an instance of hypergraph pricing by viewing the left

vertices U as consumers (with different budgets) and the right vertices W as items.

The basic idea is that the price of each item will determine which consumer it should

be matched to (to produce a solution to the bipartite induced matching problem).

That is, if an item I has price p, then it should be matched to the consumer with

budget roughly p. To make this idea work, the budgets of the consumers must differ

geometrically, as must the number of consumers of each type. More precisely, we will

convert each vertex u ∈ U into 2i(u) consumers in such a way that any two vertices

u and u′ sharing the same neighbor v must receive different exponents. Intuitively,

we will require a blow-up of 2O(∆) because each vertex v ∈ V has degree ∆. This is

how an exponential blow-up arises in the reduction.

8.2 The Approximation Hardness of k-Hypergraph Pricing

We now prove the hardness of the k-hypergraph pricing problem. Throughout

this section, we use n and m to denote the number of items and consumers, respec-

tively. Note the difference between n, the number of items in the pricing instance,

and N , the size of the 3SAT formula.

Theorem 8.2.1. Unless NP = ZPP, for any ε > 0, there is a universal constant k0

(depending on ε) such that the k-hypergraph pricing problem for any constant k > k0

105

is k1−ε hard to approximate. Assuming the ETH, for any ε > 0, the k-hypergraph

pricing problem is hard to approximate to within a factor of min(k1−ε, n1/2−ε).

Proof Overview and Organization. For any k-hypergraph pricing instance

(C, I), we denote by opt(C, I) the optimal possible revenue that can be collected by

any price function. The key to proving Theorem 8.2.1 is the connection between the

hardness of semi-induced matching and k-hypergraph pricing. This is formalized in

the following lemma, whose proof will be given in Section 8.2.1.

Lemma 8.2.2 (From Semi-induced Matching to Pricing). There is a randomized

reduction that, given a bipartite graph G = (U, V,E) with maximum degree d, outputs

an instance (C, I) of the k-hypergraph pricing problem such that, with high probability,

(6 ln d/ ln ln d)sim(G) ≥ opt(C, I) ≥ im(G)

The number of consumers is |C| = |U |dO(d) and the number of items is |I| = |V |.

Moreover, each consumer c ∈ C satisfies |Sc| = d. The running time of this reduction

is poly(|C|, |I|).

We remark that using the upper bound for opt(C, I) in terms of sim(G) instead

of im(G) appears to be necessary. Specifically, obtaining a similar reduction with a

bound of opt(C, I) = Õ(im(G)) may not be possible.

Combining the above reduction in Lemma 8.2.2 with the hardness of induced and

semi-induced matching in Theorem 7.4.1 leads to the following intermediate hardness

result which, in turn, leads to all the hardness results stated in Theorem 8.2.1.

Lemma 8.2.3 (Intermediate Hardness). Let ε > 0 be any constant. There is a

universal constant d0 = d0(ε) such that the following holds. For any function d(·)

106

such that d0 ≤ d(N) ≤ N1−ε, there is a randomized algorithm that transforms an

N-variable 3SAT formula φ to a k-hypergraph pricing instance (C, I) such that:

• For each consumer c, |Sc| = d(N).

• The algorithm runs in time poly(|C|, |I|).

• |C| ≤ dO(d)N1+ε and |I| ≤ N1+εd1+ε.

• There is a value Z such that (Yes-Instance) if φ is satisfiable, then opt(C, I) ≥

Z; and (No-Instance) if φ is not satisfiable, then opt(C, I) ≤ Z/d1−ε.

8.2.1 From Semi-Induced Matching to Pricing Problems

Here we prove Lemma 8.2.2 by showing a reduction from semi-induced matching

on d-degree bounded bipartite graphs to the k-hypergraph pricing. The reduction is

randomized and is guaranteed to be successful with constant probability.

The Reduction

Let G = (U, V,E) be a bipartite graph with maximum degree d. Assume without

loss of generality that |U | ≤ |V |. (This assumption will be important in our analysis).

Observe we always have sim(G) ≥ im(G) ≥ |U |/d. For each vertex u of G, we use

NG(u) to denote the set of neighbors of u in G. If the choice of a graph G is clear

from the context, then we will omit the subscript G. Our reduction consists of two

phases.

Phase 1: Coloring. We color each vertex u ∈ U of G by uniformly and

independently choosing a random color from {1, 2, . . . , d}. We denote by Ui ⊆ U ,

for each i = 1, 2, . . . , d, the set of left vertices that are assigned color i. We say

that a right vertex v ∈ V is highly congested if there is some i ∈ [d] such that

|NG(v) ∩ Ui| ≥ 3 ln d/ ln ln d. That is, v has at least 3 ln d/ ln ln d neighbors of the

107

same color. Let Vhigh ⊆ V be a subset of all vertices that are highly congested and

set V ′ = V \ Vhigh. Therefore V ′ is the set of vertices in V with highly congested

vertices removed. Now let G′ be the subgraph of G induced by (U, V ′, E). We will

require the following fact for the analysis in Section 8.2.1.

Lemma 8.2.4. With probability at least 1/2,

im(G′) ≥ (1− 2/d)im(G) and sim(G′) ≥ (1− 2/d)sim(G).

In particular, for d ≥ 4, im(G′) ≥ im(G)/2 and sim(G′) ≥ sim(G)/2 with probability

at least 1/2.

Proof. First, consider any vertex v ∈ V . We claim that vertex v is highly congested

with probability at most 1/d. To see this, we can view the coloring of neighbors of

v as a balls and bins problem: let each u ∈ NG(v) be a ball bu and let each color

c be a bin Bc; coloring a vertex u ∈ NG(v) with color c corresponds to putting a

ball v to a bin c. It is well-known (e.g., see [58, Section 5.2] and [38]) that, with

probability at least 1 − 1/d, all bins contain at most 3 ln d/ ln ln d balls. That is,

|NG(v) ∩ Ui| ≤ 3 ln d/ ln ln d. Thus, v is highly congested with probability at most

1/d, as claimed.

Now consider a maximum induced matching M = (A,B, F) of G, where A ⊆ U ,

B ⊆ V and F ⊆ E. So, |A| = |B| = |F | = im(G). Let M ′ = (A′, B′, F ′) be the

subgraph of M obtained by removing the vertices of Vhigh. Therefore, A′ = A and

B′ = B \ Vhigh. Note that the edges in M ′ give an induced matching of G′ of size

|B′|. It follows that

im(G′) ≥ |B′|.

108

Because every vertex v ∈ V is in Vhigh with probability at most 1/d, we have E[|B ∩

Vhigh|] ≤ |B|/d. Applying Markov’s inequality then gives

P[|B ∩ Vhigh| ≥ 2|B|/d] ≤ 1/2.

Consequently,

P[|B′| ≤ (1− 2/d)|B|] ≤ 1/2.

So im(G′) ≥ |B′| ≥ (1−2/d)|B| = (1−2/d)im(G) with probability at least 1/2. This

gives the first inequality in the statement. Proving the second inequality uses exactly

the same argument, except we take M to be a maximum semi-induced matching, and

note that edges in M ′ then give a semi-induced matching of G′ of size |B′|.

Phase 2: Finishing. We now have a coloring of the left vertices U of G with

the desired properties. We then construct an instance of the k-hypergraph pricing

problem in both the Udp-Min and Smp models as follows. For each vertex v ∈ V ′,

we have an item I(v). For each vertex u ∈ Ui, we create d3i consumers; we denote

this set of consumers by C(u). We define the budget of each consumer c ∈ C(u),

where u ∈ Ui, to be Bc = d−3i. We define Sc = {I(v) : v ∈ NG(u)}; it is immediate

that |Sc| ≤ d. To recap, we have

• The set of items I = {I(v) : v ∈ V ′}.

• The set of consumers C =
⋃
u∈U C(u), where |C(u)| = d3i for u ∈ Ui.

• A budget Bu =
1

d3i
for each consumer u ∈ Ui.

• A set of desired items Sc = {I(v) : v ∈ NG(u)} for each customer c ∈ C. (Note

that |Sc| ≤ d.)

109

This completes the description of our reduction. Notice that, in the k-hypergraph

formulation, we have I as a set of vertices, C as a set of hyperedges, and k = d (since

|Sc| ≤ d for all c ∈ C).

The Analysis

Completeness. We will show that the profit we can collect is at least im(G′) ≥

im(G)/2 (by Lemma 8.2.4). Let M be any induced matching in the graph G′. For

each item I(v) with uv ∈ M and u ∈ Ui, we set its price to be p(I(v)) = 1/d3i. For

any other item, we set its price to be∞ for Udp-Min and to be 0 for Smp. Observe

that, for each u ∈ Ui that belongs to M, any consumer c ∈ C(u) sees only one item

of finite price (that is, 1/d3i). So, for Udp-Min the consumer c must buy the item

I(v) and thus contributes 1/d3i to the total profit. Similarly, for Smp, the consumer

c can afford to buy the whole set Sc of total cost 1/d3i. Since |C(u)| = d3i, the total

profit contributed by each set of consumers C(u) is 1. This implies that the total

profit we obtain from this price function is |M|.

Soundness. Now, suppose that an optimal price function p yields a profit of r

(for either Udp-Min or Smp). We will show that sim(G) ≥ r log log d/(12 log d). The

proof has two parts. First, we identify a collection of “tight consumers” who roughly

correspond to those consumers that pay a sufficiently large fraction of their budgets.

Second, we construct a large semi-induced matching using these tight consumers.

We say that a consumer c ∈ C is tight if she spends at least 1/4d fraction of her

budget for her desired item. A vertex u ∈ U is tight if its set of consumers C(u)

contains a tight consumer. Let C ′ be the set of tight consumers.

Claim 8.2.5. The profit made by tight consumers only is at least r/2.

110

Proof. Observe that profitable non-tight consumers contribute at most |U |/4d to

the total profit. Since we proved that r ≥ im(G′) ≥ im(G)/2 ≥ |U |/2d (by the

assumption that |U | ≤ |V | and Lemma 8.2.4), the revenue made from non-tight

consumers is at most r/2.

Now, we construct from the set of tight consumers C ′, a σ-semi-induced matching

in G for some total order σ. We define σ so that vertices in U are ordered by their

colors (increasingly for the case of Udp-Min and decreasingly for the case of Smp).

Definition 8.2.6. Let σ be a total order of vertices such that vertices in Ui always

precede vertices in Uj if i < j for Udp-Min (and i > j for Smp). (Recall that Ui is

the set of vertices in U of color i.)

Let U ′ = {u ∈ U : C(u) ∩ C ′ 6= ∅} be the set of left vertices whose C(u) contains

a tight consumer. Note that |U ′| ≥ r/2 by Theorem 8.2.5. For Udp-Min, we define

a set of edgesM to be such that an edge uv is inM if u ∈ U ′ and a tight consumer

in C(u) buys an item I(v). For Smp, M is defined to contain uv such that u ∈ U ′

and I(v) is the most expensive item for a consumer in C(u). Note that

|M| ≥ |U ′| ≥ r/2 .

This collection M may not be a σ-semi-induced matching and may not even be a

matching. So, we have to remove some edges fromM to ensure the resulting set is a

σ-semi-induced matching. To be precise, we extract fromM a set of edgesM′ ⊆M

that is a σ-semi-induced matching with cardinality |M′| ≥ r log log d/6 log d. This

implies that sim(G) ≥ r log log d/6 log d.

111

Our intention is to construct M′ one edge at a time. (Clearly, we will not add

an edge from M to M′ if it would not produce a σ-semi-induced matching). The

order we add edges fromM depends reversely on σ (and, clearly, we will not add an

edge to M′ if it would not produce a σ-semi-induced matching). The process will

also be applied separately for each color of the left vertices. Specifically, we partition

M into M1 ∪M2 ∪ . . . ∪Md, where

Mi = {uv ∈M : u ∈ Ui}.

contains those edges uv whose endpoint u is colored i. Then we construct from each

set Mi a set of edges M′
i as follows. We process each edge uv ∈ Mi in the reverse

order of σ. That is, an edge uv is processed before an edge u′v′ if σ(u) > σ(u′). For

each edge uv ∈Mi, we remove from Mi all edges u′v′ such that u′ is adjacent to v.

Then we add uv to the setM′
i and proceed to the next edge inMi. Notice that, each

time we add an edge uv to M′
i, we remove at most 3 log d/ log log d edges from Mi.

This is because such an endpoint is not highly congested by the construction ofMi.

Thus, |M′
i| ≥ |Mi| log log d/3 log d. Moreover, it can be seen by the construction

that M′
i is a σ-semi-induced matching. Finally, define M′ =

⋃d
i=1M′

i. Then we

have that

|M′| ≥ |M| log log d

3 log d
.

We claim that M′ is a σ-semi-induced matching. Suppose not. Then there is a pair

of edges uv, u′v′ ∈ M′ such that σ(u) < σ(u′) and uv′ ∈ E(G). We need two cases

to distinguish between the two models of Smp and Udp-Min.

112

• For Udp-Min, by construction, the two vertices u and u′ must belong to dif-

ferent color classes Ui and Uj, respectively, where i < j. Since uv′ ∈ E(G),

consumers in C(u) are interested in item I(v′), whose prices are 1/d3j (which is

strictly less than 1/2di+1) because u′ is a tight index. But, then u would have

never been tight, a contradiction.

• For Smp, the two vertices u and u′ belong to Ui and Uj respectively where

i > j. Since uv′ ∈ E(G), consumers in C(u) are interested in I(v′), whose

prices are 1/2d3j+1 > 1/d3i. Then consumers in C(u) would not have sufficient

budget to buy their item sets, contradicting the fact that they are tight.

Thus, we have

sim(G′) ≥ |M′| ≥ |M| log log d

3 log d
≥ r log log d

6 log d

as desired.

8.2.2 Intermediate Hardness

We prove Theorem 8.2.3 using Theorem 7.4.1 and Theorem 8.2.2.

To see how to prove Theorem 8.2.3 by combining Theorem 7.4.1 with Theo-

rem 8.2.2, we start with an N -bit 3SAT formula φ and invoke Theorem 7.4.1 to

obtain a d-degree bounded bipartite graph G = (U, V,E). We then apply a reduc-

tion as in Theorem 8.2.2 to obtain an instance (C, I) of Udp-Min or Smp with

|C| = |V (G)|dO(d) = N1+O(ε)dO(d) and |I| = N1+O(ε)d1+O(ε). It is immediate that the

gap between a Yes-Instance and a No-Instance is d1−2ε for all values of d.

Notice that our reduction gives (nearly) tight hardness results for all values of d.

The complexity assumptions that we make, however, differ for different values of d.

113

(Note that d = 2t(1/ε
2+O(1/ε)) is a function of the parameters t and ε.) For example, if d

is constant, then our complexity assumption is NP 6= ZPP, and if d = polylogN , then

our assumption is NP * ZPTIME(2polylogN). To see this, consider the size (which

also implies the running time) of our reduction. Our instance for Udp-Min (resp.,

Smp) has the number of consumers m = |C| = N1+O(ε)dO(d) ≤ N1+O(ε)2d
1+ε

and the

number of items n = |I| = N1+O(ε)d1+O(ε). Suppose now we have an algorithm with

a running time of poly(n,m). Then we also have a randomized algorithm with a

running time of poly(N1+O(ε), 2d
1+O(ε)

) that solves SAT exactly.

8.2.3 The Hardness Results (Proof of Theorem 8.2.1)

From the above discussion, we can see the complexity assumption we require is

NP * ZPTIME(poly(N, 2O(d))). Thus, if t is constant, then d is also a constant. That

is, d = 2O(1/ε2), and the corresponding complexity assumption is, indeed, NP 6= ZPP.

In this case, we get the hardness of the k-hypergraph pricing problem when k is

constant (note that k = d). More precisely, we have proved that, for any ε > 0, there

is a constant k0 that depends on ε such that k-hypergraph pricing is k1−ε-hard for

any k ≥ k0.

We note that our reduction also implies a hardness of Ω(log1−εm), as proved

by Chalermsook et al. [15]. In this case, if the value of k is chosen to be polylogN ,

then the complexity assumption becomes NP * ZPTIME(2polylogN). In particular,

we can plug in k = log1/εN to give m = N log1/εN and a hardness factor of k1−ε =

log1/ε−1N = log1−O(ε) m.

Now, let’s incorporate the ETH into our hardness result. Thus, we assume

there is no exponential-time (randomized) algorithm that solves 3SAT. We choose

114

t = (ε2 − O(ε)) logN . So we have k = 2t(1/ε
2−O(1/ε) = 2(1−O(ε)) logN = N1−O(ε).

Moreover, |I| = N2+O(ε), and the size of the resulting pricing instance (as well as

the running time) is dominated by kO(k) ≤ 2N
1−ε

. This is fine (still subexponential

time) because we assume the ETH. Writing k in terms of the number of items, we

have that k = N1−O(ε) = n1/2−O(ε). Consequently, our k1−ε-hardness result rules out

a polynomial-time algorithm with an n1/2−ε-approximation guarantee for Udp-Min

(resp., Smp), assuming the ETH.

8.2.4 Subexponential-Time Approximation Hardness for the k-Hypergraph
Pricing Problem

We now present an approximability/running time trade-off for the pricing prob-

lems. We note that this hardness result is in a slightly different form than those for

maximum independent set and maximum induced matching. Our inapproximability

result shows that any nδ-approximation algorithm for the k-hypergraph pricing prob-

lem (both Udp-Min and Smp) must run in time at least 2(logm)
1−δ−ε
δ for any constant

δ, ε > 0. This almost matches the running time of O

(
2(logm)

1−δ
δ log logmpoly(n,m)

)
presented in Section 8.3.

Theorem 8.2.7. Consider the k-hypergraph pricing problem (with either Smp or

Udp-Min buying rule). For any δ > 0 and a sufficiently small ε < ε0(δ), every

nδ approximation algorithm for Udp-Min (resp., Smp) must run in time at least

2(logm)
1−δ−ε
δ unless the ETH is false.

For example, plug in δ = 1/3. Then, an n1/3 approximation for the pricing

problem requires running time at least mlog1−εm, assuming the ETH.

115

Proof. Fix δ < 1/2. Let ε be as in Theorem 8.2.3. Assume (for contradiction) that

we have an nδ approximation algorithm A for Udp-Min (resp., Smp) that runs in

time 2(logm)
1−δ−100ε

δ . We apply the reduction in Lemma 8.2.3 with d = nδ(1+10ε).

Therefore, the algorithm A can distinguish between a Yes-Instance and a No-

Instance, thus deciding the satisfiability of SAT. It remains to analyze the running

time of the algorithm and show that the algorithm runs in time O(2N
1−ε

), which will

contradict the ETH.

Now n ≤ d1+εN1+ε. So, plugging in d = nδ(1+10ε), we obtain n ≤ nδ(1+20ε)N1+ε.

This implies that n ≤ N1+δ+40ε. But, if we also plug the value of d into m ≤

2d
1+ε
N1+ε, we get

m ≤ 2n
δ(1+20ε) ≤ 2N

δ(1+δ+40ε)

Hence, we have logm ≤ N δ(1+δ+40ε), implying the running time of log
1−δ−100ε

δ m ≤

N1−10ε. This is subexponential in the size of SAT instance, contradicting the ETH.

8.3 Approximation Scheme for k-Hypergraph Pricing

In this section, we present an approximation scheme for the k-hypergraph pricing

problem, which works for both Udp-Min and Smp buying rules. Throughout, we

denote by n and m the number of items and the number of consumers, respectively.

For any parameter δ, our algorithm gives an approximation ratio of O(nδ) and runs

in time O(2(logm)
1−δ
δ log logmpoly(n,m)).

In the underlying mechanism, we employ as subroutines anO(logm)-approximation

algorithm for Udp-Min (resp., Smp) and anO((logm)n)-time constant-approximation

algorithm for Udp-Min (resp., Smp) as stated in the following two lemmas.

116

Lemma 8.3.1 ([39]). There is an O(logm)-approximation algorithm for Udp-Min

(resp., Smp), where m = |C| is the number of consumers.

Lemma 8.3.2. There is a constant-factor approximation algorithm for Udp-Min

(resp., Smp) that runs in time O((log nm)npoly(n,m)).

For the sake of presentation flow, we defer the proof of Lemma 8.3.2 to Sec-

tion 8.3.5. Now, we present our approximation scheme and its analysis.

8.3.1 Approximation Scheme

We exploit a trade-off between the approximation ratio and the running time. In

particular, the O(logm)-approximation algorithm from Lemma 8.3.1, denoted by A1,

always runs in polynomial time but yields a bad approximation ratio in terms of n

when nδ � logm. In contrast, the O((log nm)npoly(n,m))-time O(1)-approximation

algorithm from Lemma 8.3.2, denoted by A2, has a slow running time but always

gives a good approximation ratio. So, we take advantage of the trade-off between

the running time and approximation ratio by selecting one of these two algorithms

according to the values of nδ and logm. To be precise, our approximation scheme

takes as input a set of consumers C, a set of items I and a parameter δ : 0 < δ <

1. If the number of items is large, i.e., nδ > logm, then we apply the O(logm)-

approximation algorithm A1. Otherwise, we partition the set of m items into nδ

(almost) equal subsets, namely, I1, . . . , Inδ , and we apply the algorithm A2 to each

subinstance (C, Ii), for i = 1, . . . , nδ. We then sell to consumers the set Ii∗ that

yields a maximum revenue over all i = 1, . . . , nδ. Here the key idea is that one of

the sets Ii gives a revenue of at least opt/nδ in the optimal pricing, where opt is the

optimal revenue. So, by choosing the set that maximizes a revenue, we would get

117

a revenue of at least O(opt/nδ) (because A2 is an O(1)-approximation algorithm).

Since we have two different buying rules, Udp-Min and Smp, there is some detail

that we need to adjust. When we assign the prices to all the items, we need to ensure

that the consumers will (and can afford to) buy the set of items we choose. So, we

price items in the set Ii∗ by a price function returned from the algorithm A2, and

we apply two different rules for filling the prices of items in I \ Ii∗ for the cases of

Udp-Min and Smp. In Udp-Min, we price items in I \ Ii∗ by ∞ to guarantee that

no consumers will buy items outside Ii∗ . In Smp, we price items in I \ Ii∗ by 0 to

guarantee that consumers can afford to buy the whole set of items that they desire

(although we get no profit from items outside Ii∗). The running time of the algorithm

A2 in general is large, but since nδ < logm and each subinstance contains at most

n1−δ items, we are able to guarantee the desired running time. Our approximation

scheme is summarized in Algorithm 8.3.1.

8.3.2 Cost Analysis

First, we analyze the approximation guarantee of our algorithm. If nδ > logm,

then our algorithm immediately gives O(nδ)-approximation. So, we assume that

nδ ≥ O(logm). We will use the following two lemmas.

Lemma 8.3.3. For any instance (C, I) of Udp-Min (resp. Smp), let I ′ be any

subset of I. Let p′ be a price function that collects a revenue of r from (C, I ′). Then,

the price function p : I → R obtained by setting p(i) = ∞ (resp. p(i) = 0) for

i ∈ I \ I ′ and p(i) = p′(i) for i ∈ I ′ gives revenue at least r for the instance (C, I).

Proof. We first prove the lemma for Udp-Min. Consider the price function p′ that

collects a revenue of r. Notice that, under the price p, each customer c ∈ C who has

118

Algorithm 2 Pricing(C,I,δ)

1: if nδ > logm then
2: Apply an O(logm) approximation algorithm for Udp-Min (resp., Smp) from

Lemma 8.3.1.
3: return The price function p obtained by the O(logm)-approximation algo-

rithm.
4: else
5: Partition I into nδ equal sets, namely I1, I2, . . . , Inδ . So, each Ij has size
|Ij| ≤ n1−δ.

6: for j = 1 to nδ do
7: Apply Lemma 8.3.2 on the instance Πj = (C, Ij), i.e., restricting the set

of items to Ij.
8: end for
9: Choose an instance Πj∗ that maximizes the revenue over all j = 1, 2, . . . , nδ.

10: Let p be the price function obtained by solving an instance Πj∗ .
11: For Udp-Min (resp. Smp), set the prices of all the items in I \ Ij∗ to ∞

(resp. 0).
12: return the price function p.
13: end if

119

positive payment in p′ also pays for the same amount in p (since items in Sc∩ (I \I ′)

have infinite prices).

For Smp, for each customer c ∈ C who pays positive price in p′, we have by

construction that
∑

i∈Sc p(i) =
∑

i∈Sc∩I′ p
′(i). So, the customer c can still afford the

set and pays the same amount as in the subinstance (C, I ′).

The above lemma allows us to focus on analyzing the revenue obtained from

the subinstance (C, Ij∗). Since we apply a constant-factor approximation algorithm

to the instance (C, Ij∗), it suffices to show that opt(C, Ij∗) ≥ opt(C, I)/nδ, which

follows from the following lemma.

Lemma 8.3.4. Let q be any positive integer. For any set of consumers C and any

partition of I into I =
⋃q
j=1 Ij, the following holds for Udp-Min (resp., Smp)

opt(C, I) ≤
q∑
j=1

opt(C, Ij)

Proof. Consider an optimal price function p∗ for (C, I). Fix some optimal assignment

of items to customers with respect to p∗. Now for each j = 1, . . . , q, let rj be

the revenue obtained by function p∗ from items in Ij, so we can write
∑q

j=1 rj =

opt(C, I). Notice that, in each sub-instance (C, Ij), we can restrict the price function

p∗ onto the set Ij and obtain the same revenue. This means that opt(C, Ij) ≥ rj,

implying that
q∑
j=1

opt(C, Ij) ≥
q∑
j=1

rj = opt(C, I)

as desired.

120

8.3.3 Running Time Analysis

If nδ > logm, then our algorithm runs in polynomial-time (since we apply

a polynomial-time O(logm)-approximation algorithm). So, we assume that nδ ≤

logm. In this case, we run an algorithm from Lemma 8.3.2 on nδ sub-instances

having n1−δ items each. It follows that the running time of this algorithm is

O
(
nδ(log nm)n

1−δ
poly(n1−δ,m)

)
= O

(
2(logm)

1−δ
δ log lognmpoly(n,m)

)
.

The equality follows since logm ≥ nδ implies that n1−δ ≤ (logm)(1−δ)/δ. Thus,

for any constant δ > 0, our algorithm runs in quasi-polynomial time.

8.3.4 Polynomial-Time O(
√
n log n)-Approximation Algorithm

Now, we will set δ so that our approximation scheme runs in polynomial-time.

To be precise, we set δ so that nδ =
√
n log n. It follows that our algorithm yields

an approximation guarantee of O(
√
n log n). The running time of our algorithm is

(note that n1−δ =
√

n
logn

)

O
(
nδ · (log nm)n

1−δ
poly(n,m)

)
= O

(
2
√
n√

logn
log lognm

poly(n,m)

)
= O

(
2
√
n logn
logn

log lognmpoly(n,m)
)

If
√
n log n ≤ log nm/ log log nm, then we are done because the running time

of the algorithm will be O(2lognmpoly(n,m)) = poly(n,m). Thus, we assume that
√
n log n > log nm/ log log nm. So, we have

log n > log

(
log nm

log log nm

)
= log log nm− log log log nm ≥ 1

2
log log nm

121

This means that log n/ log log nm ≥ 1/2. Thus, the running time of our algorithm is

O
(

2
√
n logn
logn

log lognmpoly(n,m)
)
≤ O

(
22
√
n lognpoly(n,m)

)
≤ O(2logmpoly(n,m))

= poly(n,m)

The last inequality follows since nδ =
√
n log n ≤ logm. Thus, in polynomial-

time, our approximation scheme yields an approximation ratio of O(
√
n log n) for

both Udp-Min and Smp.

8.3.5 O(1)-Approximation in Time O((log nm)npoly(n,m))

In this section, we present an O(1)-approximation algorithm for Udp-Min and

Smp that runs in O((log nm)npoly(n,m)) time. That is, we prove Lemma 8.3.2).

Our algorithm reads as input an instance (C, I) of Smp (resp., Udp-Min) and a

parameter α > 1. Let W be the largest budget of the consumers in I, and define a

set

P =

{
W,

W

α1
,
W

α2
, . . . ,

W

αdlogα(αnm)e , 0

}
Our algorithm tries all the possible price functions that take values from the set

P and returns as output a price function p that maximizes the revenue (over all

the sets of price functions p : I → P). It is easy to see that the running of the

algorithm is O(dlogα nm+3enpoly(n,m)). Thus, we can set α = 2+ ε for some ε > 0

so that the running time is O((log nm)npoly(n,m)). We claim that our algorithm

122

gives an approximation ratio of α2/(α− 1) (proved in Lemma 8.3.5), thus yielding a

constant-factor approximation.

Cost Analysis

We will focus on the case of Smp. The case of Udp-Min can be analyzed

analogously. Fix any optimal price function p∗, which yields a revenue of opt. We

will construct from p∗ a price function p′ that takes values from the set P by rounding

down each p∗(i) to its closest value in P . Since p′(i) ∈ P for all i ∈ I, we can use p′

to lower bound the revenue that we could obtain from our algorithm. For the ease of

analysis, we will do this in two steps. First, we define a price function p1 by setting

p1(i) =

 0 if p∗(i) < W
αnm

p∗(i) otherwise

In this step, we lose a revenue of at most opt/α. This is because we havem consumers,

and each consumer wants at most n items. So, the revenue loss is at most nm ·

W/(αnm) ≤ opt/α (since opt ≥ W). That is, p1 yields a revenue of at least (1 −

1/α)opt. Next, we define a price function p2 from p1 by setting

p2(i) =

 0 if p1(i) = 0 (i.e., p∗(i) < W
αnm

)

W
αj

, for some j : W
αj+1 < p∗(i) ≤ W

αj
otherwise

So, p2(i) = p1(i) for all i such that p∗(i) < W/(αnm). Observe that p2(i) ≥ p1(i)/α

for all i ∈ I. Hence, the revenue obtained from p2 is within a factor of 1/α of the

revenue obtained from p1. Thus, p2 yields a revenue of at least (1/α − 1/α2)opt.

Thus, the approximation ratio of our algorithm is O(α2/(α − 1)), for all α > 1. In

particular, by setting α = 2+ε for ε > 0, we have a (4+ε2)-approximation algorithm.

123

Remark: An Exact-Algorithm for Udp-Min

In this section, we observe that for the case of Udp-Min, an optimal solution can

be obtained in time O(n!poly(n,m)) by using a price ladder constraint. To be precise,

the price ladder constraint says that, given a permutation σ of items, the price of an

item σ(i) must be at most the price of an item σ(i + 1), i.e., p(σ(i)) ≤ p(σ(i+ 1)),

for all i = 1, . . . , n − 1. Briest and Krysta [13] showed that Udp-Min with the

price ladder constraint (i.e., the permutation is additionally given as an input) is

polynomial-time solvable. Thus, we can solve any instance of Udp-Min optimally

in time O((n!)poly(n,m)) by trying all possible permutations of the items.

124

CHAPTER 9
Conclusion

This thesis studies hardness of approximation in the regime of subexponential-

time algorithms. As the tools were limited, prior to the breakthrough result of

Moshkovitz and Raz [59], the approximation lower bounds pertain only to polynomial-

time algorithms. With the new tools developed, we step to the area beyond polynomial-

time and extend the result of Moshkovitz and Raz to prove subexponential-time ap-

proximation hardness of several fundamental problems – independent set, graph col-

oring, bipartite induced matching, semi-induced matching and k-hypergraph pricing.

Our aim is to understand the computation power of subexponential-time algorithms

in the form of time-approximation trade-off. As this area is relatively new, there

will be more open problems coming up. We hope that our results will be building

blocks and foundation for others to explore the area of approximation algorithms

when superpolynomial running-time algorithms are concerned.

125

REFERENCES

[1] N. Alon, U. Feige, A. Wigderson, and D. Zuckerman. Derandomized graph
products. Computational Complexity, 5(1):60–75, 1995. 45

[2] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification
and the hardness of approximation problems. J. ACM, 45(3):501–555, 1998. 2,
6, 16, 48

[3] S. Arora and S. Safra. Probabilistic checking of proofs: A new characterization
of NP. J. ACM, 45(1):70–122, 1998. 2, 6, 16, 48

[4] M.-F. Balcan and A. Blum. Approximation algorithms and online mechanisms
for item pricing. Theory of Computing, 3(1):179–195, 2007. 13, 14

[5] M.-F. Balcan, A. Blum, J. D. Hartline, and Y. Mansour. Mechanism design via
machine learning. In FOCS, pages 605–614, 2005. 14

[6] M. Bellare, O. Goldreich, and M. Sudan. Free bits, pcps, and
nonapproximability-towards tight results. SIAM J. Comput., 27(3):804–915,
1998. 2, 48

[7] M. Bellare and M. Sudan. Improved non-approximability results. In STOC,
pages 184–193, 1994. 48, 76

[8] P. Berman and G. Schnitger. On the complexity of approximating the indepen-
dent set problem. Inf. Comput., 96(1):77–94, 1992. 2, 30, 41, 42

[9] R. B. Boppana and M. M. Halldórsson. Approximating maximum independent
sets by excluding subgraphs. BIT, 32(2):180–196, 1992. 2

[10] N. Bourgeois, B. Escoffier, and V. T. Paschos. Approximation of min coloring by
moderately exponential algorithms. Inf. Process. Lett., 109(16):950–954, 2009.
3

126

127

[11] N. Bourgeois, B. Escoffier, and V. T. Paschos. Approximation of max inde-
pendent set, min vertex cover and related problems by moderately exponential
algorithms. Discrete Applied Mathematics, 159(17):1954–1970, 2011. 3

[12] P. Briest and P. Krysta. Single-minded unlimited supply pricing on sparse
instances. In SODA, pages 1093–1102, 2006. 13, 14

[13] P. Briest and P. Krysta. Buying cheap is expensive: Approximability of combi-
natorial pricing problems. SIAM J. Comput., 40(6):1554–1586, 2011. 124

[14] R. A. Brualdi, F. Harary, and Z. Miller. Bigraphs versus digraphs via matrices.
Journal of Graph Theory, 4(1):51–73, 1980. 79

[15] P. Chalermsook, J. Chuzhoy, S. Kannan, and S. Khanna. Improved hard-
ness results for profit maximization pricing problems with unlimited supply.
In APPROX-RANDOM, pages 73–84, 2012. 114

[16] P. Chalermsook, S. Kintali, R. J. Lipton, and D. Nanongkai. Graph pricing
problem on bounded treewidth, bounded genus and k-partite graphs. Chicago
J. Theor. Comput. Sci., 2013, 2013. 14

[17] P. Chalermsook, B. Laekhanukit, and D. Nanongkai. Graph products revisited:
Tight approximation hardness of induced matching, poset dimension and more.
In SODA, pages 1557–1576, 2013. iv, 30, 62, 64, 65

[18] P. Chalermsook, B. Laekhanukit, and D. Nanongkai. Independent set, induced
matching, and pricing: Connections and tight (subexponential time) approxi-
mation hardnesses. In FOCS, pages 370–379, 2013. iv, 21, 30

[19] P. Chalermsook, B. Laekhanukit, and D. Nanongkai. Coloring graph powers:
Graph product bounds and hardness of approximation. In LATIN, pages 409–
420, 2014. 30

[20] S. O. Chan. Approximation resistance from pairwise independent subgroups. In
STOC, pages 447–456, 2013. 49

[21] S. Chawla, J. D. Hartline, and R. D. Kleinberg. Algorithmic pricing via virtual
valuations. In ACM Conference on Electronic Commerce, pages 243–251, 2007.
14

[22] R. H. Chitnis, M. Hajiaghayi, and G. Kortsarz. Fixed-parameter and approxi-
mation algorithms: A new look. In IPEC, pages 110–122, 2013. 4

128

[23] M. Chleb́ık and J. Chleb́ıková. Complexity of approximating bounded variants
of optimization problems. Theor. Comput. Sci., 354(3):320–338, 2006. 67

[24] S. A. Cook. The complexity of theorem-proving procedures. In STOC, pages
151–158, 1971. 2

[25] M. Cygan, L. Kowalik, M. Pilipczuk, and M. Wykurz. Exponential-time ap-
proximation of hard problems. CoRR, abs/0810.4934, 2008. 3

[26] M. Cygan, L. Kowalik, M. Pilipczuk, and M. Wykurz. Exponential-time ap-
proximation of hard problems. CoRR, abs/0810.4934, 2008. 97

[27] M. Cygan, M. Pilipczuk, and M. Pilipczuk. Known algorithms for EDGE
CLIQUE COVER are probably optimal. In SODA, pages 1044–1053, 2013.
21

[28] R. Diestel. Graph Theory. Graduate Texts in Mathematics, Volume 173.
Springer-Verlag, Heidelberg, 4th edition, July 2010. 9

[29] K. M. Elbassioni, R. Raman, S. Ray, and R. Sitters. On the approximability
of the maximum feasible subsystem problem with 0/1-coefficients. In SODA,
pages 1210–1219, 2009. 62, 64

[30] L. Engebretsen and J. Holmerin. Towards optimal lower bounds for clique and
chromatic number. Theor. Comput. Sci., 1-3(299):537–584, 2003. 26, 27, 29, 50

[31] U. Feige. Randomized graph products, chromatic numbers, and the lovász
vartheta-funktion. Combinatorica, 17(1):79–90, 1997. 30, 32, 41, 42, 45, 47,
50

[32] U. Feige. Approximating maximum clique by removing subgraphs. SIAM J.
Discrete Math., 18(2):219–225, 2004. 2

[33] U. Feige, S. Goldwasser, L. Lovász, S. Safra, and M. Szegedy. Interactive proofs
and the hardness of approximating cliques. J. ACM, 43(2):268–292, 1996. 2, 7,
17, 48, 75

[34] U. Feige and J. Kilian. Zero knowledge and the chromatic number. J. Comput.
Syst. Sci., 57(2):187–199, 1998. 3, 25, 28, 29, 50, 51

[35] Y.-Q. Feng, K. Kutnar, A. Malnic, and D. Marusic. On 2-fold covers of graphs.
J. Comb. Theory, Ser. B, 98(2):324–341, 2008. 79

129

[36] M. Fürer. Improved hardness results for approximating the chromatic number.
In FOCS, pages 414–421, 1995. 50

[37] M. R. Garey and D. S. Johnson. The complexity of near-optimal graph coloring.
J. ACM, 23(1):43–49, 1976. 30, 49

[38] G. H. Gonnet. Expected length of the longest probe sequence in hash code
searching. J. ACM, 28(2):289–304, 1981. 108

[39] V. Guruswami, J. D. Hartline, A. R. Karlin, D. Kempe, C. Kenyon, and F. Mc-
Sherry. On profit-maximizing envy-free pricing. In SODA, pages 1164–1173,
2005. 117

[40] M. M. Halldórsson. A still better performance guarantee for approximate graph
coloring. Inf. Process. Lett., 45(1):19–23, 1993. 2

[41] R. Hammack, W. Imrich, and S. Klavžar. Handbook of Product Graphs, Second
Edition. Discrete Mathematics and Its Applications. Taylor & Francis, 2011. 31

[42] J. H̊astad. Clique is hard to approximate within n1-epsilon. In FOCS, pages
627–636, 1996. 2, 3, 26, 49, 50, 51, 64

[43] J. H̊astad and S. Khot. Query efficient PCPs with perfect completeness. Theory
of Computing, 1(1):119–148, 2005. 49

[44] R. Hegde and K. Jain. The hardness of approximating poset dimension. Electron.
Notes Discrete Math., 29:435–443, 2007. 62

[45] R. Impagliazzo and R. Paturi. On the complexity of k-SAT. J. Comput. Syst.
Sci., 62(2):367–375, 2001. 3

[46] R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly expo-
nential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001. 21, 22

[47] W. Imrich and T. Pisanski. Multiple kronecker covering graphs. Eur. J. Comb.,
29(5):1116–1122, 2008. 79

[48] D. S. Johnson. Worst case behavior of graph coloring algorithms. In Proceed-
ings of the Fifth Southeastern Conference on Combinatorics, Graph Theory and
Computing (Florida Atlantic Univ., Boca Raton, Fla., 1974), pages 513–527.
Congressus Numerantium, No. X, Winnipeg, Man., 1974. Utilitas Math. 2

130

[49] R. M. Karp. Reducibility among combinatorial problems. In Complexity of
Computer Computations, pages 85–103, 1972. 2, 48, 49

[50] R. Khandekar, T. Kimbrel, K. Makarychev, and M. Sviridenko. On hardness of
pricing items for single-minded bidders. In APPROX-RANDOM, pages 202–216,
2009. 14

[51] S. Khot and A. K. Ponnuswami. Better inapproximability results for maxclique,
chromatic number and min-3lin-deletion. In ICALP (1), pages 226–237, 2006.
3

[52] L. A. Levin. Universal enumeration problems. Problemy Peredači Informacii,
9(3):115–116, 1973. (Russian). 2

[53] N. Linial and U. V. Vazirani. Graph products and chromatic numbers. In FOCS,
pages 124–128, 1989. 30, 49

[54] D. Lokshtanov, D. Marx, and S. Saurabh. Known algorithms on graphs on
bounded treewidth are probably optimal. In SODA, pages 777–789, 2011. 21

[55] D. Lokshtanov, D. Marx, and S. Saurabh. Lower bounds based on the exponen-
tial time hypothesis. Bulletin of the EATCS, 105:41–72, 2011. 21

[56] L. Lovász. On the ratio of optimal integral and fractional covers. Discrete
Mathematics, 13(4):383 – 390, 1975. 10, 11

[57] C. Lund and M. Yannakakis. On the hardness of approximating minimization
problems. J. ACM, 41(5):960–981, 1994. 2, 50

[58] M. Mitzenmacher and E. Upfal. Probability and Computing: Randomized Algo-
rithms and Probabilistic Analysis. Cambridge University Press, New York, NY,
USA, 2005. 42, 108

[59] D. Moshkovitz and R. Raz. Two-query PCP with subconstant error. J. ACM,
57(5), 2010. 3, 4, 23, 24, 27, 29, 49, 50, 77, 79, 125

[60] P. Popat and Y. Wu. On the hardness of pricing loss-leaders. In SODA, pages
735–749, 2012. 14

[61] R. Raz. A parallel repetition theorem. SIAM J. Comput., 27(3):763–803, 1998.
26

131

[62] O. Reingold, S. P. Vadhan, and A. Wigderson. Entropy waves, the zig-zag graph
product, and new constant-degree expanders and extractors. In FOCS, pages
3–13, 2000. 90

[63] P. Rusmevichientong, S. U. D. of Management Science, and Engineering. A Non-
parametric Approach to Multi-product Pricing Theory and Application. Stanford
University, 2003. 14

[64] P. Rusmevichientong, B. V. Roy, and P. W. Glynn. A nonparametric approach
to multiproduct pricing. Operations Research, 54(1):82–98, 2006. 14

[65] A. Samorodnitsky and L. Trevisan. A PCP characterization of NP with optimal
amortized query complexity. In STOC, pages 191–199, 2000. 23, 24, 26, 29, 49,
50, 77, 79

[66] E. Sampathkumar. On tensor product graphs. Journal of the Australian Math-
ematical Society (Series A), 20:268–273, 11 1975. 79

[67] E. Scheinerman and D. Ullman. Fractional graph theory: a rational approach
to the theory of graphs. Wiley-Interscience series in discrete mathematics and
optimization. Wiley, 1997. 32

[68] L. Trevisan. Non-approximability results for optimization problems on bounded
degree instances. In STOC, pages 453–461, 2001. 20, 75, 76, 79, 80, 82, 86, 89,
90, 91

[69] D. Zuckerman. On unapproximable versions of NP-complete problems. SIAM
J. Comput., 25(6):1293–1304, 1996. 83

[70] D. Zuckerman. Linear degree extractors and the inapproximability of max clique
and chromatic number. Theory of Computing, 3(1):103–128, 2007. 3, 49, 85

	Dedication
	Acknowledgments
	Abstract
	ABRÉGÉ
	List of Tables
	List of Figures
	Introduction
	The Approximability of Optimization Problems
	Proving Hardness of Approximation

	Preliminaries and Background
	Preliminaries
	Problem Definitions
	Complexity Terminology
	A Probabilistically Checkable Proof System
	The FGLSS reduction

	Exponential-Time Hypothesis and Almost Linear-Size PCPs
	Exponential-Time Hypothesis
	(Almost) Linear-Size PCP
	Randomized PCP for Graph Coloring

	Graph Product
	Properties of Disjunctive Product
	Randomized Graph Product
	Independence Ratio of Randomized Graph Product
	Chromatic Number of Randomized Graph Product

	Subexponential-Time Approximation Hardness of Classical Results
	Overview
	Independent Set
	Graph Coloring

	Subexponential-Time Hardness from Graph Product
	Our Results
	Overview
	The Proof of Subexponential-Time Approximation Hardness
	Graph Product Inequality

	Subexponential-Time Hardness of Problems on Bounded-Degree Graphs
	Overview
	Step II: independent set induced matching

	An Almost-Linear Size Reduction from SAT to CSP
	FGLSS and Dispersers Replacement
	Tight Hardness of Semi-Induced Matching
	The Reduction
	Analysis
	Subexponential Time Approximation Hardness for the Maximum Independent Set and Induced Matching Problems
	Subexponential-Time Approximation Algorithm for Induced Matching

	The Hardness of Approximating k-Hypergraph Pricing
	Overview
	The Main Reduction: SAT pricing
	An Intermediate Reduction: Induced matching Pricing

	The Approximation Hardness of k-Hypergraph Pricing
	From Semi-Induced Matching to Pricing Problems
	Intermediate Hardness
	The Hardness Results (Proof of Theorem 8.2.1)
	Subexponential-Time Approximation Hardness for the k-Hypergraph Pricing Problem

	Approximation Scheme for k-Hypergraph Pricing
	Approximation Scheme
	Cost Analysis
	Running Time Analysis
	Polynomial-Time O(nlogn)-Approximation Algorithm
	O(1)-Approximation in Time O((lognm)npoly(n,m))

	Conclusion
	References

