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Abstract

We present a linear-time algorithm for simplifying flow networks on directed planar graphs:
Given a directed planar graph on n vertices, a source vertex s and a sink vertex t, our algo-
rithm removes all the arcs that do not participate in any simple s, t-path in linear-time. The
output graph produced by our algorithm satisfies the prerequisite needed by the O(n log n)-
time algorithm of Weihe [FOCS’94 & JCSS’97] for computing maximum s, t-flow in directed
planar graphs. Previously, Weihe’s algorithm could not run in O(n log n)-time due to the ab-
sence of the preprocessing step; all the preceding algorithms run in Ω̃(n2)-time [Misiolek-Chen,
COCOON’05 & IPL’06; Biedl, Brejová and Vinar, MFCS’00]. Consequently, this provides an al-
ternative O(n log n)-time algorithm for computing maximum s, t-flow in directed planar graphs
in addition to the known O(n log n)-time algorithms [Borradaile-Klein, SODA’06 & J.ACM’09;
Erickson, SODA’10].

Our algorithm can be seen as a (truly) linear-time s, t-flow sparsifier for directed planar
graphs, which runs faster than any maximum s, t-flow algorithm (which can also be seen of
as a sparsifier). The simplified structures of the resulting graph might be useful in future
developments of maximum s, t-flow algorithms in both directed and undirected planar graphs.

1 Introduction

The maximum s, t-flow problem is a fundamental problem in Combinatorial Optimization that
has numerous applications in both theory and practice. A basic instance of maximum flow where
the underlying graph is planar has been considered as an important special case and has been
studied since 50’s in the early work of Ford and Fulkerson [FF56]. Since then, there have been
steady developments of maximum flow algorithms on undirected planar graphs. Itai and Shiloach
[IS79] proposed an algorithm for the maximum s, t-flow problem on undirected planar graphs that
runs in O(n2 log n) time, and in subsequent works [Has81, Rei83, HJ85, Fre87, KRHS94, HKRS97,
INSW11], the running time have been improved to the current best O(n log logn)-time algorithm
by Italiano et al. [INSW11].

Another line of research is the study of the maximum s, t-flow problem in directed planar graphs.
The fastest algorithm with the running time of O(n log n) is due to Borradaile and Klein [BK09].
Historically, in 1994, Weihe [Wei97b] presented a novel approach that would solve the maximum
s, t-flow problem on directed planar graphs in O(n log n) time. However, Weihe’s algorithm requires
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a preprocessing step that transforms an input graph into a particular form: (1) each vertex (except
source and sink) has degree three, (2) the planar embedding has no clockwise cycle, and (3) every
arc must participate in some simple s, t-path.

The first condition can be guaranteed by a simple (and thus linear-time) reduction, and the
second condition can be obtained by an algorithm of Khuller, Naor and Klein in [KNK93] which
runs in O(n log n)-time (this was later improved to linear time [HKRS97]). Unfortunately, for the
third condition, there was no known algorithm that could remove all such useless arcs in O(n log n)-
time. As this problem seems to be simple, this issue had not been noticed until it was pointed out
much later by Biedl, Brejová and Vinar [BBV00]. Although an O(n log n)-time algorithm for the
maximum s, t-flow problem in directed planar graphs has been devised by Borradaile and Klein
[BK09], the question of removing all the useless arcs in O(n log n)-time remains unsolved.

In this paper, we study the flow network simplification problem, where we are given a directed
planar graph G = (V,E) on n vertices, a source vertex s and a sink vertex t, and the goal is to
remove all the arcs e that are not contained in any simple s, t-path. One may observe that the
problem of determining the usefulness of a single arc involves finding two vertex-disjoint paths,
which is NP-complete in general directed graphs [FHW80]. Thus, detecting all the useless arcs at
once is non-trivial. Here we present a linear-time algorithm that determines all the useless arcs,
thus solving the problem left open in the work of Weihe [Wei97b] and settling the complexity of
simplifying a flow network in directed planar graphs.

The main ingredient of our algorithm is a decomposition algorithm that slices a plane graph
into small strips with simple structures. This allows us to design an appropriate algorithm and
data structure to handle each strip separately. Our data structure is simple but requires a rigorous
analysis of the properties of a planar embedding. We use information provided by the data structure
to determine whether each arc e is contained in a simple s, t-path P in O(1) time, thus yielding
a linear-time algorithm. The main difficulty is that we cannot afford to explicitly compute such
s, t-path P (if one exists) as it would lead to O(n2) running time. The existence of any path P can
only be determined implicitly by our structural lemmas.

Our main algorithm runs in linear time. However, it requires the planar embedding (which
is assumed to be given together with the input graph) to contain no clockwise cycle and that
every vertex except the source and the sink has degree exactly three. We provide a sequence of
linear-time reductions that produces a plane graph that satisfies the above requirements with the
guarantees that the value of maximum s, t-flow is preserved. In particular, we apply a standard
degree-reduction to reduce the degree of the input graph and invoke the algorithm of Khuller,
Naor, and Klein [KNK93] to modify the planar embedding using an application of shortest path
computation in the dual graph, which can be done in linear time by the algorithm of Henzinger,
Klein, Rao, and Subramanian [HKRS97].

1.1 Our Contributions

Our contribution is two-fold. Firstly, our algorithm removes all the useless arcs in a directed
planar s, t-flow network in linear-time, which thus completes the framework of Weihe [Wei97b] and
yields an alternative O(n log n)-time algorithm for computing maximum s, t-flow on directed planar
graphs. Secondly, our algorithm can be seen as a (truly) linear-time s, t-flow sparsifier, which runs
faster than any known maximum s, t-flow algorithm on directed (and also undirected) planar graphs
(which can be seen as an s, t-flow sparsifier as well). The plane graph produced by our algorithm
has simple structures that can be potentially exploited in the further developments of network flow
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algorithms; in particular, this may lead to a simpler or faster algorithm for computing maximum
s, t-flow in directed planar graphs. In addition, our algorithm could be adapted to simplify a flow
network in undirected planar graphs as well.

1.2 Related Work

Planar duality plays crucial roles in planar flow algorithm developments. Many maximum flow algo-
rithms in planar graphs exploit a shortest path algorithm as a subroutine. However, the O(n log n)-
time algorithm for the maximum s, t-flow problem in directed planar graphs by Borradaile and Klein
[BK09], which is essentially a left-most augmenting-path algorithm, is not based on shortest path
algorithms. Erickson [Eri10] reformulated the maximum flow problem as a parametric shortest
path problem. The two O(n log n)-algorithms were shown to be the same. [Eri10] but with dif-
ferent interpretation. Roughly speaking, the first one by Borradaile and Klein runs mainly on the
primal graph while the latter one by Erickson runs mainly on the dual graph. Borradaile and
Harutyunyan [BH13] explored this path-flow duality further and showed a correspondence between
maximum flows and shortest paths in directed planar graphs with no restriction on the locations
of the source and the sink.

For undirected planar unit capacity networks, Weihe [Wei97a] presented a linear time algorithm
for the maximum s, t-flow. Brandes and Wagner [BW00] and Eisenstat and Klein [EK13] presented
linear time algorithms when the planar unit-capacity network is directed.

A seminal work of Miller and Naor [MN95] studied flow problems in planar graphs with multiple
sources and multiple sinks. The problem is special in planar graphs as one cannot use standard
reduction to the single-source single-sink problem without destroying the planarity. Using a wide
range of planar graph techniques, Borradaile, Klein, Mozes, Nussbaum, Wulff-Nilsen [BKM+11]
presented an O(n log3 n) algorithm for this problem.

2 Preliminaries and Background

We use the standard terminology in graph theory. By the degree of a vertex in a directed graph,
we mean the sum of its indegree and its outdegree. A path P ⊆ G is a simple path if each vertex
appears in P at most once. A cycle in a directed graph is a simple directed walk (i.e., no internal
vertices appear twice) that starts and ends at the same vertex. A strongly connected component of
G is a maximal subgraph of G that is strongly connected. The boundary of a strongly connected
component is the set of arcs that encloses the component (arcs on the unbounded face of the
component). We call those arcs boundary arcs. For any strongly connected component C such that
s, t /∈ V (C), a vertex v ∈ V (C) is an entrance of C if there exists an s, v-path P ⊆ G such that P
contains no vertices of C except v, i.e., V (P ) ∩ V (C) = {v}. Similarly, a vertex v ∈ V (C) is an
exit of C if there exists an v, t-path P ⊆ G such that P contains no vertices of C except v, i.e.,
V (P ) ∩ V (C) = {v}.

Consider an s, t-flow network consisting of a directed planar graph G, a source vertex s and a
sink vertex t. We say that an arc uv is a useful arc (w.r.t. s and t) if there is a simple s, t-path
P containing uv. Thus, the s, u and the v, t subpaths of P have no common vertices. Otherwise,
if there is no simple s, t-path containing uv, then we say that uv is a useless arc (w.r.t. s and t).
Similarly, a path P is useful (w.r.t. s and t) if there is a simple s, t-path Q that contains P . Note
that if a path P is useful, then all the arcs of P are useful. However, the converse is not true, i.e.,
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all the arcs of P are useful does not imply that P is a useful path.
Throughout the paper, we denote the input directed planar graph by G and denote the number

of vertices and arcs of G by n and m = O(n), respectively. We also assume that a planar embedding
of G is given as input, and the sink vertex t is on the unbounded face of the embedding. Note that
we assume that our flow networks have unit-capacities although the algorithm works on networks
with arbitrary capacities as well.

2.1 Planar Embedding and Basic Subroutines

We assume that the plane graph is given in a standard format in which the input graph is represented
by an adjacency list whose arcs sorted in counterclockwise order. To be precise, our input is a table
T of adjacency lists of arcs incident to each vertex v ∈ V (G) (i.e., V (G) is the index of T ) sorted in
counterclockwise order. Each adjacency list T (v) is a doubly linked-list of arcs having v as either
heads or tails (i.e., arcs of the forms uv or vw). Given an arc vw one can find an arc vw′ next to vw
in the counterclockwise (or clockwise) order. This allows us to query in O(1) time the right-most
arc (resp., left-most arc) of uv, which is an arc vw in the reverse direction that is nearest to uv in
the counterclockwise (resp., clockwise) order.

2.2 Left and Right Directions

Since we are given a planar embedding, we may compare two paths/arcs using the notion of left
to and right to. Let us consider a reference path P and place it so that the start vertex of P is
below its end vertex. We say that a path Q is right to P if we can cut the plane graph along the
path P in such a way that Q is enclosed in the right side of the half-plane. Our definition includes
the case that Q is a single arc. We say that an arc uu′ leaves P to (resp., enters P from) the right
if u ∈ V (P ) and uu′ lies on the right half-plane cutting along P . Similarly, we say that a path Q
leaves P to (resp., enters P from) the right if the first arc of Q leaves P to (resp., enters P from)
the right half-plane cutting along P . These terms are also used analogously for the case of the left
direction.

As mentioned, the representation of a plane graph described in the previous section allow us to
query in O(1) time the right-most arc vw of a given arc uv, which is the arc in the reverse direction
nearest to uv in the counterclockwise order. Consequently, we may define the right-first-search
algorithm as a variant of the depth-first-search algorithm that chooses to traverse to the right-most
(unvisited) arc in each step of the traversal.

We may assume that the source s has a single arc e leaving it. Thus, the right-first-search
(resp., left-first-search) started from s gives a unique ordering of vertices (because every path must
start from the arc e).

2.3 Forward and Backward Paths

Forward and backward paths are crucial objects that we use to determine whether an edge is useful
or useless. Let F be a reference path, which we call a floor. We order vertices on F according to
their appearance on F and denote such order by π : V (F ) → [|V (F )|]. We may think that F is a
line that goes from left to right.

Consider any path P that starts and ends at vertices on F . We say that P is a forward path
P w.r.t. F if the order of vertices in V (P ) ∩ V (F ) agrees with that of F , i.e., for all vertices
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u, v ∈ V (P ) ∩ V (F ), π(u) < π(v) implies that u appears before v on P ; otherwise, we say that P
is a backward path P w.r.t. F . In general, we will use the term forward path to mean a minimal
forward path, i.e., a forward path P that intersects F only at its start and end vertices and share no
inner vertices with F . We will use the term extended forward path to mean a non-minimal forward
path. In this sense, the ceiling U is also an extended forward path. Analogously, we use the same
notions for backward paths. A path P is flipped w.r.t. F if it starts from the left-side of F and
ends on the right-side of F . Similarly, P is reverse-flipped w.r.t. F if it starts from the right-side of
F and ends on the left-side of F . A non-flipped path is a path that lies on the left-side of F , and a
hanging path is a path that lies on the right-side of F .

2.4 Strips and Links

We are ready to define our main structural components. A strip is formed by a floor F and a
forward path U w.r.t. F , called a ceiling. A strip is a region enclosed by a floor F and a ceiling U ,
and we denote the strip by CU,F . Observe that if we draw F in such a way that F is a line that
goes from left to right, then F lies beneath U in the planar drawing. The two paths U and F form
the boundary of the strip CU,F . A strip is proper if U and F are internally vertex disjoint, i.e., they
have no vertices in common except the start and the end vertices. Generally, we use the term strip
to mean a proper strip except for the case of primary strip, which we will define later in Section 7.

Consider a proper strip CU,F . We call arcs in U and F boundary arcs and call other arcs
(i.e., arcs in E(CU,F ) − (E(U) ∪ E(F ))) inner arcs. Similarly, vertices in U and F are called
boundary vertices and other vertices (i.e., vertices in V (CU,F ) − (V (U) ∪ V (F ))) are called inner
vertices. A path P ⊆ CU,F which is not entirely contained in F or U is called a link in CU,F

if its start and end vertices are boundary vertices and all other vertices are inner vertices, i.e.,
V (P ) ∩ (V (U) ∪ V (F )) = {u, v} where u, v are the first and the last vertices of P , respectively.
Observe that a link has no boundary arcs, i.e., E(P ) ∩ (E(U) ∪ E(F )) = ∅. A link in CU,F whose
start and end vertices are in the floor F can be classified as forward and backward in the same
manner as forward and backward paths (w.r.t. the floor F ). Specifically, forward (resp., backward)
links are minimal forward (resp., backward) paths. A link, however, can start at some vertex on
the floor F and end at an inner vertex of the ceiling U ; in this case, we call it an up-cross path.
On the other hand, if it goes from an inner vertex of the ceiling U to some vertex on the floor F ,
we call it a down-cross path. A hanging path inside a strip is defined to be a hanging path w.r.t.
the ceiling U . That is, a hanging path is a link that starts and ends at inner vertices of the ceiling
U . Note that a hanging path can be either forward or backward hanging path. The classification
of these links are shown in Figure 1.

A link inside a proper strip slices the strip into two pieces: one on the left and on the right
of the link. If we slice a strip with a forward, up-cross, down-cross or forward hanging path, then
we have two strips that are again proper strips. In this sense, we say that a strip is minimal if we
cannot slice it further, i.e., it has neither forward, up-cross, down-cross nor forward hanging paths
(but, backward paths are allowed).

2.5 The Usefulness of Forward Paths

The usefulness of forward paths inside a strip CU,F can be determined by the usefulness of its floor
as stated in the following lemma.
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Figure 1: The classification of links in a strip.

Lemma 1. Consider a strip CU,F such that the source vertex s and the sink vertex t are not in
CU,F . If F is useful, then so is any forward path w.r.t. CU,F .

Proof. Let u and v be the start and the end vertices of F , and let P be a forward path connecting
some vertices q, w ∈ V (F ). Since F is useful, there exists a simple s, t-path R that contains F .
We may choose R to be the shortest such path. Since s, t are not in CU,F , the minimality of R
implies that none of the vertices in V (R) − V (F ) are in CU,F . Consequently, the path P (which
is a link) has no vertices in V (R) − V (F ). We will construct a new simple s, t-path by replacing
the q, w-subpath of R by P . To be formal, let Rs,q and Rw,t be the s, q and w, t subpaths of R,
respectively. We then define a new path R′ = Rs,q · P · Rw,t. It can be seen that R′ is a simple
s, t-path. This proves that P is useful.

The following corollary follows immediately from Lemma 1.

Corollary 2. Consider a strip CU,F such that the source vertex s and the sink vertex t are not in
CU,F . If F is useful, then so is any extended forward path w.r.t. CU,F .

Proof. We proceed the proof in the same way as that of Lemma 1. First consider any extended
forward path P . Observe that P can be partitioned into subpaths so that each subpath is either
contained in R or is a forward path w.r.t CU,F . We replace subpaths of F by these forward paths,
which results in a new u, v-path P ′ ⊇ P , where u and v are the start and the end vertices of the
floor F , respectively. Since F is useful, there exists a simple s, t-path R that contains F . We
may assume that R is the shortest such path. By the minimality of R, we know that P ′ has no
vertices in V (R) − V (F ) (because P ′ ⊆ CU,F ). So, we can construct a new simple s, t-path R′ by
replacing the path F ⊆ R in R by the path P ′. The simple s, t-path R′ ⊇ P ′ ⊇ P certifies that P
is useful.

2.6 Other important facts

Below are the useful facts that form the basis of our algorithm.

Lemma 3. Let e′ be any useless arc in G. Then any useful arc e ∈ E(G) is also useful in G−{e′}.
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Proof. By the definition of useful arc, there exists a simple s, t-path P in G containing the arc
e, and such path P cannot contain e′; otherwise, it would certify that e′ is useful. Therefore,
P ⊆ G− {e′}, implying that e is useful in G− {e′}.

Lemma 4. Let C be a strongly connected component, and let B be the set of boundary arcs of C.
Then B forms a counter clockwise cycle.

Proof. Since we assume that the embedding has no clockwise cycle, it suffices to show that B is
a cycle. We prove by a contradiction. Assume that B is not a cycle. Then we would have two
consecutive arcs in B that go in opposite directions. (Note that the underlying undirected graph
of B is always a cycle.) That is, there must exist a vertex u with two leaving arcs, say uv and
uw. Since u, v, w are in the same strongly connected component, the component C must have a
v, u-path P and and a w, u-path P ′. We may assume minimality of P and P ′ and thus assume that
they are simple paths. Now P ∪ {uv} and P ′ ∪ {uw} form a cycle, and only one of them can be
counterclockwise (since uv and uw are in opposite direction), a contradiction.

Lemma 5. Let u and v be an entrance and an exit of C, and let Pu and Pv be an s, u-path Pu

and a v, t-path Pv that contains no vertices of C except u and v, respectively. Then Pu and Pv are
vertex disjoint.

Proof. Suppose Pu and Pv are not vertex-disjoint. Then the intersection of Pu and Pv induces a
strongly connected component strictly containing C. This is a contradiction since C is a maximal
strongly connected subgraph of G.

3 Overview of Our Algorithm

In this section, we give an overview of the algorithm. First, we preprocess the plane graph so that
it meets the following requirements.

1. There is no clockwise cycle in the planar embedding.

2. The source s is adjacent to only one outgoing arc.

3. Every vertex except s and t has degree three.

We provide in Section 4 a sequence of reductions that outputs a graph satisfied the above conditions
while guaranteeing that the value of maximum s, t-flow is preserved.

It is worth noting that the degree-three condition is not a strict requirement for our main
algorithm. We only need every vertex to have either indegree one or outdegree one; a network that
meets this prerequisite is called a unit network.

After the preprocessing step, we apply the main algorithm, which first decomposes the plane
graph into a collection of strongly connected components. The algorithm then processes each
strongly connected component independently. Notice that the usefulness of arcs that lie outside of
the strongly connected components can be determined by basic graph search algorithms. To see
this, let us contract all the strongly connected components, which results in a directed acyclic graph
(DAG). Since there is no cycle, an arc uv is useful if and only if u is reachable from s, and t is
reachable from v. So, it suffices to run any graph search algorithm to list all the vertices reachable
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Figure 2: The top figure illustrates the outside case, while the bottom figure illustrates the inside
case.

from s and those reachable from t in the reverse graph. Hence, we are left to work on arcs inside
each strongly connected component.

We classify each strongly connected component into an outside case and an inside case. The
outside case is the case that the source s lies outside of the component, and the inside case is the
case that the source s is enclosed inside the component. (Note that since s has no incoming arc, it
cannot be on the boundary of a strongly connected component.) We deal with the outside case in
Section 6 and deal with the inside case in Section 7. While the inside case is more complicated, we
decompose a component of the inside case into subgraphs, which resemblance those in the outside
cases. In both cases, the main ingredient is the strip decomposition, which allows us to handle all
the useless arcs in one go. We present the strip decomposition algorithm in Section 5. Please see
Figure 2 for the example of outside and inside cases. It is possible to have many inside cases (see
Figure 3).

4 Preprocessing The Plane Graph

In this section, we present a sequence of reductions that provides a plane graph required by the
main algorithm. The input to this algorithm is a directed planar flow network (G0, s0, t0) consisting
of a plane graph G0 (i.e., a directed planar graph plus a planar embedding), a source s0 and a sink
t0. Our goal is to compute a directed planar flow network (G, s, t) consisting of a plane graph G,
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Figure 3: An example showing 7 components. Note the nested inside cases.

a source s and a sink t with the following properties.

(1) The value of the maximum flow in the network (G, s, t) and that in the original network
(G0, s0, t0) are the same.

(2) The plane graph G has no clockwise cycle.

(3) Every vertex in G except the source s and the sink t has degree exactly three.

(4) The source s has no incoming arc and has outdegree one.

(5) The resulting graph G has |V (G)| ≤ |E(G0)|+ 2 and |E(G)| ≤ 2|E(G0)|+ 2.

The main subroutine in the preprocessing step is the algorithm for removing all the clockwise
cycles of a given plane graph H by Khuller, Naor and Klein [KNK93], which guarantees to preserve
the value of maximum s, t-flow. This subroutine can be implemented by computing single-source
shortest path in the dual planar graph. The setting of this shortest path problem is by placing
a source s∗ on the outer-face of the dual graph, which can be computed in linear-time using the
algorithm of Henzinger, Klein, Rao, and Subramanian [HKRS97]. This subroutine introduces no
new vertices but may reverse some arcs.

4.1 Reduction

Our preprocessing first removes all the clockwise cycles. Then it applies a standard reduction to
reduce the degree of all the vertices:

• Step 1: We remove all the clockwise cycles from the plane graph G0. We denote the plane
graph obtained in this step by G1.
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• Step 2: We apply the degree reduction to obtain a plane graph G2 that satisfies the degree
conditions in Properties (4) and (5):

We replace the source s0 by an arc ss0, i.e., we introduce the new source s and add an arc
ss0 joining s to s0. For notation convenience, we rename t0 as t. Then we replace each vertex
v of degree dv by a counterclockwise cycle Ĉv of length dv. We re-direct each arc going to v
and leaving v to exactly one vertex Ĉv in such a way that no arcs cross. (So, each vertex of
Ĉv corresponds to an arc incident to v in G0)

As we discussed, it follows by the result in [KNK93] that removing clockwise cycles does not
change the value of the maximum flow, and it is not hard to see that the degree reduction has
no effect on the value of maximum flow on edge-capacitated networks. Thus, Property (1) holds
for (G, s, t). Property (2) holds simply because we remove all the clockwise cycles at the end, and
Property (3)-(5) follows directly from the degree reduction.

5 Strip-Slicing Decomposition

The crucial part of our algorithm is the decomposition algorithm that decomposes a strongly
connected component C into (proper) strips, which are regions of C in the planar embedding
enclose by two arc-disjoint paths U and F that share start and end vertices.

We will present the strip-slicing decomposition algorithm that decomposes a given strip CU,F

into a collection S of minimal strips in the sense that any strip in S cannot be sliced into smaller
strips. Moreover, any two strips obtained by the decomposition are either disjoint or share only
their boundary vertices. We claim that the above decomposition can be done in linear time.

If then certain prerequisites are met (we will discuss this in the later section), then our strip-
slicing decomposition gives a collection of strips such that all the inner arcs of each strip are useless
while all the boundary arcs are useful.

Before proceeding to the presentation of the algorithm, we advise the readers to recall definitions
of links and paths in a strip in Section 2.4.

5.1 The Decomposition Algorithm

Now we describe our strip-slicing decomposition algorithm. We start our discussion by presenting
an abstraction of the algorithm. We denote the initial (input) strip by CU∗,F ∗ . We call U∗ the
top-most ceiling and call F ∗ the lowest floor. The top-most ceiling U∗ can be a dummy ceiling that
does not exist in the graph.

The decomposition algorithm taking as input a strip CU,F . Then it finds the “right-most” path
P w.r.t. the floor F that is either a forward path or an up-cross path, which we call a slicing path.
This path P slices the strips into two regions, the up-strip and the down-strip. Please see Figure 4
for illustration. Intuitively, we wish to slice the input strip into pieces so that the final collection
consists of strips that have no forward, up-cross, down-cross nor forward hanging paths (each of
these paths can slice a strip into smaller ones).

The naive implementation yields an O(n2)-time algorithm; however, with a careful implemen-
tation, we can speed up the running time to O(n). We remark that our decomposition algorithms
(both the quadratic and linear time algorithm) do not need the properties that the input plane
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graph has no clockwise cycles and that every vertex (except source and sink) has degree three.
Thus, we are free to modify the graph as long as the graph remains planar.

To make the readers familiar with our notations, we start by presenting the quadratic-time
algorithm in Section 5.3 and prove its correctness. Then we will present the linear-time algorithm
in Section 5.4 and show that it has the same properties as that of the quadratic-time algorithm.
The basic subroutines that are shared in both algorithms are presented in Section 5.2

More precisely, we prove the following lemmas in the next two sections.

Lemma 6. There is an O(n2)-time algorithm that, given as input a strip CU∗,F ∗, outputs a col-
lection S of strips such that each strip CU,F ∈ S has neither forward, up-cross, down-cross nor
forward hanging path (w.r.t. U).

Lemma 7. There is a linear-time algorithm that, given as input a strip CU∗,F ∗, outputs a collection
S of strips such that each strip CU,F ∈ S has neither forward, up-cross, down-cross nor forward
hanging path (w.r.t. U).

The important property that we need from the decomposition algorithm is that if the floor of
the input strip CU∗,F ∗ is useful, then all the boundary arcs of every strip CU,F ∈ S are also useful.

Lemma 8. Let S be a collection of minimal strips obtained by running the strip-slicing decomposi-
tion on an input strip CU∗,F ∗. Suppose the source s and the sink t are not enclosed in CU∗,F ∗ and
that the floor F ∗ is useful. Then, for every strip CU,F ∈ S, all the boundary arcs of CU,F (i.e., arcs
in U ∪ F ) are useful.

Proof. We prove by induction that the decomposition algorithm maintains an invariant that the
ceiling U and the floor F are useful in every recursive call.

For the base case, since F ∗ is useful, Lemma 1 implies that U∗ is useful because it is a forward
path w.r.t. F ∗. Inductively, assume that the claim holds prior to running the decomposition
algorithm on a strip CU,F . Thus, U and F are useful. If the algorithm finds no slicing-path, then
we are done. Otherwise, it finds a slicing-path P , which slices the strip CU,F into CUup,Fup and
CUdown,Fdown

. Let s′ and t′ be the start and end vertices of the strip CU,F , respectively. Observe that
each of the path Uup, Fup, Udown and Fdown is a simple s′, t′-path, regardless of whether the slicing
P is a forward path or an up-cross path. Since s and t are not enclosed in CU,F , we can extend
any simple s′, t′-path Q into a simple s, t-path, which certifies that Q is a useful path. Therefore,
Uup, Fup, Udown and Fdown are all useful, and the lemma follows.

5.2 Basic Subroutines

Before proceeding, we formally describe the two basic procedures that will be used as subroutines
in the main algorithms.

PROCEDURE 1: Slice the strip CU,F by a path P . This procedure outputs two strips
CUup,Fup , CUdown,Fdown

. We require that P is either a forward-path or an up-cross path. Let s′, t′ be
the start and end vertices of the strip CU,F (which are end vertices of both U and F ), and let u, v
be the start and the end vertices of P , respectively. We define the two new strips by defining the
new floors and strips as below.
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• Case 1: P is a forward path. Then we know that u, v are on the floor F and other vertices
of P are not on the boundary of CU,F . To define the up-strip, we let Uup := U and construct
Fup by replacing the u, v-subpath of F by P . To define the down-strip, we let Udown := P
and let Fdown be the u, v-subpath of F .

• Case 2: P is an up-cross path. Then we know that u is on the floor F while v is on the
ceiling U and other vertices of P has not on the boundary of CU,F . To define the up-strip,
we let Uup be the s′, u-subpath of U and construct Fup by concatenating the s′, u-subpath of
F with P . To define the down-strip, we construct Udown by concatenating the path P with
the v, t′-subpath of U , and we let Fdown be the the u, t′-subpath of F .

PROCEDURE 2: Find a slicing path starting from u ∈ F . We require that there are no
arcs leaving the strip CU,F (we can temporary remove them). The algorithm runs recursively in the
right first search manner (recall this is a variant of depth first search where we choose the traverse
to the right-most arc). For simplicity, we assume that the first arc that will be scanned is the arc
leaving u that is next to the floor arc. Specifically, letting uw ∈ F be the floor arc and uw′ be
the arc next to uw in counterclockwise order, the algorithm will ignore uw and start by traversing
uw′. We terminate a recursive call when we reach a boundary vertex v ∈ U ∪ F . The algorithm
then decides whether the path P is a slicing path. More precisely, if v appears before u (thus,
P is a forward path) or v is an internal vertex of the ceiling (thus, P is an up-cross path), then
the algorithm returns that we found a slicing path P plus reports that P is a forward path or an
up-cross path. Otherwise, we continue the search until we visited all the inner vertices reachable
from u; in this case, the algorithm returns that there is no slicing path. Notice that any slicing
path P found by the algorithm is the right most slicing path starting from u.

5.3 Quadratic-Time Strip-Slicing Decomposition (Proof of Lemma 6)

The Main Algorithm. Now we describe our O(n2)-time algorithm in more details. The algo-
rithm reads an input strip CU∗,F ∗ and then outputs a collection of minimal strips S. Our algorithm
consists of initialization and recursive steps (we may think that these are two separated procedures).

Let s′, t′ be the start and the end vertices of the input strip CU∗,F ∗ (i.e., the start and end
vertices of the paths U∗ and F ∗). At the initialization step, we remove every arc leaving the input
strip and then make sure that the initial strip has no hanging path by adding an auxiliary ceiling
(s′, x,′ t′) to enclose the input strip, where x′ is a dummy vertex that does not exist in the graph.
Clearly, the modified strip has no hanging path.

Next we run the recursive procedure. Let us denote the input strip to this procedure by CU,F .
We first find a slicing path P . If there is no such path, then we add CU,F to the collection of strips
S. Otherwise, we found a slicing path P , and we use it to slice the strip CU,F into the up-strip
CUup,Fup and the down-strip CUdown,Fdown

. We then make recursive calls on CUup,Fup , CUdown,Fdown
,

and terminate the algorithm (or return to the parent recursive-call).

Analysis The running-time of the algorithm can be analyzed by the following recurrent relation:

T (n) = T (n1) + T (n− n1) +O(n),where T (1) = 1.

This implies the quadratic running-time of the algorithm. It is clear from the construction that
any two strips in S can intersect only at their boundaries and that any strip in the collection S
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contains no forward nor up-cross path. It remains to show that the any strip at the termination
has no hanging nor down-cross path.

Observe that the assertion holds trivially at the first call to the recursive procedure because the
ceiling U = (s′, x, t′) is an auxiliary ceiling (we simply have no arc leaving the lone internal vertex
of U). We will show that this property holds inductively, i.e., we claim that if CU,F has no forward
hanging nor down-cross path, then both CUup,Fup and CUdown,Fdown

also have no forward hanging
nor down-cross path. We consider two cases of the slicing path P .

Case 1: P is a forward path. Then the up-strip CUup,Fup has no forward hanging path
because Uup = U (but, a backward hanging path may exist), and CUup,Fup has no down-cross path
because, otherwise, any such path together with a subpath of P would form a down-cross path in
CU,F .

For the down-strip CUdown,Fdown
, we know that P = FUdown

and that P is the right-most path
w.r.t. to Fup. This means that there is no forward hanging path w.r.t. Udown simply because the
hanging path Q by definition must lie on the right of Udown = P , which contradicts the fact that P
is the right-most forward path (we can replace a subpath of P by Q to form a forward path right
to P ). Similarly, any down-cross path w.r.t. CUdown,Fdown

together with a subpath of P would form
a forward path right to P in CU,F , again a contradiction.

Case 2: P is an up-cross path. Then the up-strip CUup,Fup has no forward hanging path
simply because Uup is a subpath of U . It is also not hard to see that CUup,Fup has no down-cross
path. Suppose not. Then we have a down-cross path Q that starts from some internal vertex x of
Uup and ends at some vertex y in Fup. We have two cases: (1) if y ∈ F , then the path Q is also a
down-cross path in CU,F and (2) if y ∈ P , then the path Q together with a subpath of P form a
forward hanging path in CU,F . Both cases lead to contradiction.

Next consider the down-strip CUdown,Fdown
. The ceiling Udown consists of the slicing path P and

a subpath of U . Suppose there is a down-cross path Q in CUdown,Fdown
. Then we know that Q

must go from P to Fdown = U . But, this means that we can form a forward path right to P by
concatenating a subpath of P with Q, which contradicts the fact that P is the right-most slicing
path. Suppose there is a forward hanging path Q in CUdown,Fdown

. Then it must start from some
vertex v in P and ends on either P or the subpath of U in Udown. But, both cases imply that there
exists a slicing path P ′ that lie right to P , which contradicts our choice of P .

5.4 Linear Time Implementation

Now we present a linear-time implementation of our strip-slicing decomposition algorithm and thus
prove Lemma 7. The algorithm is similar to the one with quadratic running-time except that we
keep the information of vertices that have already been scanned. Here the recursive procedure has
an additional parameter v∗, which is a pointer to a vertex on the floor F that we use as a starting
point in finding the slicing path P .

To be precise, our algorithm again consists of two steps. Let us denote the input strip by
CU∗,F ∗ and denote its start and end vertices by s′ and t′, respectively. At the initialization step,
we remove all arc leaving C∗U , F

∗ and add an auxiliary ceiling (s′, x′, t′) to enclose the input strip
(x′ is a dummy vertex). Then we set the starting point v∗ := s′ and call the recursive procedure
with parameter CU,F (the modified strip) and v∗.

In the recursive procedure, we first order vertices on the floor F by v1, . . . , v` (note that v1 = s′

and v` = t′). Let i∗ be the index such that vi∗ = v∗. For each i = i∗ to ` in this order, we find a
slicing path starting from vi (using the right-first-search algorithm). If we cannot find a slicing path
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starting from vi, then we remove all the inner vertices and arcs scanned by the search algorithm
and iterate to the next vertex (i.e., to the vertex vi+1). Otherwise, we found a slicing path P and
exit the loop. Note that the loop terminates under two conditions. Either the search algorithm
finds no slicing path or it reports that there exists a slicing path P starting from a vertex vi. For
the former case, we add CU,F to the collection of strips S. For the latter case, we remove all the
inner vertices and arcs scanned by the search algorithm except those on P , and we then slice the
strip CU,F into the up-strip CUup,Fup and the down-strip CUdown,Fdown

. Finally, we make two calls
to the recursive procedure with parameters (CUup,Fup , vi) and (CUdown,Fdown

, vi), respectively. In
particular, we recursively run the procedure on the up and down strips, and we pass the vertex vi
as the starting point in finding slicing paths.

5.4.1 Implementation Details

Here we describe some implementation details that affect the running-time of our algorithm.

Checking whether a vertex is in the floor or ceiling. Notice that checking whether a vertex
is in the the floor F or the ceiling U can be an issue since the up-strip and the down-strip share
boundary vertices. A trivial implementation would lead to storing the same vertex in O(n) data
structures, and the algorithm ends up running in O(n2)-time. We resolve this issue by using a
coloring scheme. We color vertices on the floor F by red and the vertices on the ceiling U by
green. (Note that we color only the internal vertices of U since U and F share the start and end
vertices). We color other vertices by white. Now we can easily check if a vertex is in the floor or
ceiling by checking its color. When we make a recursive call to the up-strip and the down-strip.
We have to maintain the colors on the slicing path P to make sure that we have a right coloring.
More precisely, when we make a recursive call to the up-strip we color internal vertices of P by red
(since they will be vertices on the floor Fup) and then flip their colors to green later when we make
a recursive call to the down-strip (since they will be vertices on the ceiling Udown). Observe that
internal vertices of the slicing path P are internal vertices of the strip CU,F , which will be boundary
vertices of the up and down strips in the deeper recursive calls. As such, any vertices will change
colors at most three times (from white to green and then to red).

Checking if a path is a forward path. Another issue is when we search for a slicing path P
and want to decide whether the path we found is a forward path or a backward path. We simply
solve this issue by removing all the incoming arcs of vertices vi′ for all 0 ≤ i′ < i. This way any
path we found must be either a forward path or an up-cross path.

Slicing a Strip. Observe that we may create O(n) strips (and thus have O(n) floors and ceilings)
during the run of the decomposition algorithm. However, we cannot afford to store floors and
ceilings of every strip separately as they are not arc disjoint. Otherwise, just storing them would
require a running time of O(n2). To avoid this issue, we keep paths (either floor or ceiling) as
doubly linked lists. Consequently, we can store CU,F by referencing to the first and last arcs of the
floor (respectively, ceiling). Moreover, since we store paths as doubly linked list, each cut-and-join
operation can be done in O(1) time.
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Maintaining the search to be inside CU,F . As we may have an arc going leaving CU,F , we
have to ensure that the right-first-search algorithm would not go outside the strip. (Note that our
algorithm does not see the real drawing of CU,F on a plane and thus cannot decide whether an arc
is in a strip or not.) To do so, we temporary remove the arcs leaving CU,F and put them back after
the procedure terminates. Observe that the inner parts of up-strip CUup,Fup and CUdown,Fdown

are
disjoint. Thus, each arc leaving CU,F is removed and put back at most once.

5.4.2 Correctness

For the correctness, it suffices the show that the slicing path P that we found in every step is
exactly the same as what we would have found by the quadratic-time algorithm. We prove this
by reverse induction. The base case, where we call the procedure on the initial strip CU∗,F ∗ , holds
trivially. For the inductive step, we assume the that both implementations found the same slicing
paths so far. Now if the recursive procedure found no slicing path, then we are done. Otherwise,
we found a slicing path P . Let us order vertices on the floor F by v1, . . . , v`, and let vi be the start
vertex of P . First, consider the up-strip CUup,Fup . Clearly, CUup,Fup has no up-cross path starting
from any vertex vi′ with 0 ≤ i′ < i. We also know that CUup,Fup has no forward path Q starting
from vi′ ; otherwise, the path Q is either a forward path in CU,F starting at vi′ (if Q starts and ends
on U) or we can form another slicing path P ′ starting from vi′ by concatenate Q with a subpath
of P . Moreover, all the vertices that scanned by running the right-first-search algorithm from vi
must be enclosed in the down-strip. Thus, we conclude that removing all scanned vertices (those
that are not on P ) does not affect the choice of slicing paths in the up-strip.

Next consider the down-strip. In any case, we know that the slicing path P becomes a subpath
of the ceiling of CUdown,Fdown

. Clearly, any path Q from P to Fdown would either form a forward
path P ′ lying right to P or would imply that CU,F has a down-cross path (this is the case when Q
is a subpath of a longer path that goes from U to Fdown), which are contradictions in both cases.
Thus, we can remove every vertex that is scanned by the right-first-search algorithm and is not
on the slicing path P without any effect on the choices of slicing paths in deeper recursive calls.
To conclude, our linear-time and quadratic-time implementations have the same choices of slicing
paths and must produce the same outputs. The correctness of our algorithm is thus implied by
Lemma 6.

5.4.3 Running Time Analysis

Clearly, the initialization step of the decomposition algorithm runs in linear-time. Thus, it suffices
to consider the running time of the recursive procedure. We claim that each arc is scanned by
our algorithm at most O(1) times, and each vertex is scanned only when we scan its arcs. This
will immediately imply the linear running time. We prove this by induction. First, note that we
remove all the internal vertices and arcs that are scanned by the search algorithm but are not on
the slicing path P (if it exists), which means that these vertices and arcs are scanned only once
throughout the algorithm. Thus, if we found no slicing path, then the decomposition runs in linear
time on the number of arcs in the strip. Otherwise, we found a slicing path P starting at some
vertex vi ∈ F . The recursive procedure slices the strip CU,F in such a way that the two resulting
strips CUup,Fup and CUdown,Fdown

have no inner parts in common. Thus, we can deduce inductively
that the running time incurred by scanning inner arcs and vertices of the two strips are linear on
the number of arcs in the strips. Moreover, since we pass vi as the starting point of iterations in
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deeper recursive calls, we can guarantee that any vertices vi′ ∈ F with i < i′ (those that appear
before vi) will never be scanned again. We note, however, that we may scan the vertex vi multiple
times because some arcs leaving vi that lie on the left of P have never been scanned. Nevertheless,
we can guarantee that the number of times that we scan vi is at most the number of its outgoing
arcs. To see this, first any arc that does not lead to a slicing path will be removed. For the arc
that leads to a slicing path, we know that it will become an arc on the boundaries of up and down
strips and thus will never be scanned again. In both cases, we can see that the number of times we
scan vi is upper bounded by the number of its outgoing arcs. Therefore, the running time of our
algorithm is linear on the number of arcs in the input strip, completing the proof of Lemma 7.

6 The Outside Case: Determining useless arcs when s is not in
the component

In this section, we describe an algorithm that determines all useful arcs of a strongly connected
component C when the source s is in the infinite face.

We first outline our approach. Consider a strongly connected component C. If the boundary of
C is not a cycle, then the strong connectivity implies that we can extend some path on the boundary
to form a clockwise cycle, which contradicts to our initial assumption that the embedding has no
clockwise cycle.

If all arcs in the boundary of C, denoted by Q, are useless, then no arcs of C are useful.
Otherwise, we claim that some arcs of Q are useful and some are useless. Moreover, these arcs
partition Q into two paths Q1 and Q2 such that Q1 is a useful path and all arcs of Q2 are useless.

Lemma 9. Consider the boundary of a strongly connected component C. Let Q be the cycle that
forms the boundary of C. Then either all arcs of C are useless or there are non-trivial paths Q1

and Q2 such that

• E(Q) = E(Q1) ∪ E(Q2).

• Q1 is a useful path.

• All arcs of Q2 are useless.

Moreover, there is a linear-time algorithm that computes Q1 and Q2.

Proof. First, we claim that all arcs of C are useless if and only if Q has no entrance or has no exit.
If Q has no entrance or has no exit, then it is clear that all arcs of C are useless because there

can be no simple s, t-path using an edge of C.
Suppose Q has at least one entrance u and at least one exit v. We will show that Q has both

useful and useless arcs, which can be partitioned into two paths as in the statement of the lemma.
Observe that no vertices of Q can be both entrance and exit because of the degree-three as-

sumption. (Any vertex that is both entrance and exit must have degree at least four, two from Q
and two from the entrance and the exit paths.)

For any pair of entrance and exit u, v, let Quv be the u, v-subpath of Q. We claim that Quv is
a useful path. To see this, we apply Lemma 5. Thus, we have an s, u-path Pu and a v, t-path Pv
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that are vertex disjoint. Moreover, Pu and Pv contain no vertices of Q except u and v, respectively.
Thus, R = Pu ·Quv · Pv form a simple s, t-path, meaning that Quv is a useful path.

Notice that Q has no useless arc only if Q has two distinct entrances u1, u2 and two distinct exits
v1, v2 that appear in Q in interleaving order (u1, v1, u2, v2). Now consider a shortest s, u1-path Pu1 ,
a shortest s, u2-path Pu2 , and the u1, u2-subpath Qu1,u2 of Q. These three paths together encloses
any path that leaves the component C through an exit v1. Thus, any v1, t-path must intersect
either Pu1 or Pu2 , contradicting Lemma 5.

Consequently, a sequence of entrances and exits appear in consecutive order on Q. Let us take
the first entrance u∗ and the last exit v∗. We know from the previous arguments that any pair of
entrance and exit yields a useful subpath of Q. More precisely, the u∗, v∗-subpath Q1 of Q must be
useful and must contain all the entrances and exits because of the choices of u∗ and v∗. Consider
the other subpath – the v∗, u∗-subpath Q2 of Q. The only entrance and exit on Q2 are u∗ and v∗,
respectively. Thus, any path s, t-path P that contains an arc e of Q2 must intersect with the path
Q1. But, then the path P together with the boundary Q enclose the region of C that has no exit.
Thus, P cannot be a simple path. It follows that no arcs of Q2 are useful.

To distinguish the above two cases, it suffices to compute all the entrances and exits of Q using
a standard graph searching algorithm. The running time of the algorithm is linear, and we need to
apply it once for all the strongly connected components. This completes the proof.

6.1 Algorithm for The Outside Case

Now we present our algorithm for the outside case. We assume that some arcs in the boundary of
C are useful and some are useless.

Our algorithm decides whether each arc in C is useful or useless by decomposing C into a
collection of minimal strips using the algorithm in Section 5. Then any arc enclosed inside a
minimal strip is useless (only boundary arcs are useful). Thus, we can determine the usefulness of
arcs in each strip. Observe, however, that the component C is not a strip because it is enclosed
by a cycle instead of two paths that go in the same direction. We transform C into a strip as
follows. First, we apply the algorithm as in Claim 9. Then we know the boundary of C, which
is a cycle consisting of two paths Q1 and Q2, where Q1 is a useful path and Q2 is a useless path.
Let F ∗ = Q1, and call it the lowest-floor. Note that F ∗ starts at an entrance sC and ends at an
exit tC . We add to C a dummy path U∗ = (sC , u

∗, tC), where u∗ is dummy vertex, and call U∗

the top-most ceiling, which is a dummy ceiling. This transforms C into a strip, denoted by CU∗,F ∗ .
(See Figure 5)

Now we are able to decompose CU∗,F ∗ into a collection S of minimal strips by calling the strip-
slicing decomposition on CU∗,F ∗ . Since F ∗ is a useful path, we deduce from Corollary 2 that all
the strips CU,F ∈ S are such that both U and F are useful paths.

Next we show that no inner arcs of a strip CU,F ∈ S are useful, which then implies only arcs on
the boundaries of strips computed by the strip-slicing decomposition are useful. Therefore, we can
determine all the useful arcs in C in linear-time.

Lemma 10. Consider a strip CU,F ∈ S computed by the strip-slicing decomposition algorithm.
Then no inner arc e of CU,F is useful. More precisely, all arcs in e ∈ E(CU,F ) − E(U ∪ F ) are
useless.

Proof. Suppose for a contradiction that there is an inner arc e of CU,F that is useful. Then there is
an s, t path P containing e. We may also assume that P contains a link Q. That is, Q starts and
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Figure 5: The initial strip before the decomposition.

ends at some vertices u and v in V (U ∪ F ), respectively, and Q contains no arcs of E(U ∪ F ). By
Lemma 7, Q must be a backward path. Hence, it suffices to show that any backward path inside
the strip CU,F is useless.

By the definition of the backward path Q, v must appear before u on F , and by Lemma 8, F
is a useful path, meaning that there is an s, t-path R containing F . Let s′ and t′ be the start and
end vertices of the strip CU,F (i.e., s′ and t′ are the common start and end vertices of the paths U
and F , respectively). Then we have four cases.

• Case 1: v = s′ and u = t′. In this case, the path U and Q form a clockwise cycle, a
contradiction.

• Case 2: v = s′ and u 6= t′. In this case, v has degree three in Q ∪ U ∪ F . Thus, the path
R ⊇ F must start at the same vertex as F ; otherwise, v would have degree at least four. This
means that s = s′, but then P could not be a simple s, t-path because s must appear in P at
least twice, a contradiction.

• Case 3: v 6= s′ and u = t′. This case is similar to the former one. The vertex u has degree
three in Q ∪ U ∪ F . Thus, the path R ⊇ F must end at the same vertex as F ; otherwise, u
would have degree at least four. This means that t = t′, but then P could not be a simple
s, t-path because t must appear in P at least twice, a contradiction.

• Case 4: u 6= t′ and v 6= s′. Observe that P must enter and leave CU,F on the right of F (and
thus R) at some vertices a and b, respectively. We may assume wlog that the a, u-subpath
and the v, b-subpath of P are contained in R. Moreover, it can been seen that u and v appear
in different orders on the path R (that contains F ) and the path P (that contains Q). Thus,
P must intersect either the s, b-subpath of R, say Rs,b, or the a, t-subpath of R, say Ra,t.
(Note that R contains no inner vertices of Q by the definition of a backward path.)

Suppose P intersects Ra,t at some vertex x, and assume that x is the last vertex of P in
the intersection of P and Ra,t. Since P enters R at the vertex a from the right, the x, a-
subpath of P must lie on the right of R. But, then the union of the x, a-subpath of P and the
a, x-subpath of R forms a clockwise cycle, a contradiction. (See Figure 6 for illustration.)
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Figure 6: An illustration of Case 4 in the proof of Lemma 10

Now suppose P intersects Rs,b at some vertex y, and assume that y is the first vertex of
P in the intersection of P and Rs,b. Since P leaves R at the vertex b from the right, the
b, y-subpath of P must lie on the right of R. But, then the union of the b, y-subpath of P and
the y, b-subpath of R forms a clockwise cycle, again a contradiction.

Therefore, all backward paths inside the strip CU,F are useless and so do inner arcs of CU,F .

7 The Inside Case: Determining useful arcs of a strongly con-
nected component when s is inside of the component

In this section, we describe an algorithm for the case that the source vertex s is in the strongly
connected component C. In this case, the source vertex s is enclosed in some face fs in the
component C. It is possible that s is also enclosed nestedly in other strongly connected components
(see Figure 3). We will perform a simple reduction so that (1) the source s is enclosed inside the
component C, (2) s has only one outgoing arc, and (3) every vertex except s (and t) has degree
three: First, we contract the maximal component containing s inside fs into s. Now the source s
has degree more than one in a new graph. We thus add an arc s′s and declare s′ as a new source
vertex. Then we replace s by a binary tree on d leaves to maintain the degree-three requirement.
See Figure 7.

7.1 Overview

We decompose the problem of determining the usefulness of component C into many subproblems
and will deal with each subproblem (almost) independently. The basis of our decomposition is
in slicing the component with the lowest-floor path F ∗ and the top-most ceiling U∗. These two
paths then divide the component C into two parts: (1) the primary strip and (2) the open strip.
Figure 8 illustrates the paths F ∗ and U∗, and Figure 9 shows the schematic view of the primary
and the open strips. All types of strips and components will be defined later. The lowest-floor is
constructed in such a way that it includes all the exits of a component C. We thus assume that
the sink t is a vertex on the boundary of C, and there is no other exit.
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Figure 10: How to find F ∗: the path P is shown in solid red. The extension on the boundary is
shown as a dashed line.

7.1.1 The lowest-floor path F ∗.

We mainly apply the algorithm from Section 6 to the primary strip defined by two paths F ∗ and
U∗, which may not be arc-disjoint. The path F ∗ is the lowest-floor path defined similarly to the
outside case: We compute F ∗ by finding the right-most path P from s to t (hence, P is an s, t-path).
We recall that the sink t is placed on the unbounded face of the planar embedding. Thus, t must
lie outside of the region enclosed by C. This means that the right-most path P has to go through
some exit t′ on the boundary of C. Although we know that the right-most path goes from t′ to t
directly, we detour the path P along the boundary to include all the exits, which is possible since
the source s is enclosed inside the component. See Figure 10 for illustration.

7.1.2 Flipped paths.

Unlike the outside case, the path F ∗ in the inside case does not divide the component C into two
pieces because the source vertex s is inside some inner face of C. This leaves us more possibilities
of paths that we have not encountered in the outside case, called “flipped paths”. These are paths
that goes from the left-side of the floor F ∗ to the right-side (or vice versa). (Please recall the
terminology of left and right directions in Section 2.2, and recall the types of paths in Section 2.3.)
Fortunately, the reverse-flipped and hanging paths do not exist because of our choice of the lowest
floor path F ∗.

Lemma 11. Consider the construction of the lowest floor path F ∗ as in Section 7.1.1. Then there
is no reverse-flipped nor hanging paths w.r.t. F ∗.

Proof. Consider a connected component C that encloses the source s. We recall that F ∗ is con-
structed by finding the right-most s, t-path and then detouring along the boundary of C. Thus, F ∗

is a union of two subpaths: (1) the path F1 that is a subpath of the right-most s, t-path and (2)
the path F2 that is a subpath of the boundary of C.

First, we rule out the existence of a hanging path. Assume to the contrary that there is a path
P ⊆ C that leaves F ∗ to the right and enters F ∗ again from the right. Then clearly P must start
and end on the first subpath F1 of F ∗ (otherwise, P would have left the boundary). But, this would
contradict the fact that F1 is a subpath of the right-most s, t-path.
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Figure 11: The types of paths in the open strip.

Next, we rule out the existence of a reverse-flipped path. Assume to the contrary that there is a
path P that leaves F ∗ to the right and enters F ∗ again from the left. We assume the minimality of
such path (thus, P contains no internal vertices of F ∗). Then we know that P must start from F1.
(otherwise, P would have left the boundary). If P is a backward path, then the path P together
with a subpath of F ∗ forms a clockwise cycle, a contradiction (we would have gotten ride of them
in the preprocessing step). If P is a forward path, then it would contradict the fact that F1 is a
subpath of the right-most path since we can traverse along the path P (which is right to F1) to get
an s, t-path.

7.1.3 Primary Strip.

The primary strip is defined by two paths, which may not be arc-disjoint, namely F ∗ and U∗. The
path F ∗ is the lowest-floor path. The path U∗ is the top-most ceiling, which is an s, t-path such that
the strip CU∗,F ∗ encloses all (non-flipped) forward paths (w.r.t. F ∗). The path U∗ is essentially
the left-most path from s to t. Section 7.2 describes how we find U∗ given F ∗.

7.1.4 Open Strip.

The open strip Ĉ is defined to be everything not in the inner parts of the primary strip. See
Figure 11 for illustration.

To deal with arcs in Ĉ, we first characterize the first set of useless arcs: ceiling arcs. An arc
e ∈ Ĉ = (u, v) is a ceiling arc if u can be reachable only from paths leaving F ∗ to the left and v can
reach t only through paths entering F ∗ from the left as well. These arcs form “ceiling components”.
(Note that paths that form ceiling components are all backward paths because all the forward paths
w.r.t. F ∗ have been enclosed in CU∗,F ∗ .) We shall prove that these paths are useless in Lemma 18.

Therefore, as a preprocessing step, we delete all the ceiling arcs from Ĉ.
To deal with the remaining arcs in Ĉ, we first find strongly connected components H1, H2, . . .

in Ĉ. The arcs outside strongly connected components then form a directed acyclic graph D̂ that
represents essentially the structures of all flipped paths. We can now process each component Hi

using the outside-case algorithm only if we know which adjacent arcs in D̂ are valid entrances
and exits. For arcs in D̂ that belong to some flipped path, we can use a dynamic programming
algorithm to compute all reachability information needed to determine their usefulness.
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Our algorithm can be described shortly as follows.

• Initialization. We compute the lowest-floor path F ∗ and the top-most ceiling U∗, thus
forming the primary strip CU∗,F ∗ and the open strip Ĉ.

• The open strip (1): structures of flipped paths. We find all strongly connected com-
ponents in Ĉ and collapse them to produce the directed acyclic graph D̂. We then compute
the reachability information of arcs in D̂ and use it to determine the usefulness of arcs in D̂.

• The open strip (2): process each strongly connected component. Then we apply
the outside-case algorithm to each strongly connected component in Ĉ.

• The primary strip. We determine the usefulness of arcs in the primary strip.

In the following subsections, we describe how to deal with each part of C.

7.2 Initialization: Finding the Primary and Open Strips

In this section, we discuss the initialization step of our algorithm, which computes the primary and
the open strips. In this step, we also compute the reachability information of flipped paths, which
will be used in the later part of our algorithm.

As discussed in the previous section, we compute the lowest-floor path F ∗ by finding the right-
most s, t-path, which is unique and well-defined because s has a single arc leaving it. The path F ∗

is contained in C because we assume that t is an exit vertex on the boundary of C.
The top-most ceiling U∗ can be computed by simply computing the left-most non-flipped path

w.r.t. of F ∗ from s to t. This can be done in linear time by first (temporary) removing every arc
on the right-side of F ∗ and then computing the left-most path from s to t. Consequently, we have
the primary strip CU∗,F ∗ , we claim that it encloses all forward paths (w.r.t. F ∗).

Lemma 12. Every forward path w.r.t. F ∗ is enclosed in CU∗,F ∗.

Proof. Suppose to a contrary that there exists a forward path P not enclosed by CU∗,F ∗ . Then P
must intersect with U∗ or F ∗. If it is the former case, then P must have a subpath Q that leaves
and enters U∗ on the left (this is because U∗ is on the left of F ∗). We choose a subpath Q in which
the start vertex of Q, say u, appears before its end vertex, say v, on U∗. Such path Q must exist
because, otherwise, P would have a self-intersection inside CU∗,F ∗ . We may further assume that Q
is a minimal such path, which means that all the arcs of Q lie entirely on the left of U∗. But, then
U∗ would not be the left-most non-flipped path (w.r.t. F ∗) because the left-first-search algorithm
would have followed Q instead of the u, v-subpath of U∗, a contradiction.

The case that P intersects F ∗ is similar, and such path would contradict the fact that F ∗ is the
right-most path. Therefore, all the forward paths (w.r.t. F ∗) must be enclosed in CU∗,F ∗ .

Next consider the remaining parts of the component, which forms the open strip Ĉ = C−CU∗,F ∗ .
We have as a corollary of Lemma 12 that there is no simple s, t-path in the open strip that leaves
F ∗ from the right.

Corollary 13. No simple s, t′-path that lies on the right of F ∗.
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Proof. Suppose there is an s, t-path P in the open strip that leaves F ∗ from the right. Then we have
three cases. First, if P also enters F ∗ from the right, then P cannot be a forward-path and cannot
have any forward subpath by Lemma 12. Thus, P must have a self-intersection, contradicting to the
fact that P is a simple path. Second, if P enters F ∗ from the left, then we can find a u, v-subpath
Q of P such that u appears before v in F ∗ and Q is arc-disjoint from F ∗. But, then the right-
first-search algorithm would have followed Q instead of the u, v-subpath of F ∗, a contradiction.
Otherwise, if P never enters F ∗, then it must go directly to t. But, then the right-first-search
algorithm would have followed the subpath of P that leaves F ∗, a contradiction.

7.3 Working on the Open Strip (1): Dealing with Arcs in Flipped Paths

To determine the usefulness of arcs on the DAG D, which is formed by contracting strongly con-
nected components H1, H2, . . . in the open strip, it suffices to check if it is contained in some useful
flipped path w.r.t. F ∗.

We first prove the characterization of useful flipped paths. Section 7.3.1 describes how we can
check if an arc belongs to any useful path by using reachability information. Our first observation
is that every forward flipped path is useful.

Lemma 14. Every forward flipped path w.r.t. F ∗ is useful.

Proof. Consider any forward flipped path P . By the definition of the forward flipped path, P shares
no arcs with F ∗. Moreover, P starts at some vertex v ∈ F ∗ and ends at some vertex w ∈ F ∗ such
that v appears before w in F ∗. Note that F ∗ is a path that goes from s to the vertex t′ in the
boundary of the component C. We extend F ∗ to a simple s, t-path R by adding a t′, t-path that is
not in the component C. We then replace the u, v-subpath of R by P , thus getting a new path R′,
which is a simple path because R shares no arcs with P and contains no vertices of V (P )−{v, w}.
Thus, R′ is a simple s, t-path, implying that P is useful.

If an arc is not contained in any forward flipped path, it must be in some backward flipped path.
In most cases, a backward flipped path is useless except when there exists an exit that provides an
alternative route to t.

Consider the primary strip, which is enclosed by the lowest-floor F ∗ and the top-most ceiling
U∗. There are some arcs that U∗ and F ∗ have in common. If we remove all of these arcs, then the
remaining graph consists of weakly connected components, which we call humps. Formally, a hump
is a strip obtained from the primary strip by removing F ∗ ∩ U∗. We can also order humps by the
ordering of their first vertices on the floor F ∗. The structure of humps is important in determining
the usefulness of a flipped path. See Figure 12.

The lemma below shows the conditions when arcs in a backward flipped path can be useful.

Lemma 15. Let P be any backward flipped-path such that P starts at a vertex u ∈ F ∗ and ends at
a vertex v ∈ F ∗. Then P̂ = P ∩ Ĉ (the subpath of P in the open strip) is useful iff P ends at some
hump H (thus, H contains v) such that either

1. both u and v are in the same hump H, and v is not the first vertex in H.

2. The vertex u is not in the hump H, and there is an exit after v in the hump H.
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Figure 12: An example of flipped backward paths P1 (useless) and P2 (useful). F ∗ is shown in red
and U∗ is shown in blue. There are 5 humps (shown in gray).

Proof. First, we show that if the end vertex v of P is not in any hump, then P̂ = P ∩ Ĉ is useless.
We assume wlog that the start vertex u of P is also not contained in any hump; otherwise, we
contract all vertices in the hump (that contains u) to the vertex u. Thus, P = P̂ . It suffices to
show that there is no s, u-path J that is vertex disjoint from P , which will imply that P cannot
be a useful path. To see this, assume a contradiction that there is an s, u-path J that is vertex
disjoint from P . Then J has to leave F ∗ at some vertex x and then enters F ∗ again at some vertex
y (it is possible that y = u) in such a way that x, y, u, v appear in the order (x, v, y, u) on F ∗. Let
J ′ be the x, y-subpath of J . If J ′ is contained in the primary strip, then J ′ would induce a hump
containing v, a contradiction. So, we assume that J ′ is not contained in the primary strip. If J ′

leaves F ∗ from the right, then J ′ cannot enter F ∗; otherwise, it would contradict the fact that F ∗

is the right-most path. Hence, we are left with the case that J ′ leaves F ∗ from the left and then
enters again from the right. Since J and P are vertex-disjoint (and so are J ′ and P ), J ′ cannot
enter F ∗ at any vertex that appears after v (including u and y) because, otherwise, J ′ has to cross
the path P . Thus, we again have a contradiction. Consequently, since there is no path from s that
can reach u or the hump containing u without intersecting with P̂ , the path P̂ cannot be a useful
path.

Next consider the case that v is contained in some hump H. Let w be a vertex in P ∩ U∗, i.e.,
w be a vertex in the ceiling intersecting with P . Also, let P̂ be P ∩ Ĉ.

For the backward direction, we construct a useful path Q containing P̂ by taking the union of
the prefix of the top-most ceiling U∗ up to w, P̂ and the subpath PF of the floor F ∗ after v. In
Case (1), PF is the suffix of F ∗ after v, and in Case (2), PF starts from v and ends at the exit. It
can be seen that Q is a simple path from s to an exit, meaning that Q is a useful path and so is P̂ .

Now consider the forward direction. We proceed by contraposition. There are two subcases we
have to consider: (i) u and v are in the same hump H, but v is the first vertex in the hump and
(ii) u is not in the hump H and there is no exit after v in H.

In Subcase (i), any useful path Q containing P̂ whose prefix up until P̂ is entirely in the primary
strip has to go through v; therefore, it cannot be simple. Consider the case when there is a useful
path Q containing P̂ outside the primary strip. The prefix Q′ of this path must reach w without
touching v (because v ∈ P̂ ). Observe that the union of H and P̂ contains a cycle enclosing the
source s, and by the construction of U∗, there is no path from s entering H ∩ U∗ (otherwise, it
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would have been included in U∗). Consequently, because of planarity, the prefix Q′ must cross P̂ ,
meaning that Q cannot be simple.

Finally, we deal with Subcase (ii). Let x be the last floor vertex of H. First note that, by the
choice of F ∗, any path from s to w not intersecting P̂ cannot cross F ∗ to the right; therefore, it
has to use x. Because of the same reason, any path from v ∈ F ∗ to t cannot leave F ∗ to the right;
thus, it must also go though x as well. Consequently, a path from s to t containing P̂ in this case
cannot be simple.

7.3.1 Reachability information

After we compute the primary strip and the open strip, and collapse strongly connected components
in Ĉ, we run a linear-time preprocessing to compute reachability information.

For each vertex u in D̂, we would like to compute first(u) ∈ F ∗ defined to be the first vertex w
in F ∗ such that there is a path from s to u that uses w but not other vertex in F ∗ after w. We
also want to compute last(u) ∈ F ∗ defined to be the last vertex w′ in F ∗ such that there is a path
from u to t that uses w′ as the first vertex in F ∗.

To compute first(u), we find the left-first-search tree T rooted at s. For u ∈ Ĉ, we set first(u)
to be the closest ancestor of u on the floor F ∗. We compute last(u) similarly by finding the left-
first-search tree in the reverse graph rooted at t and setting last(u) as the closest ancestor of u on
the floor F ∗.

7.3.2 Checking arcs in D̂

Now we describe our linear-time algorithm for determining the usefulness of arcs in D̂
Consider an arc e = (u, v) ∈ D̂. If φ(first(u)) > φ(last(v)), then there exist a flipped forward

path containing e. Thus, by Lemma 14, e is useful.
If φ(first(u)) ≤ φ(last(v)), then we need to check conditions in Lemma 15. To do so, we need

to maintain additional information on every vertex v in F ∗, namely the hump H(v) that contains
it, a flag representing if v is the first vertex in the hump, and a flag representing if the hump H(v)
contains an exit. Since these data can be preprocessed in linear-time, we can perform the check for
each arc e in constant time.

7.4 Working on the Open Strip (2): Dealing with Arcs in Strongly Connected
Components

Consider a strongly connected component Hi in the open strip. If no arcs going into Hi are useful
or no arcs leaving C are useful, clearly every arc in Hi are useless. However, it is not obvious that
applying the previous outside algorithm simply works because entering and leaving arcs determine
the usefulness of the path. See Figure 13, for example.

The following lemma proves that we can take the strongly connected component Hi and build
an outside case instance by attaching, for each useful arc in the DAG entering Hi or leaving Hi,
corresponding to an entrance or an exit.

Lemma 16. Every arc in an outside instance of Hi is useful iff it is useful in the original graph.

Proof. The backward direction is straight-forward. Consider the forward direction: we would like
to show that if an arc e is useful in the instance, there exists a useful path containing it.
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Figure 13: The arc e in the red path is useful when considering C as an outside case instance.
However, using the blue path as an entering path (at the entrance b3) and the green path as a
leaving path (at the exit b′2) is not enough to show that. One can, instead, use the orange path (at
the entrance b1) as an entering path together with parts of the boundary to construct a forward
flipped path that contains e.

Suppose that Hi has n1 entrances and n2 exits. From Lemma 4 and the observation in the proof
of Lemma 9 that entrance-exit pairs do not appear interleaving, we know that Hi is enclosed by a
counter-clockwise cycle and we can name all entrances as b1, b2, . . . , bn1 and all exits as b′1, b

′
2, . . . , b

′
n2

in such a way that they appear in counter-clockwise order as

b1, b2, . . . , bn1 , b
′
1, b
′
2, . . . , b

′
n2
.

Consider an arc e which is useful in this instance. Since e is useful, there is a simple path P from
some entrance bi to some exit b′j containing e. Since the boundary arcs form a counter-clockwise
cycle, we can extend P to start from b1 by adding boundary arcs from b1 to bi. We can also extend
P to reach b′n2

by adding arcs from b′j to b′n2
.

Since an arc entering C at b1 is useful and an arc leaving C from b′n2
is also useful, we can

construct a useful path containing e by joining a path from s to b1, the path P , and a path from
b′n2

to t. Thus, e is useful.

7.5 Working on the Primary Strip

Given the primary strip CU∗,F ∗ , we can use the algorithm from Section 6 to find all useful arcs
inside CU∗,F ∗ . The next lemma proves the correctness of this step.

Lemma 17. A useful arc e in C is useful iff it is useful in CU∗,F ∗.

Proof. The backward direction is obvious. We focus on the forward direction. Assume for contra-
diction that there exist a useful arc e in C but e is not useful in CU∗,F ∗ . Consider a useful path P
from s to t containing e. Since e is inside CU∗,F ∗ , P must cross the lowest-floor F ∗ or the top-most
ceiling U∗. However, P cannot cross U∗ as it would create a forward path outside the primary
strip (contradicting Lemma 12). Now suppose that P crosses F ∗ at some vertex w before e. If P
do not leave the primary strip after w, then clearly e must be useful inside the primary strip. If
P leaves the primary strip at the ceiling after e, the subpath of P containing e is again a forward
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path. We also note that P cannot leave CU∗,F ∗ at the floor because it would cross itself. Since we
reach contradiction in every case, the lemma follows.

7.6 The Ceiling Components are Useless

In this section, we show that every arc in the ceiling components is useless. The ceiling components
are formed by arcs e = (u, v) in Ĉ which are reachable only from paths leaving F ∗ to the left and
v can reach t only through paths entering F ∗ from the left.

Lemma 18. Every ceiling arc e is useless.

Proof. First, note that e does not lie in a forward path; otherwise e would be in the primary strip.
Let P be a useful path from s to t containing e. Let u′ be the last vertices of P ∩ U∗ before

reaching e and v′ be the first vertices of P ∩ U∗ after leaving e.
Because of the degree constraint, P ′ must use the only incoming arc of u′, say eu, and the only

outgoing arc of v′, say ev. Let P1 be the prefix of P ′ from s to the head of eu and P2 be the suffix
of P ′ from the tail of ev to t. The only way P2 can avoid crossing P1 is to cross U∗; however, this
creates a clockwise cycle, a contradiction.

8 Conclusions and open problems

We discuss briefly the open problems. In this paper, we apply a sequence of reductions so that each
vertex has degree three, and the plane graph contains no clockwise cycles. This is a prerequisite of
our main algorithm. Although this preprocessing does not change the value of the maximum flow,
as discussed in the introduction, the usefulness of arcs in the modified network may differ from the
original graph.

An obvious open problem is to remove the prerequisites of our main algorithm. We would like
to note that if there exists a reduction that deals with clockwise cycles, then the degree requirement
can be removed. Specifically, if there is a procedure that given a plane graph G constructs a new
plane graph G′ with no clockwise cycles together with another efficient procedure for identifying
the usefulness of original arcs in G based on results in G′, we can apply the following lemma (whose
proof is omitted).

Lemma 19. If a plane graph G contains no clockwise cycles, a new plane graph G′ constructed by
replacing every vertex of degree greater than 3 in G with a clockwise cycle preserves the usefulness
of all other arcs in G.

Another interesting open problem would be to consider a larger class of graphs on surfaces.
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