
Independent Set, Induced Matching, and Pricing: Connections and

Tight (Subexponential Time) Approximation Hardnesses

Parinya Chalermsook∗ Bundit Laekhanukit† Danupon Nanongkai‡

Abstract

We present a series of almost settled inapproximability results for three fundamental prob-
lems. The first in our series is the subexponential-time inapproximability of the maximum in-
dependent set problem, a question studied in the area of parameterized complexity. The second
is the hardness of approximating the maximum induced matching problem on bounded-degree
bipartite graphs. The last in our series is the tight hardness of approximating the k-hypergraph
pricing problem, a fundamental problem arising from the area of algorithmic game theory. In
particular, assuming the Exponential Time Hypothesis, our two main results are:

• For any r larger than some constant, any r-approximation algorithm for the maximum in-
dependent set problem must run in at least 2n

1−ε/r1+ε time. This nearly matches the upper
bound of 2n/r [23]. It also improves some hardness results in the domain of parameterized
complexity (e.g., [26, 19]).

• For any k larger than some constant, there is no polynomial time min
{
k1−ε, n1/2−ε

}
-

approximation algorithm for the k-hypergraph pricing problem , where n is the number of

vertices in an input graph. This almost matches the upper bound of min
{
O(k), Õ(

√
n)
}

(by Balcan and Blum [3] and an algorithm in this paper).

We note an interesting fact that, in contrast to n1/2−ε hardness for polynomial-time al-
gorithms, the k-hypergraph pricing problem admits nδ approximation for any δ > 0 in quasi-
polynomial time. This puts this problem in a rare approximability class in which approximability
thresholds can be improved significantly by allowing algorithms to run in quasi-polynomial time.

The proofs of our hardness results rely on unexpectedly tight connections between the three
problems. First, we establish a connection between the first and second problems by proving
a new graph-theoretic property related to an induced matching number of dispersers. Then,
we show that the n1/2−ε hardness of the last problem follows from nearly tight subexponential
time inapproximability of the first problem, illustrating a rare application of the second type of
inapproximability result to the first one. Finally, to prove the subexponential-time inapprox-
imability of the first problem, we construct a new PCP with several properties; it is sparse
and has nearly-linear size, large degree, and small free-bit complexity. Our PCP requires no
ground-breaking ideas but rather a very careful assembly of the existing ingredients in the PCP
literature.

∗Max-Planck-Institut für Informatik, Germany. Work partially done while at IDSIA, Lugano, Switzerland. Sup-
ported by the Swiss National Science Foundation project 200020 144491/1
†McGill University, Canada. Supported by the Natural Sciences and Engineering Research Council of Canada

(NSERC) grant no. 429598 and by Dr&Mrs M.Leong fellowship.
‡Nanyang Technological University (NTU), Singapore. Supported in part by the following research grants:

Nanyang Technological University grant M58110000, Singapore Ministry of Education (MOE) Academic Research
Fund (AcRF) Tier 2 grant MOE2010-T2-2-082, and Singapore MOE AcRF Tier 1 grant MOE2012-T1-001-094.

i

Contents

1 Introduction 1

1.1 Problems . 2

1.2 Our Results . 4

1.3 Techniques . 6

1.4 Organization . 7

2 Overview of the Hardness Proof 7

2.1 The Main Reduction: SAT → pricing . 7

2.2 Intermediate Steps: SAT → independent set/induced matching → pricing 8

2.3 Step I: SAT → Independent Set (Equation (2)) . 8

2.4 Step II: independent set → induced matching (Equation (3)) 10

2.5 Step III: Induced matching → Pricing (Equation (4)) 12

3 Preliminaries 12

4 Nearly-linear size sparse PCP with small free-bit complexity and large degree 14

4.1 PCP Construction . 15

5 Tight Hardness of Semi-Induced Matching 18

5.1 The Reduction . 18

5.2 Analysis . 20

5.3 Subexponential Time Approximation Hardness for the Maximum Independent Set
and Induced Matching Problems . 23

5.4 Subexponential-Time Approximation Algorithm for Induced Matching 24

6 Hardness of k-Hypergraph Pricing Problems 26

6.1 From Semi-Induced Matching to Pricing Problems (Proof of Lemma 6.2) 27

6.2 Intermediate Hardness (Proof of Lemma 6.3) . 30

6.3 Main Hardness Results (Proof of Theorem 6.1) . 31

6.4 Subexponential-Time Approximation Hardness for the k-Hypergraph Pricing Problem 32

7 Approximation Scheme for k-Hypergraph Pricing 32

7.1 Approximation Scheme . 33

ii

7.2 Cost Analysis . 33

7.3 Running Time Analysis . 35

7.4 Polynomial-Time O(
√
n log n)-Approximation Algorithm 35

7.5 A Constant-Factor Approximation Algorithm with a Running Time of
O((log nm)n poly(n,m)) (Proof of Lemma 7.2) . 35

8 Open Problems 37

A FGLSS and Dispersers Replacement 41

iii

List of Theorems

1.1 Theorem (Polynomial-time hardness of k-hypergraph pricing; proof in Section 6) . . 4

1.2 Theorem (Subexponential-time hardness of independent set; proof in Section 5) . . . 5

1.3 Theorem (Hardness of induced matching on d-degree-bounded bipartite graphs; proof
in Section 5) . 5

1.4 Theorem (Quasi-polynomial time nδ-approximation scheme; proof in Section 7) . . . 5

2.1 Theorem (Informal) . 10

2.2 Definition (Disperser (informal)) . 11

2.3 Lemma (Disperser Lemma (Informal)) . 11

3.1 Hypothesis (Exponential-Time Hypothesis (ETH)) 13

4.1 Theorem (Nearly-linear size sparse PCP with small free-bit complexity and large
degree) . 14

4.2 Theorem ([44] + [49]) . 15

4.3 Corollary . 16

5.1 Theorem (Hardness of ∆-Degree Bounded Bipartite Semi-induced Matching) 18

5.2 Theorem (Hardness of d-Degree-Bounded Maximum Independent Set) 18

5.3 Definition (Disperser) . 19

5.4 Lemma . 20

5.5 Lemma (Disperser Lemma) . 21

5.6 Claim . 21

5.7 Corollary . 22

5.8 Theorem . 23

5.9 Theorem . 24

5.10 Theorem (Algorithm on Bipartite Graphs) . 24

5.11 Lemma . 24

5.12 Lemma . 25

5.13 Theorem (Algorithm on General Graphs) . 25

5.14 Lemma . 26

6.1 Theorem . 26

6.2 Lemma (From Semi-induced Matching to Pricing; Proof in Section 6.1) 26

6.3 Lemma (Intermediate Hardness; Proof in Section 6.2) 27

6.4 Assumption . 27

iv

6.5 Lemma . 28

6.6 Claim . 29

6.7 Definition . 29

5.1 Theorem (Hardness of ∆-Degree Bounded Bipartite Semi-induced Matching) 31

6.8 Theorem . 32

7.1 Lemma ([31]) . 33

7.2 Lemma . 33

7.3 Lemma . 34

7.4 Lemma . 34

v

1 Introduction

This paper presents results of two kinds, lying in the intersections between approximation algo-
rithms and other subareas of theoretical computer science. The first kind of our results is a tight
hardness of approximating the k-hypergraph pricing problem in polynomial time. This problem
arose from the area of algorithmic game theory, and its several variants have recently received
attentions from many researchers (see, e.g., [47, 48, 31, 10, 3, 9, 45, 14]). It has, however, re-
sisted previous attempts to improve approximation ratio given by simple algorithms. Indeed, no
sophisticated algorithmic techniques have been useful in attacking the problem in its general form.
The original motivation of this paper is to show that those simple algorithms are, in fact, the
best one can do under a reasonable complexity theoretic assumption. In showing this, we devise
a new reduction from another problem studied in discrete mathematics and networking called the
maximum bipartite induced matching problem. Our reduction, unfortunately, blows up the instance
size exponentially, and apparently this blowup is unavoidable (this claim will be discussed precisely
later). Due to the exponential blowup of our reduction, showing a tight polynomial-time hardness
of approximating the maximum bipartite induced matching problem is not enough for settling the
complexity of the pricing problem. What we need is, roughly speaking, the hardness of approxima-
tion result that is tight even for subexponential time approximation algorithms, i.e., proving the
lower bound on the approximation ratio that any subexponential time algorithms can achieve.

This motivates us to prove the second type of results: hardness of subexponential-time approx-
imation. The subject of subexponential time approximation and the closely related subject of
fixed-parameter tractable (FPT) approximation have been recently studied in the area of parame-
terized complexity (e.g., [23, 29, 26, 19]). Our main result of this type is a sharp trade-off between
the running time and approximation ratio for the bipartite induced matching problem, and since
our proof crucially relies on the hardness construction for the maximum independent set prob-
lem, we obtain a sharp trade-off for approximating the maximum independent set problem as a
by-product. The maximum independent set problem is among fundamental problems studied in
both approximation algorithms and FPT literature (since it is W[1]-hard), and it is of interest to
figure out its subexponential-time approximability. Our trade-off result immediately answers this
question, improves previous results in [26, 19] and nearly matches the upper bound in [23].

The main contributions of this paper are the nearly tight connections among the aforementioned
problems (they are tight in the sense that any further improvements would immediately refute the
Exponential Time Hypothesis (ETH)), which essentially imply the nearly tight (subexponential
time) hardness of approximation for all of them. Interestingly, our results also illustrate a rare
application of the subexponential-time inapproximability to the inapproximability of polynomial-
time algorithms. The key ideas of our hardness proofs are simple and algorithmic even though it
requires a non-trivial amount of work to actually implement them.

Finally, we found a rather bizarre phenomenon of the k-hypergraph pricing problem (when k is
large) in the quasi-polynomial time regime. While both induced matching, independent set and
many other natural combinatorial optimization problems do not admit much better approximation
ratios in quasi-polynomial time (e.g., n1−ε hardness of approximating the independent set and bi-
partite induced matching problem still hold against quasi-polynomial time algorithms), the story is
completely different for the pricing problem: That is, the pricing problem admits nδ approximation
in quasi-polynomial time for any δ > 0, even though it is n1/2−ε hard against polynomial-time

1

approximation algorithms. This contrast puts the pricing problem in a rare approximability class
in which polynomial time and quasi-polynomial time algorithms’ performances are significantly
different.

1.1 Problems

k-Hypergraph Pricing In the unlimited supply k-hypergraph vertex pricing problem [3, 10], we
are given a weighted n-vertex m-edge k-hypergraph (each hyperedge contains at most k vertices)
modeling the situation where consumers (represented by hyperedges) with budgets (represented by
weights of hyperedges) have their eyes on at most k products (represented by vertices). The goal
is to find a price assignment that maximizes the revenue. In particular, there are two variants of
this problem with different consumers’ buying rules. In the unit-demand pricing problem (UDP),
we assume that each consumer (represented by a hyperedge e) will buy the cheapest vertex of her
interest if she can afford it. In particular, for a given hypergraph H with edge weight w : E(H)→
R≥0 (where R≥0 is the set of non-negative reals), our goal is to find a price function p : V (H)→ R≥0

to maximize

profitH,w(p) =
∑

e∈E(H)

paye(p) where paye(p) =

{
minv∈e p(v) if minv∈e p(v) ≤ w(e),

0 otherwise.

The other variation is the single-minded pricing problem (SMP), where we assume that each con-
sumer will buy all vertices if she can afford to; otherwise, she will buy nothing. Thus, the goal is
to maximize

profitH,w(p) =
∑

e∈E(H)

paye(p) where paye(p) =

{∑
v∈e p(v) if

∑
v∈e p(v) ≤ w(e),

0 otherwise.

The pricing problem naturally arose in the area of algorithmic game theory and has important
connections to algorithmic mechanism design (e.g., [4, 18]). Its general version (where k could be
anything) was introduced by Rusmevichientong et al. [47, 48], and the k-hypergraph version (where
k is thought of as some constant) was first considered by Balcan and Blum [3]. (The special case of
k = 2 has also received a lot of attention [3, 15, 37, 45].) There will be two parameters of interest
to us, i.e., n and k. Its current approximation upper bound is O(k) [10, 3] while its lower bound is
Ω(min(k1/2−ε, nε)) [9, 14, 16].

Bipartite Induced Matching Informally, an induced matching of an undirected unweighted
graph G is a matching M of G such that no two edges in M are joined by an edge in G. To be
precise, let G = (V,E) be any undirected unweighted graph. An induced matching of G is the set
of edges M ⊆ E(G) such that M is a matching and for any distinct edges uu′, vv′ ∈ M, G has
none of the edges in {uv, uv′, u′v, u′v′}. The induced matching number of G, denoted by im(G), is
the cardinality of the maximum-cardinality induced matching of G. Our goal is to compute im(G)
of a bipartite graph G.

The notion of induced matching has naturally arisen in discrete mathematics and computer science.
It is, for example, studied as the “risk-free” marriage problem in [52] and is a subtask of finding a

2

strong edge coloring. This problem and its variations also have connections to various problems such
as maximum feasible subsystem [25, 16], maximum expanding sequence [11], storylines extraction
[38] and network scheduling, gathering and testing (e.g., [27, 52, 36, 42, 7]). In general graphs,
the problem was shown to be NP-complete in [52, 13] and was later shown in [20] to be hard to
approximate to within a factor of n1−ε and d1−ε unless P = NP, where n is the number of vertices
and d is the maximum degree of a graph. In bipartite graphs, assuming P 6= NP, the maximum
induced matching problem was shown to be n1/3−ε-hard to approximate in [25]. Recently, we [16]
showed its tight hardness of n1−ε (assuming P 6= NP) and a hardness of d1/2−ε on d-degree-bounded
bipartite graphs. This hardness leads to tight hardness of several other problems. In this paper,
we improve the previous hardness to a tight d1−ε hardness, as well as extending it to a tight
approximability/running time trade-off for subexponential time algorithms.

Independent Set Given a graph G = (V,E), a set of vertices S ⊆ V is independent (or stable) in
G if and only if G has no edge joining any pair of vertices x, y ∈ S. In the maximum independent
set problem, we are given an undirected graph G = (V,E), and the goal is to find an independent
set S of G with maximum size. Hardness results for the maximum independent set problem heavily
rely on developments in the PCP literature. The connection between the maximum independent set
problem and the probabilistic checkable proof system (PCP) was first discovered by Feige et al. [28]
who showed that the maximum independent set problem is hard to approximate to within a factor
of 2log1−ε n, for any ε > 0, unless NP ⊆ DTIME(npolylog(n)). The inapproximability result has
been improved by Arora and Safra [2] and Arora et al. [1], leading to a polynomial hardness of
the problem [1]. Later, Bellare and Sudan [6] introduced the notion of the free-bit complexity of
a PCP and showed that, given a PCP with logarithmic randomness and free-bit complexity f ,
the maximum independent set problem is hard to approximate to within a factor of n1/(1+f)−ε,
for all ε > 0, unless NP = ZPP. There, Bellare and Sudan [6] constructed a PCP with free-
bit complexity f = 3 + δ, for all δ > 0, thus proving the hardness of n1/4−ε for the maximum
independent set problem. The result has been subsequently improved by Bellare et al. in [5] who
gave a construction of a PCP with free-bit complexity f = 2 + δ. Finally, H̊astad [32] constructed
a PCP with arbitrary small free-bit complexity f > 0, thus showing the tight hardness (up to the
lower order term) of n1−ε, for all ε > 0, for the maximum independent set problem. A PCP with
optimal free-bit complexity was first constructed by Samorodnitsky and Trevisan [49]. The PCP
of Samorodnitsky and Trevisan in [49] has imperfect completeness, and this has been improved by
H̊astad and Khot [33] to a PCP that has both perfect completeness and optimal free-bit complexity.
Recently, Moshkovitz and Raz [44] gave a construction of a projective 2-query PCP with nearly-
linear size, which can be combined with the result of Samorodnitsky and Trevisan [49] to obtain
a PCP with nearly-linear size and optimal free-bit complexity. The soundness of a PCP with
optimal free-bit complexity was improved in a very recent breakthrough result of Chan [17]. The
complexity assumption of early tight hardness results of the maximum independent set problem
(e.g., [32]) is NP 6= ZPP because of a random process in the PCP constructions. This process was
derandomized in [55] by Zuckerman, thus proving tight hardness under the P 6= NP assumption.

3

Problem Upper Lower

k-hypergraph pricing Previous O(k) [3, 10] Ω(k1/2−ε) and Ω(nδ) [9, 14, 16]

(polynomial time) This paper O(min(k, (n logn)1/2)) Ω(min(k1−ε, n1/2−ε))

k-hypergraph pricing Previous - -

(quasi-polynomial time) This paper nδ-approx. algo in nδ-approx. algo requires

O(2(logm)
1−δ
δ log logm poly(n,m))-time Ω(2(logm)

1−δ−ε
δ) time

Independent set Previous O(2n/r poly(n)) time [23] Ω(2n
δ/r) time [19]

(subexpo.-time r-approx. algo) This paper - Ω(2n
1−ε/r1+ε) time

Induced matching on Previous O(d) (trivial) Ω(d1/2−ε) [16]
d-deg.-bounded bip. graphs This paper - Ω(d1−ε)
(polynomial time)

Induced matching on bip. graphs Previous - -

(subexpo.-time r-approx. algo) This paper O(2n/r poly(n)) time Ω(2n
1−ε/r1+ε) time

Table 1: Summary of results.

1.2 Our Results

We present several tight hardness results both for polynomial and subexponential-time algorithms,
as summarized in Table 1. Most our results rely on a plausible complexity theoretic assumption
stronger than P 6= NP, namely, Exponential Time Hypothesis (ETH), which, roughly speaking,
states that SAT cannot be decided by any subexponential time algorithm (see Section 3 for detail).

Our first result, which is our original motivation, is the tight hardness of approximating the k-
hypergraph pricing problems in polynomial time. These problems (both UDP and SMP) are known
to be O(k)-approximable [3, 10] and the hardness of Ω(k1/2−ε) and Ω(nδ), for some constant δ > 0,
are known based on the assumption about hardness of refuting a random 3SAT formula [9]. A series
of recent results leads to a disagreement on the right approximability thresholds of the problem.
On one hand, the current best approximation algorithm is so simple that one is tempted to believe
that a more sophisticated idea would immediately give an improvement on the approximation
ratio. On the other hand, no algorithmic approach could go beyond the barrier of O(k) so far,
thus leading to a belief that Ω(k1−ε) and Ω(n1−ε) hardness should hold. In this paper, we settle
the approximability status of this problem. Somewhat surprisingly, the right hardness threshold of
this problem turns out to lie somewhere between the two previously believed numbers: the believed
hardness of Ω(k1−ε) was correct but only for k = O(n1/2).

Theorem 1.1 (Polynomial-time hardness of k-hypergraph pricing; proof in Section 6). The k-
hypergraph pricing problems (both UDP and SMP) are Ω(min(k1−ε, n1/2−ε)) hard to approximate in
polynomial time unless the ETH is false1. Moreover, they are Õ(min(k, (n log n)1/2))-approximable
in polynomial time.

The main ingredient in proving Theorem 1.1 is proving tight hardness thresholds of subexponential-
time algorithms for the maximum independent set and the maximum induced matching problems
in d-degree-bounded bipartite graphs2. Besides playing a crucial role in proving Theorem 1.1, these

1The k1−ε hardness only requires NP 6= ZPP when k is constant.
2We note that, indeed, the connection to the pricing problem is via a closely related problem, called the semi-

induced matching problem, whose hardness follows from the same construction as that of the maximum induced
matching problem; see Section 3.

4

results are also of an independent interest. Our first subexponential-time hardness result is for
the maximum independent set problem. While the polynomial-time hardness of this problem has
been almost settled, the question whether one can do better in subexponential time has only been
recently raised in the parameterized complexity community. Cygan et al. [23] and Bourgeois et
al. [8] independently observed that better approximation ratios could be achieved if subexponential
running time is allowed. In particular, they showed that an r approximation factor can be obtained
in O(2n/r poly(n)) time. Recently, Chitnis et al. [19] showed that, assuming the ETH, an r-

approximation algorithm requires Ω(2n
δ/r) time, for some constant δ > 03. Our hardness of the

maximum independent set problem improves upon the lower bound of Chitnis et al. and essentially
matches the upper bounds of Cygan et al. and Bourgeois et al.

Theorem 1.2 (Subexponential-time hardness of independent set; proof in Section 5). Any r ap-
proximation algorithm for the maximum independent set problem must run in time 2n

1−ε/r1+ε
unless

the ETH is false.

An important immediate step in using Theorem 1.2 to prove Theorem 1.1 is proving the subexponential-
time hardness of the induced matching problem on d-degree-bounded bipartite graphs. The polynomial-
time hardness of n1−ε for this problem has only been resolved recently by the authors of this paper
in [16], where we also showed a hardness of d1/2−ε when the input graph is bipartite of degree at
most d. In this paper, we improve this bound to d1−ε and extend the validity scope of the results
to subexponential-time algorithms. The latter result is crucial for proving Theorem 1.1.

Theorem 1.3 (Hardness of induced matching on d-degree-bounded bipartite graphs; proof in
Section 5). Let ε > 0 be any constant. For any d ≥ c, for some constant c (depending on ε), there is
no d1−ε approximation algorithm for the maximum induced matching problem in d-degree-bounded
bipartite graphs unless NP = ZPP. Moreover, any r approximation algorithm for the maximum
induced matching problem in bipartite graphs must run in time 2n

1−ε/r1+ε
unless the ETH is false.

Finally, we note an interesting fact that, while the polynomial-time hardness of the k-hypergraph
pricing problem follows from the hardness of the independent set and the bipartite induced match-
ing problems, its subexponential time approximability is quite different from those of the other two
problems. In particular, if we want to get an approximation ratio of nε for some constant ε > 0.
Theorems 1.2 and 1.3 imply that we still need subexponential time to achieve such an approxima-
tion ratio. In contrast, we show that, for the case of the k-hypergraph pricing problem, such an
approximation ratio can be achieved in quasi-polynomial time.

Theorem 1.4 (Quasi-polynomial time nδ-approximation scheme; proof in Section 7). For the
k-hypergraph pricing problem and any constant δ > 0, there is an algorithm that gives an approxi-

mation ratio of O(nδ) and runs in time O(2(logm)
1−δ
δ log logm poly(n,m)).

We also prove (in Section 6) that the above upper bound is tight.

5

SAT CSP
Deg-Bounded

Indep. Set

Deg-Bounded
Bip. Induced

Mathching

k-Hypergraph
Pricing

PCP
+ amplification
+ sparsification

(Section 4)

FGLSS +
Disperser
Replacement Disperser Lem. 2O(∆) blowup

(Section 6)

(Section 5)

Figure 1: Hardness proof outline (more detail in Section 2).

1.3 Techniques

The key ingredients in our proofs are tight connections between 3SAT, independent set, induced
matching, and pricing problems. Our reductions are fairly tight in the sense that their improvement
would violate the ETH. They are outlined in Figure 1 (see Section 2 for a more comprehensive
overview). Among several techniques we have to use, the most important new idea is a simple
new property of dispersers. We show that an operation called bipartite double cover will convert a
disperser G to another bipartite graph H whose maximum induced matching size is essentially the
same as the size of maximum independent set of G. This property crucially relies on the fact that
G is a disperser. We note that the disperser that we study here is not new – it has been around for
at least two decades (e.g., [21, 51]) – but the property that we prove is entirely new. We provide
the proof idea of this new property in Section 2.4.1.

Our hardness proof of the maximum induced matching problem in d-degree-bounded graphs is
inspired by the (implicit) reduction of Briest [9] and the previous (explicit) reduction of ours [16].
These previous reductions are not tight in two aspects: (i) they do not result in a tight d1−ε

hardness for the maximum bipartite induced matching problem (Briest’s reduction in [9] only gives
a hardness of dδ for some δ > 0, and our previous reduction in [16] only gives a hardness of d1/2−ε),
and (ii) they do not give any hardness for subexponential-time approximation algorithms. In this
paper, we make use of additional tools to improve these two aspects to get a tight reduction. The
first tool is the new property of the disperser as we have discussed. The second tool is a new PCP
which results from carefully combining known techniques and ideas from the PCP literature.

Our PCP requires an intricate combination of many known properties: That is, it must be sparse,
as well as, having nearly-linear size, large degree, and small free-bit complexity. We explain some
of the required properties here. The sparsity and the size of the PCP are required in order to
boost hardness of the k-hypergraph pricing problem to n1/2−ε (without these, we would not go
beyond nδ for some small δ). The large degree of the PCP is needed to ensure that our randomized
construction is successful with high probability. Finally, the small free-bit complexity is needed
to get the d1−ε hardness for the maximum bipartite induced matching and the independent set
problems in d-degree-bounded graphs; this is the same idea as those used in the literature of
proving hardness of the maximum independent set problem.

Our proof of the hardness of the k-hypergraph pricing problem from the hardness of the bipartite

3We note that their real statement is that for any constant ε > 0, there is a constant F > 0 depending on ε such that

CLIQUE (or equivalently the independent set problem) does not have an nε-approximation in O(2OPTF/ε · poly(n))
time. Their result can be translated into the result we state here.

6

induced matching problem is inspired by the previous proofs in [11, 14]. Both previous proofs require
a hardness of some special cases of the bipartite induced matching problem (e.g., [16] requires that
the input instance is a result of a certain graph product) in order to derive the hardness of the
k-hypergraph pricing problem. In this paper, we provide insights that lead to a reduction that
simply exploits the fact that the input graph has bounded degree, showing a clearer connection
between the two problems.

1.4 Organization

We give an overview of our hardness proof in Section 2. The hardness results are proved in
three consecutive sections (i.e., Sections 4, 5 and 6). We first present our PCP in Section 4.
The connection between SAT and the maximum independent set and bipartite induced matching
problems is presented in Section 5. Finally, Section 6 shows a connection between the bipartite
induced matching and the k-hypergraph pricing problems. A new approximation algorithm is
shown in Section 7.

2 Overview of the Hardness Proof

Our proofs involve many parameters. To motivate the importance of each parameter and the need
of each tool, we give the top-down overview of our proofs in an informal manner. The presentation
here will be imprecise, but we hope that this would help readers understanding our proofs.

2.1 The Main Reduction: SAT → pricing

At a very high level, our proof makes the following connection between SAT and the h-hypergraph
pricing problem. We give a reduction that transforms an N -variable SAT formula into a h-
hypergraph pricing instance (C, I) with the following parameters: the number of items is |I| = Nh,
the number of consumers is |C| = 2h poly(N), and the hardness gap is h. The following concludes
the interaction between parameters.

N -variable SAT︸ ︷︷ ︸
no gap

=⇒ h-hypergraph pricing with |I| = Nh, |C| = 2h polyN︸ ︷︷ ︸
hardness gap h

(1)

The running time of our reduction is small, i.e., poly(|C|), and thus can be ignored for now.
The hardness gap of h means that any algorithm that could solve the pricing problem with an
approximation factor of o(h) would be able to solve SAT (optimally) within the same running time.
Our main task is to obtain a reduction as in Equation (1), which we explain further in Section 2.2.
Below we sketch how the reduction in Equation (1) gives a hardness of the pricing problem.

Hardness of Pricing It follows from Equation (1) that, for h = o(N), any o(h)-approximation
algorithm for the pricing problem that runs in poly(|I|, |C|)-time would imply a subexponential-
time ((2o(N) polyN)-time) algorithm that solves SAT, thus breaking the ETH. So, we obtain a

7

hardness of h for any h = o(N), assuming the ETH; this hardness can be written as min(h,
√
I)

since |I| = Nh.

2.2 Intermediate Steps: SAT → independent set/induced matching → pricing

The main reduction (Equation (1)) goes through two intermediate problems: (1) the maximum
independent set problem and (2) the maximum induced matching problem on bipartite graphs.
Both problems are considered in the case where an input graph has maximum degree ∆. There
are two intermediate steps. The first step transforms any N -variable SAT formula into a graph
G, instance of the maximum independent set/induced matching problem such that the number of
vertices |V (G)| = N∆, and the hardness gap ∆.

N -variable SAT =⇒ ∆-degree bounded indep. set with |V (G)| = N∆︸ ︷︷ ︸
hardness gap ∆

(2)

The second step transforms the independent set problem to the induced matching problem. The
crucial thing of our transformation is that it does not blowup any parameter.

∆-degree bounded indep. set with |V (G)| = N∆︸ ︷︷ ︸
hardness gap ∆

=⇒ ∆-degree bounded induced matching with |V (G)| = N∆︸ ︷︷ ︸
hardness gap ∆

(3)

The third step transforms the instance of the maximum independent set/induced matching problem
to the ∆-hypergraph pricing problem with the following parameters: the number of items is |I| =
|V (G)|, the number of consumers is |C| = 2∆ poly |V (G)|, and the hardness gap is ∆.

∆-degree bounded ind. matching︸ ︷︷ ︸
hardness gap ∆

=⇒ ∆-hyp. pricing with |I| = |V (G)|, |C| = 2∆ poly |V (G)|︸ ︷︷ ︸
hardness gap ∆

(4)

In Sections 2.3 to 2.5, we explain the reductions in Equations (2) to (4) in more detail. Below we
sketch how the reduction in Equation (2) implies sub-exponential time inapproximability results
for the maximum independent set and induced matching problems.

Hardness of Max. Independent Set and Max. Induced Matching Suppose that there is a
o(∆)-approximation 2o(|V (G)|/∆)-time algorithm. This algorithm will solve SAT since the reduction
in Equation (2) gives a hardness gap of ∆. Moreover, it requires 2o(|V (G)|/∆) = 2o(N) time since the
reduction in Equation (2) gives |V (G)| = N∆; this breaks the ETH.

2.3 Step I: SAT → Independent Set (Equation (2))

Our reduction from SAT to the maximum independent set problem is simply a sequence of standard
reductions (e.g., from [28, 53]) as follows: We start from SAT instance ψ, which is NP-complete
but has no hardness gap. We then construct a PCP for ψ, which thus outputs a CSP (Constraint
Satisfaction Problem) instance ϕ1 with some small gap. (Note that one may think of PCP as a
reduction from a SAT instance with no gap to a CSP instance with some gap.) Then we apply a gap-
amplification and sparsification scheme to boost up the hardness-gap to (some value) k and reduce

8

the number of clauses to roughly the same as the number of variables. So, now, we obtain another
CSP instance ϕ2 from this step. Finally, we apply the FGLSS reduction of Feige, Goldwasser,
Lovász, Safra and Szegedy [28] to obtain an instance graph G of the maximum independent set
problem with hardness-gap k. These reductions give a |V (G)|-hardness for the independent set
problem. To obtain a hardness for on ∆-bounded-degree graphs, we follow Trevisan [53] who
showed that by modifying the FGLSS reduction with disperser replacement, we can obtain a graph
with maximum degree ∆ ≈ k, thus implying a ∆-hardness. Below we conclude this reduction.

N -variable SAT ψ︸ ︷︷ ︸
(no hardness-gap)

PCP
============================⇒ N -variable CSP ϕ1︸ ︷︷ ︸

(hardness-gap = γ)

(5)

gap amplification + sparsification
============================⇒ N -variable (kN)-clause CSP ϕ2︸ ︷︷ ︸

(hardness-gap = k for all k ≥ γ)

(6)

FGLSS + disperser replacement
============================⇒ Indep. Set on G with |V (G)| = N∆ and ∆ = k︸ ︷︷ ︸

(hardness-gap = ∆ = k)

(7)

Note that all tools that we use in the above are already used in the literature earlier. The hardness
proof of the maximum independent set problem using gap amplification and sparsification before
applying the FLGSS reduction (with no disperser replacement) were used in, e.g., [6]. The hardness
using FGLSS and disperser replacement (but no gap amplification and sparsification) was used in
[53]. The main work in Step I is showing how to combine all these tools together and how to
tune parameters appropriately to get the desired subexponential-time hardness of the maximum
independent set problem. Another tool that has not been used before in the context of the maxi-
mum independent set problem, which is important for our proof, is the nearly-linear size PCP of
Moshkovitz and Raz [44] and the PCP with low free-bit complexity of Samorodnitsky and Trevisan
[49]. Our reduction in a more detailed form is shown below.

N -variable SAT ψ︸ ︷︷ ︸
(no hardness-gap)

PCP (Moshkovitz-Raz + Samorodnitsky-Trevisan)
===============================⇒ N -variable CSP ϕ1, acc. conf. w1 = γo(1)︸ ︷︷ ︸

(hardness-gap = γ)

(5∗)

gap amplification + sparsification
=====================⇒ N -variable (kN)-clauses CSP ϕ2, acc. conf. w2 = ko(1)︸ ︷︷ ︸

(hardness-gap = k = γt for any t)

(6∗)

FGLSS + disperser
============⇒ Indep. Set on G: ∆ = k and |V (G)| = (kN)w2︸ ︷︷ ︸

(hardness-gap = k)

(7∗)

In the above, “acc. conf.” is an abbreviation for the maximum number of accepting configurations.
We note that among many parameters in the reduction above, two parameters that play an impor-
tant role later are γ and t. Below we explain the above equations. Further detail of Equations (5∗)
and (6∗) can be found in Section 4 (Equations (5∗) and (6∗) together give a nearly-linear size sparse
PCP with small free-bit complexity and large degree). The detail of Equation (7∗) can be found in
Section 5.

9

Equation (7∗) To expand the detail of Equation (7) to Equation (7∗), we need to introduce
another parameter w2 denoting the maximum number of satisfying assignments for each clause
(known as the maximum number of accepting configurations). It is quite well-known that if we start
with an N -variable M -clause CSP instance ϕ2 with maximum number of accepting configurations
w2, we will obtain a graph G with |V (G)| = Mw2 and properties as in Equation (7) after applying
the FGLSS reduction and the disperser replacement (for more detail, see Appendix A). Since
M = Nk, it follows that to obtain a reduction as in Equation (7), we need w2 to be small; for
an intuition, it is sufficient to imagine that w2 = ko(1). This makes |V (G)| ≈ (Nk)ko(1) ≈ Nk
(note that we are being imprecise in our calculation). This leads to the refinement of Equation (7)
as in Equation (7∗). Our next job is to obtain ϕ2 with the properties as in Equation (7∗); i.e.,
for any k ≥ γ, it has N variables, kN clauses, and maximum number of accepting configurations
w2 = ko(1).

Equation (6∗) We have not yet stated the precise relationship between γ and k in Equation (6)
and also how to obtain w2 = ko(1). To do this, we have to introduce yet another parameter t which
we will call gap amplification parameter. By using the standard gap amplification technique with
parameter t, we can transform a CSP instance ϕ1 with hardness gap γ to an instance ϕ2 with
hardness gap k = γt with the same number of variables. This gap amplification process increases
the number of clauses exponentially in t but we can use the standard sparsification technique to
reduce the number of clauses to γtN . Moreover, if the maximum number of accepting configurations
in ϕ1 is w1, then we will get w2 = wt1 as the maximum number of accepting configurations in ϕ2.
We will show that we can obtain ϕ1 with w1 = γo(1), which implies that w2 = γo(t) = ko(1). This
leads to the refinement of Equation (6) as in Equation (6∗).

Equation (5∗) Our last job is to obtain ϕ1 with the above properties; i.e., it has N variables and
the maximum number of accepting configurations is w1 = γo(1) for the hardness gap of γ. Once we
arrive at this step, the combination of nearly-linear size PCP of Moshkovitz and Raz [44] and the
PCP with low free-bit complexity of Samorodnitsky and Trevisan [49], as stated in [44, Corollary
14], gives us exactly what we need. This result states that any SAT formula of size N can be turned
into an N1+o(1)-variable CSP with hardness gap γ and w1 = γo(1). This gives a refined version of
Equation (5) as in Equation (5∗).

2.4 Step II: independent set → induced matching (Equation (3))

We next reduce from the independent set problem to the bipartite induced matching problem. The
key idea of this reduction is proving a new property of the disperser. The main result is that if we
construct a hardness instance of the maximum independent set problem using disperser replacement
(as in [53] and in this paper, as we outlined in the previous section), then the hardness of the
maximum independent set and the maximum bipartite induced matching problems are essentially
the same.

Theorem 2.1 (Informal). Let G be a graph (not necessarily bipartite) constructed by disperser
replacement. Then, there is a bipartite graph H of roughly the same size as G such that im(H) ≈
α(G).

10

The graph H in the above theorem is actually obtained by a variant of an operation, called bipartite
double cover. A bipartite double cover of a graph G, denoted by B[G], is a bipartite graph H =
(X,Y,E) where X and Y are copies of V (G), and any vertices x ∈ X and y ∈ Y are adjacent
in H if and only if x and y are adjacent in G. In our variant, we also have an edge joining two
vertices x, y that come from the same vertex in G. Throughout, we shall abuse bipartite double
cover to also mean its variant. This operation is a natural transformation that is frequently used in
transforming a graph G into a bipartite graph. Many of its properties have been studied, mostly in
graph theory (e.g., [12, 50, 40, 35]). In this paper, we show a new property of this transformation
when applied to a disperser as follows.

2.4.1 New Property of an Old Disperser

A disperser is a bipartite graph G = (X,Y,E) with a certain “expanding property” in the sense that
it has a small balanced bipartite independent set as stated informally below (the formal definition
can be found in Definition 5.3):

Definition 2.2 (Disperser (informal)). Let G = (X,Y,E) be a disperser with some parameter
k > 0. Then G has no independent set S such that |S ∩X| = |S ∩ Y | ≥ k.

In this case, we say that the balanced bipartite independent set number of G, denoted by BBIS(G)
is at most k. (For an intuition, think of k as k = δ|X| for some small value δ.) The disperser
plays an important role in proving hardness of approximation; see, e.g., the use of disperser in
Trevisan’s construction in [53] for the hardness of approximating the maximum independent set
problem on a bounded-degree graph. So, it is natural to study the properties of dispersers when
considering the hardness of approximating the maximum independent set and related problems
(the maximum induced matching problem, in particular). In this paper, we show that if G is a
disperser, then there is a tight connection between its balanced bipartite independence number
BBIS(G), its induced matching number, and the induced matching number of its bipartite double
cover im(B[G]):

Lemma 2.3 (Disperser Lemma (Informal)). If G = (X,Y,E) is disperser, then

im(B[G]) = O(im(G)) = O(BBIS(G)).

(The formal version of the above lemma can be found in Lemma 5.5.) In fact, Lemma 2.3 holds
for any bipartite graph G, but we only need to apply it to dispersers. This lemma is crucial in
our construction. Its proof is so simple that we can sketch it here. First, we show that im(G) =
O(BBIS(G)). Let M = {x1y1, . . . , xtyt} be any induced matching of size t in G, where xi ∈ X
and yi ∈ Y for all i. Observe that the set S = {x1, . . . xbt/2c} ∪ {ybt/2c+1, . . . , yt} is a balanced
bipartite independent set. So, it follows that BBIS(G) ≥ bim(G)/2c and thus im(G) = O(BBIS(G))
as desired. Observe that our proof simply exploits the fact that G is bipartite.

Next, we prove that im(B[G]) = O(im(G)). As the equation looks natural, one might wonder if this
holds for any graph. Unfortunately, we have to answer this question negatively since there is a simple
counter example showing that this claim does not hold for a general graph. (Consider, for example,
a graphH with a vertex set {x1, . . . , xt}∪{y1, . . . , yt} where edges are in the form xiyi, xixj and yiyj ,
for all i and j. In other words, the graph H consists of two equal-sized cliques that are connected

11

by a perfect matching. It can be seen that im(H) = 2 whereas im(B[G]) ≥ t/2.) Our proof again
exploits the fact that the graph G is bipartite. Consider an induced matching M in B[G]. Let U ′

and U ′′ be the two bipartitions of B[G]. For any vertex x in the bipartition X of G, let us write its
copy in U ′ and U ′′ as x′ and x′′, respectively. We do the same thing for every vertex y ∈ Y . Observe
that edges in B[G] must be in the form x′y′′ or x′′y′, for some x ∈ X and y ∈ Y . It follows that
M (an induced matching in B[G]) must be in the form {x′1y′′1 , . . . , x′ty′′t } ∪ {x′′t+1y

′
t+1, . . . , x

′′
t′y
′
t′}

where, for all i, xi ∈ X, yi ∈ Y . We can use M to construct two induced matchings in G:
M1 = {x1y1, . . . , xtyt} and M2 = {xt+1yt+1, . . . , xt′yt′} (it is not hard to show that M1 and M2 are
induced matchings). Thus, im(G) ≥ im(B[G]|)/2, implying that im(B[G]) = O(im(G)) as desired.

The property of dispersers in Lemma 2.3, when plugged into the construction of Trevisan [53],
immediately implies Theorem 2.1. Combining Theorem 2.1 with the hardness of the maximum
independent set problem, we immediately obtain the hardness of the maximum induced matching
problem in a bipartite graph. Further detail of this step can be found in Section 5

2.5 Step III: Induced matching → Pricing (Equation (4))

In the last step of our reduction, we reduce from the bipartite induced matching problem to the
pricing problem. Given a bipartite graph G = (U,W,E), we convert it to an instance of the pricing
problem by thinking of the left vertices U as consumers having different budgets and the right
vertices W as items. The main idea is that the price of each item will tell us which consumer it
should be matched to (to get a solution for the bipartite induced matching problem); i.e., if an
item I has price p, then it should be matched to the consumer of budget roughly p. To make this
idea work, we have to make consumers’ budgets geometrically different, as well as the number of
consumers. To be precise, we need to convert each vertex u ∈ U into some 2i consumers in such
a way that any two vertices u and u′ sharing the same neighbor v must be converted to different
numbers of consumers. This leads to an exponential blowup. We need a blowup of 2O(∆) intuitively
because each vertex v ∈ V has degree ∆. This is how the exponential blowup comes into picture.
Further detail of this step can be found in Section 6.

3 Preliminaries

We use standard graph terminologies as in [24]. We denote any graph by G = (V,E). When we
consider more than one graph, we may denote the set of vertices and edges of a graph G by V (G)
and E(G), respectively. A set of vertices S ⊆ V is independent (or stable) in G if and only if G has
no edge joining a pair of vertices u, v ∈ V . A set of edges M ⊆ E is a matching in G if and only
if no two edges of M share an end-vertex, and a matching M is an induced matching in G is the
subgraph of G induced by M is exactly M . That is, M is an induced matching in G if and only if,
for every pair of edges uv, ab ∈M , G has none of the edges ua, ub, va, vb.

Semi-Induced Matching: To prove the hardness of pricing problems, we need a slight variant
of the maximum induced matching problem, called the maximum semi-induced matching problem.
Given a permutation (a.k.a, a total order) σ of V , a set of edges M ⊆ E is a σ-semi-induced
matching in G if and only if, for every pair of edges uv, ab ∈M such that σ(u) < σ(a), G has none

12

of the edges ua, ub. Given any graph G and a total order σ, we use the notation simσ(G) to denote
the size of a maximum σ-semi-induced matching in G, and let sim(G) = maxσ simσ(G). Notice that
for any σ, if M is an induced matching in G, then M is also a σ-semi-induced matching in G, so
we must have im(G) ≤ simσ(G) ≤ sim(G). In the maximum semi-induced matching problem, our
goal is to compute sim(G).

Our hardness proof of the maximum bipartite induced matching problem will, in fact, show a
stronger property than just bounding the size of a maximum induced matching. That is, in the
completeness case, the reduction guarantees that im(G) ≥ c while in the soundness case, it gives
sim(G) ≤ s (where s and c are soundness and completeness parameters, respectively). Notice that
sim(G) ≤ s implies im(G) ≤ s, so this stronger property implies the (c/s)-hardness of approximat-
ing the maximum bipartite induced matching problem as a consequence. Bounding the size of a
maximum semi-induced matching in the soundness case seems to be necessary for us here in order
to prove the hardness of the k-hypergraph pricing problem.

The Pricing Problems: In an equivalent formulation of the k-hypergraph pricing problem that
we will be using throughout the paper, the pricing instance is given by two sets (C, I) where C
and I are the sets of consumers and items, respectively. Each consumer c ∈ C is associated with a
budget Bc and an item set Sc ⊆ I. We have an additional constraint that |Sc| = k. It is easy to see
that this formulation is equivalent to the hypergraph formulation, i.e., each vertex corresponds to
an item and each edge corresponds to a consumer, and the additional constraint |Sc| = k ensures
that the size of each hyperedge is k. For our purpose, this formulation has an advantage over
the hypergraph formulation since we will be dealing with several graph problems and connections
between them, which can easily create confusion between a number of graphs that come up in the
same context.

Constraint Satisfaction Problems: One of the most fundamental problems in theoretical com-
puter science is k-SAT, where we are given a CNF formula ϕ, and the goal is to decide whether
there is an assignment to boolean variables of ϕ that satisfies all the formula. In the maximization
version of k-SAT, the goal is to find an assignment that maximizes the number of clauses of ϕ
satisfied.

The k-constraints satisfaction problem (k-CSP) is a generalization of k-SAT, in which each clause
is a (boolean) function Πj on k (boolean) variables, and the goal of k-CSP is to find an assignment
to variables that satisfies as many clauses as possible. That is, the goal is to find an assignment f
such that Πj(fj) = 1 for all clause Πj , where fj is a partial assignment restricted to only variables
that appear in Πj . We use the term assignment of a clause Πj to mean a partial assignment
restricted to variables in Πj . For example, suppose Πj consists of variables x1, x2, x3; then (1, 0, 1)
is an assignment of Πj where x1 = 1, x2 = 0 and x3 = 1. An assignment fj of Πj is a satisfying
assignment for the clause Πj if and only if Πj(fj) = 1, i.e., fj satisfies Πj .

Exponential Time Hypothesis: The complexity assumption that has received more attention
recently is the Exponential Time Hypothesis (ETH), which rules out the existence of subexponential-
time algorithms that decide k-SAT. The formal statement of this conjecture is as follows.

13

Hypothesis 3.1 (Exponential-Time Hypothesis (ETH)). For any integer k ≥ 3, there is a constant
0 < q0(k) < 1 such that there is no algorithm with a running time of 2qN , for all q < q0(k), that
solves k-SAT where N is the size of the instance. In particular, there is no subexponential-time
algorithm that solves 3-SAT.

Indeed, the ETH was first stated in terms of the number of variables. Impagliazzo, Paturi and
Zane [34] showed that the statement is equivalent for all the parameters, i.e., N in the statement
can be the number of variables, the number of clauses or the size of the instance. For our purpose,
we state the theorem in terms of the instance size. For more discussion related to the ETH, we
refer readers to a comprehensive survey by Lokshtanov et al. [39] and references therein.

4 Nearly-linear size sparse PCP with small free-bit complexity
and large degree

This section implements the reductions in Equation (5∗) and Equation (6∗) as outlined in the
overview section. Informally, given a SAT formula, we need to construct a CSP with the following
property: (1) We need it to be sparse, i.e., the number of clauses is small compared to the number
of variable. (2) The amortized free-bit complexity, i.e., the number of satisfying assignments of
each clause, can be made arbitrarily small. (3) The degree, i.e., the number of occurrences of each
variable, is large. The last requirement is one of the main reasons that we have to slightly modify
a PCP. Moreover, to be able to use the ETH, we need the size, i.e., the number of variables, to
be nearly-linear, so we start from the nearly linear sized PCP of Moshkovitz and Raz [44]. The
following theorem summarizes the properties of our PCP.

Theorem 4.1 (Nearly-linear size sparse PCP with small free-bit complexity and large degree).
Let k, t be parameters and ε = 1/k. Also, let δ > 0 be any parameter. There is a randomized
polynomial-time algorithm that transforms a 3SAT formula of size N to a (tq)-CSP formula ϕ,
where q = k2 + 2k, that satisfies the following properties:

• (Small Number of Variables and Clauses) The number of variables is at most qN1+ε, and the
number of clauses is M = 100q2t(k

2+1)N1+ε+δ.

• (Big Gap between Completeness and Soundness) The value of the Yes-Instance is at least
c = 1/2t+1, and the value of No-Instance is s = 2−t(k

2+2).

• (Free-Bit Complexity) For each clause in ϕ, the number of satisfying assignments for such
clause is w = 22kt. Moreover, for each variable xj that appears in a clause, the number of
satisfying assignments for which xj = 0 is equal to the number of satisfying assignments for
which xj = 1.

• (Large Degree) For each variable xj, the total number of clauses in which xj appears is Mj ≥
N δ2t(k

2+1).

The outline of our proof is as follows. First, we take a PCP with nearly-linear size and optimal
amortized free-bit complexity. We slightly modify PCP to satisfy our desired property and then

14

transform the PCP into a CSP instance. The CSP instance that we obtain at this point has
small hardness gap (i.e., the ratio between completeness and soundness parameters), so we apply a
standard gap-amplification scheme (see [54]) to amplify this gap and obtain a final CSP instance.

4.1 PCP Construction

A probabilistically checkable proof system (PCP) is a characterization of an NP problem. A PCP
system for a language L of size N consists of a (randomized) verifier V on an input ϕ that has
an oracle access to a proof string Π given by a prover. To decide whether to “accept” or “reject”
the proof, the verifier flips a coin a certain number of times, forming a random string r, and then
queries q positions of the proof corresponding to r. (These q positions depends on the random
string r.) We call the values read from the proof string answers. Given a random string r, we
denote by b1(r), . . . , bq(r) the indices of the proof bits read by the verifier. A configuration is a
(q+ 1)-tuple (r, a1, . . . , aq) where ai is the value of the position b1(r) of the proof bit. We say that
a configuration (r, a1, . . . , aq) is accepting if the random string r of the verifier and the answers
a1, . . . , aq from the prover cause the verifier to accept the proof. A subset of f queries are free if,
for any possible answers to these queries, there is a unique answer to each of the other queries that
would make the verifier accepts.

Our starting point in constructing the desired CSP is the following PCP characterization of NP by
Moshkovitz and Raz [44, Corollary 14].

Theorem 4.2 ([44] + [49]). For any sufficiently large constant k ≥ ω(1), 3SAT on input of size N
has a verifier that uses (1 + ε) logN random bits to pick q = k2 + 2k queries to a binary proof, such
that only 2k of the queries are free, i.e., for each random string, there are 22k possible satisfying
assignments of the queried bits in the proof. The verifier has completeness 1 − ε and soundness
error at most 2−k

2+1. Moreover, the acceptance predicate is linear.

In fact, the main result in [44] is the 2-query projection PCP (a.k.a. the label cover problem) with
sub-constant error and nearly-linear size. In [49], Samorodnitsky and Trevisan constructed a PCP
with optimal amortized free-bit complexity via linearity testing and used a 2-query projection PCP
as an outer PCP. For simplicity of parameters and since we only need the completeness of 1/2 in
our construction, we replace the completeness of 1− ε by 1/2 from now on.

Since the acceptance predicate of the verifier is linear, we can assert that, for each random string r
and each integer j : 1 ≤ j ≤ q, the number of accepting configurations for which Πbj(r) = 0 is equal
to the number of accepting configurations for which Πbj(r) = 1.

Now we describe the (slight) modification of PCP. We want each proof bit to be participated in at
least N δ random strings in order to ensure sufficient success probability in later steps. Therefore,
we modify the PCP by allowing the verifier to flip δ logN extra random coins, so now the number
of random bits needed is (1 + ε + δ) logN . The verifier does not perform any extra computation
based on these new random coins. That is, the positions of the proof that the verifier reads depend
only on the first (1 + ε) logN random bits. This guarantees that the proof degree is at least N δ

while the completeness and soundness are preserved. (In the context of CSP, this is equivalent
to making 2δ logN copies of each clause.) This step is required to ensure that the PCP has a
proof degree polynomial on N (which is later required in the construction of dispersers.) When

15

t = Ω(logN), we can skip this step because the proof degree will be poly(N) automatically after
the gap amplification step. To be precise, given a PCP verifier V , we construct a modified PCP
verifier V ′ as follows. The verifier V ′ uses the same proof Π as that of V , and V ′ has the same
parameters as V except for the size of a random string. Each time, V ′ flips B = (1 + ε + δ) logN
coins to generate a random string r′ = (x1, . . . , xB), where xi ∈ {0, 1}. Then V ′ simulates the
verifier V and feeds V a random string r = (x1, . . . , x(1+ε) logN). So, the positions of the proof Π
that V reads depend only on the first (1 + ε) log n random bits generated by V ′. The verifier V ′

accepts the proof if (the simulation of) V accepts the proof. It can be seen that the verifier V ′ has
all the properties of V , but the proof degree, i.e., the number of random strings that cause V ′ to
read each position i of the proof, is now at least N δ. Hence, we have the following theorem.

Corollary 4.3. For any sufficiently large constant k ≥ ω(1), 3SAT on input of size N has a verifier
that uses (1 + ε+ δ) logN random bits to pick q = k2 + 2k queries to a binary proof, such that only
2k of the queries are free, i.e., for each random string, there are 22k possible satisfying assignments
of the queried bits in the proof. The verifier has completeness 1 − ε and soundness error at most
2−k

2+1, and the acceptance predicate is linear. Moreover, the proof degree is at least N δ, i.e., for
each position i of the proof Π, there are at least N δ random strings that cause the PCP verifier to
read Π(i).

Proof. We start from the PCP as in Theorem 4.2 and modify the PCP as in the above discussion.
Since all the computations are done by (the simulation of) the verifier V , it is easy to see the
properties of V and V ′ (i.e., the size of the proof, the number of queries, the number of free queries
and the linearity of the acceptance predicate) are the same. The proof degree of the verifier V ′

follows by the construction. That is, for each random string r = (x1, . . . , x(1+ε) logN) of V , there

are N δ random strings r′ = (x1, . . . , x(1+ε) logN , y1, . . . , yδ logN) (generated by V ′) that causes V ′ to
feed the random string r to V . Thus, if r causes V to read the position i of the proof, then there
are at least N δ random strings of V ′ that causes V ′ (indeed, V) to read the position i of the proof.
In other words, V ′ has proof degree at least N δ.

Finally, as V ′ has more random bits than V , we need to verify that the completeness and soundness
of these two PCPs are the same. Let us check this quickly. Fix a proof Π. For each random string r
of V , there are exactly N δ random strings r′ of V ′ that contains r as the first (1+ε) log n substring,
and the acceptance and rejection of the proof Π depends only on r. Thus, the fraction of random
strings that cause V ′ to accept or reject Π is the same as that of V . In other words, the modification
of the PCP preserves both the completeness and soundness. This proves the corollary.

From this PCP, we create a CSP formula ϕ in a natural way: For each proof bit Πb, we have a
corresponding variable xb that represents the proof bit. For each random string r, we have a clause
that involves variables xb1(r), . . . , xbq(r), and this clause is satisfied by an assignment (a1, . . . , aq) if
and only if (r, a1, . . . , aq) is an accepting configuration. The followings summarizes the properties
of the resulting CSP:

• (Size:) The number of clauses and variables is at most m = qN1+ε+δ. This is simply because
the length of random strings is (1 + ε+ δ) logN .

• (Yes-Instance:) If the input 3-SAT instance is satisfiable, then there is an assignment that
satisfies 1/2 fraction of clauses of ϕ.

16

• (No-Instance:) If the input 3-SAT instance is not satisfiable, then any assignment satisfies
at most 2−k

2+1 fraction of the clauses of ϕ.

• (Balancedness:) For each clause, the number of assignments that satisfy such clause is
at most 22k, and for each variable xj appearing in such clause, the number of satisfying
assignments for which xj = 1 equals that for which xj = 0.

• (Degree of CSP:)For any variable xj , the total number of clauses that contain xj is mj ≥
N δ.

Gap Amplification: Now, we have already generated a CSP with relatively large gap between
Yes-Instance and No-Instance. In this step, we amplify the gap between the Yes-Instance
and No-Instance further by a gap amplification scheme (see [54]), which will imply the theorem.

Let M = 100q2t(k
2+1)N1+ε+δ. We construct from ϕ a new CSP instance ϕ′ on M clauses. For

i = 1, 2, . . . ,M , we create a clause C ′i of ϕ′ by independently and uniformly at random choosing t
clauses from the formula ϕ and join them by the operation “AND”. It can be seen that the number
of variables of ϕ′ is the same as that of ϕ, and the total number of clauses is exactly M . It remains
to prove the other properties of the CSP instance ϕ′ using probabilistic arguments.

• Completeness: First, we prove the completeness. In the Yes-Instance, there is an (op-
timal) assignment σ of ϕ that satisfies 1/2 fraction of the clauses in ϕ. We will show that
with high probability σ satisfies at least 1/2t+1 fraction of the clauses of ϕ′. (Note that ϕ
and ϕ′ have the same set of variables.) Consider the random process that constructs ϕ′. The
probability that each randomly generated clause of ϕ′ is satisfied by σ (i.e., the probability
that all the t clauses are satisfied by σ) is at least 1/2t . So, the expected number of clauses
satisfied by σ is 2−tM . Since 2−tM ≥ 100qN1+δ+ε (by our choice of M), we can apply Cher-
noff’s bound to show that the probability that σ satisfies less than 1/2t+1 fraction of clauses
in ϕ′ is less than 1/N .

• Soundness: Now, we prove the soundness. In the No-Instance, any assignment σ satisfies
at most 2−k

2+1 fraction of the clauses of ϕ. We will show that σ satisfies at most 2−t(k
2−2)

fraction of the clauses of ϕ′ with high probability. So, for any assignment σ, the expected
number of clauses in ϕ′ satisfied by σ is at most 2−t(k

2−1)M ≤ 100qN1+δ+ε. By Chernoff’s
bound, the probability that such assignment satisfies more than 2−t(k

2−2)M clauses is at
most 2−10qN1+δ+ε

. Since there are at most 2qN
1+δ+ε

such assignments (because the number of
variables is qN1+δ+ε), we have by union bound the claimed soundness.

• Balanceness: The property in the third bullet holds trivially because each clause of ϕ′ is
constructed from the “AND” of t clauses of ϕ.

• Degree of CSP: Finally, to prove the fourth bullet, we fix a variable xj . The probability
that each random clause contains a variable xj is at least mj/m. So, the expected number of
clauses that contain xj is at least

mj

m
M ≥ mj

qN1+ε+δ
100q2t(k

2+1)N1+δ+ε ≥ 100N δ2t(k
2+1)

17

By applying Chernoff’s bound, the probability that we have less than N δ2t(k
2+1) clauses

containing xj is at most 1/N .

This completes the proof of Theorem 4.1.

5 Tight Hardness of Semi-Induced Matching

In this section, we prove the (almost) tight hardness result of the semi-induced matching problem
on a ∆-degree bounded bipartite graph. What we prove is actually stronger than the hardnesses
of the induced and semi-induced matching problems themselves: We show that the completeness
case has a large induced matching while the soundness case has no large semi-induced matching.
The formal statement is encapsulated in the following theorem.

Theorem 5.1 (Hardness of ∆-Degree Bounded Bipartite Semi-induced Matching). Let ε > 0 be
any constant and t > 0 be a positive integer. There is a randomized algorithm that transforms a

SAT formula ϕ of input size N into a ∆-degree bounded bipartite graph, where ∆ = 2t(
1
ε2

+O(1
ε
))

such that:

• (Yes-Instance:) If ϕ is satisfiable, then im(G) ≥ |V (G)|/∆ε.

• (No-Instance:) If ϕ is not satisfiable, then sim(G) ≤ |V (G)|/∆1−ε.

The construction size is |V (G)| ≤ N1+ε∆1+ε, and the running time is poly(N,∆). Moreover, as
long as t ≤ 5ε2 logN , the reduction is guaranteed to be successful with high probability.

Theorem 5.2 (Hardness of d-Degree-Bounded Maximum Independent Set). Let ε > 0 be any
sufficiently small constant and t > 0 be a positive integer. There is a randomized algorithm that
transforms a SAT formula ϕ on input of size N into a d-degree-bounded graph G, where d =

2t(
1
ε2

+O(1
ε
)) such that:

• (Yes-Instance:) If ϕ is satisfiable, then α(G) ≥ |V (G)|/dε.

• (No-Instance:) If ϕ is not satisfiable, then α(G) ≤ |V (G)|/d1−ε.

The construction size is |V (G)| = N1+εd1+ε, and the running time is poly(N, d). Moreover, as
long as t ≤ 5ε2 logN , the reduction is guaranteed to be successful with high probability.

5.1 The Reduction

Our reduction is precisely described as follows. Take an instance ϕ of (qt)-CSP as in Theorem 4.1
that has N variables and M clauses.

18

The FGLSS Graph Ĝ with Disperser Replacement: First, we construct from ϕ a graph G̃
by the FGLSS construction, and then the graph G̃ will be transformed to graph Ĝ by the disperser
replacement step. For each clause ϕj of ϕ, for each possible satisfying assignment C of ϕj , we

create in G̃ a vertex v(j, C) representing the fact that “ϕj is satisfied by assignment C”. Then we

create an edge v(j, C)v(j′, C ′) ∈ E(G̃) if there is a conflict between partial assignments C and C ′,
i.e., there is a variable xi appearing in clauses ϕj and ϕj′ such that C assigns xi = 0 whereas C ′

assigns xi = 1. So, the total number of vertices is |V (G̃)| = w ·M . The independence number of
a graph G̃ corresponds to the number of clauses of ϕ that can be satisfied. In particular, we can
choose at most one vertex from each clause ϕj (otherwise, we would have a conflict between v(j, C)

and v(j, C ′)), and we can choose two vertices v(j, C), v(j′, C ′) ∈ V (G̃) if and only if the assignment
C and C ′ have no conflict between variables. Thus, the number of satisfiable clauses of ϕ is the
same as the independence number α(G̃). Hence, in the Yes-Instance, we have α(G̃) ≥ c ·M , and
in No-Instance, we have α(G̃) ≤ s ·M . This gives a hard instance of the maximum independent
set problem. Notice that the degree of G̃ can be very high.

Next, in order to reduce the degree of G̃, we follow the disperser replacement step as in [53].
Consider an additional property of G̃. For each variable xi in ϕ, let Oi and Zi denote the set of
vertices v(j, C) corresponding to the (partial) assignments for which xi = 1 and xi = 0, respectively.
It can be deduced from Theorem 4.1 that |Oi| = |Zi| = Mi/2 ≥ 2t(k

2+1)N δ, for some constant δ > 0.

Since there is a conflict between every vertex of Oi and Zi, these two sets define a complete bipartite
subgraph of G̃, namely G̃i = (Oi, Zi, Ẽi), where Ẽi = {uw : u ∈ Oi, w ∈ Zi}. Observe that if we
replace each subgraph G̃i of G by a d-degree bounded bipartite graph, the degree of vertices in the
resulting graph reduces to qtd. To see this, we may think of each vertex u of G̃ as a vector with qt
coordinates (since it corresponds to an assignment to some clause ϕj which has qt related variables).
For each coordinate ` of u corresponding to a variable xi, there are d neighbors of u having a conflict
at coordinate ` (since the conflict forming in each coordinate are edges in G̃i, and we replace G̃i by
a d-degree bounded bipartite graph). Thus, each vertex u has at most qtd neighbors. However, as
we wish to preserve the independence number of G, i.e., we want α(Ĝ) ≈ α(G̃), we require such a
d-degree bounded graph to have some additional properties. To be precise, we construct the graph
Ĝ by replacing each subgraph G̃i of G̃ by a (d, γ)-disperser Hi = (Oi, Zi, Ei), defined below.

Definition 5.3 (Disperser). A (d, γ)-disperser H = (U ′,W ′, E′) is a d-degree bounded bipartite
graph on n′ = |U ′| = |W ′| vertices such that, for all X ⊆ U ′, Y ⊆ W ′, if |X|, |Y | ≥ γn′, then there
is an edge xy ∈ E′ joining a pair of vertices x ∈ X and y ∈ Y .

Intuitively, the important property of the disperser Hi is that any independent set S in Hi cannot
contain a large number of vertices from both Oi and Zi; otherwise, we would have an edge joining
two vertices in S.

All these ideas of using disperser to “sparsify” the graphs were used by Trevisan in [53] to prove
the hardness of the bounded degree maximum independent set problem. The key observation that
makes this construction work for our problem is that a similar property that holds for the size of a
maximum independent set also holds for the size of a maximum σ-semi-induced matching in B[Hi],
i.e., B[Hi] cannot contain a large σ-semi-induced matching, for any permutation σ.

Now, we proceed to make the intuition above precise. A (d, γ)-disperser can be constructed by
a randomized algorithm, which is stated in the next lemma. In the case that d is constant, we

19

may construct a (d, γ)-disperser by a deterministic algorithm in [46], which has a running time
exponential in terms of d.

Lemma 5.4. For all γ > 0 and sufficiently large n, there is a randomized algorithm that with success
probability 1 − e−nγ(log(1/γ)−2), outputs a d-regular bipartite graph H = (O,Z,E), |O| = |Z| = n,
where d = (3/γ) log(1/γ) such that, for all X ⊆ Z, Y ⊆ O, if |X|, |Y | ≥ γn, then there is an edge
(x, y) ∈ E joining a pair of vertices x ∈ X and y ∈ Y .

The condition that ni is sufficiently large is satisfied because |Oi| = |Zi| ≥ Mi ≥ N δ2tk
2

for all i
(since each variable xi appears in Mi clauses, and for each such clause, there is at least one accepting
configuration for which xi = 0 and one for which xi = 1.) Also, since the success probability in

constructing each disperser is high (i.e., at least 2N
δ
), we can guarantee that all the dispersers are

successfully constructed with high probability. By setting appropriate value of γ (which we will do
later) and following analysis in [53], we have the following completeness and soundness parameters
with high probability.

• (Yes-Instance:) α(Ĝ) ≥ 2−tM

• (No-Instance:) α(Ĝ) ≤ 2−t(k
2+2)M + γqt(wM)

The Final Graph G: We construct the final graph G by transforming Ĝ into a bipartite graph
as follows: first create two copies V ′ and V ′′ of vertices of Ĝ, i.e., each vertex u ∈ V (G) has two
corresponding copies u′ ∈ V ′ and u′′ ∈ V ′′; then create an edge joining two vertices u′ ∈ V ′ and
w′′ ∈ V ′′ if and only if there is an edge uw ∈ E(Ĝ) or u = w. Thus, a formal definition can be
written as G = B[Ĝ] = (U ∪W,E) where

U =
{

(u, 1) : u ∈ V (Ĝ)
}
,

W =
{

(w, 2) : w ∈ V (Ĝ)
}

and

E = E1 ∪ E2 where

E1 =
{

(u, 1)(u, 2) : u ∈ V (Ĝ)
}
,

E2 =
{

(u, 1)(w, 2) : u,w ∈ V (Ĝ) ∧ (uw ∈ E(Ĝ))
}

The graph G is a (2qtd + 1)-degree bounded bipartite graph on 2|V (Ĝ)| vertices. Observe that
edges in G of the form (u, 1)(u, 2) correspond to a vertex in Ĝ. Thus, a (semi) induced matching
in G whose edges are in this form corresponds to an independent set in Ĝ. Although this is not the
case for every (semi) induced matchingM in G, we will show that we can extract a (semi) induced
matchingM′ fromM in such a way thatM′ maps to an independent set in G, and |M′| ≥ Ω(|M|).

5.2 Analysis

Now, we analyze our reduction. Before proceeding, we prove some useful properties of dispersers.
The next lemma shows the bounds on the size of a σ-semi-induced matching in a disperser.

20

Lemma 5.5 (Disperser Lemma). Every (d, γ)-disperser H = (O,Z,E) on 2n vertices has the
following properties.

• For any independent set S of H, S cannot contain more than γn vertices from both O and
Z, i.e.,

min(|S ∩O|, |S ∩ Z|) ≤ γn

• For any permutation (ordering) σ of the vertices of H, the graph B[H] = (U,W,F) obtained
by transforming H into a bipartite graph (using only edges of type E2) contains no σ-semi
induced matching of size more than 4γn, i.e.,

simσ(B[H]) ≤ 4γn

Proof. The first property follows from the definition of the (d, γ)-disperser H. That is, letting
X = S ∩ O and Y = S ∩ Z, if |X|, |Y | > γn, then we must have an edge xy ∈ E(H) joining some
vertex x ∈ X to some vertex y ∈ Y , contradicting the fact that S is an independent set in H.

Next, we prove the second property. Consider the set of edges M that form a σ-semi-induced
matching in B[G]. We claim that |M| ≤ 4γn. By way of contradiction, assume that |M| > 4γn.
Observe that, for each edge (u, 1)(v, 2) ∈ M, either (1) u ∈ O and v ∈ Z or (2) v ∈ O and u ∈ Z.

Since the two cases are symmetric, we analyze only the set of edges of the first case, denoted by M̂.
Also, we assume wlog that at least half of the edges of M are in M̂; thus, |M̂| ≥ |M|/2 > 2γn.

Let us denote by V (M̂) the set of vertices that are adjacent to some edges in M̂. To get a
contradiction, we prove the following claim.

Claim 5.6. There are two subsets X ⊆ U ∩ V (M̂) : |X| = γn and Y = W ∩ V (M̂) : |Y | ≥ γn

such that σ(x) < σ(y), for any x ∈ X and y ∈ V (M̂) \X. Moreover, there is no M̂-edge between
vertices in X and Y .

We first argue that the second property follows from Claim 5.6: If there were such two sets X,Y ,
then we can define the “projection” of X and Y onto the graph H by X ′ = {u ∈ V (H) : (u, 1) ∈ X}
and Y ′ = {v ∈ V (H) : (v, 2) ∈ Y }. It must be the case that X ′ ⊆ O and Y ′ ⊆ Z (due to the

definition of M̂), so from the property of disperser, there is an edge in E(H) joining some x ∈ X ′
and y ∈ Y ′. This implies that there must be an edge (x, 1)(y, 2) ∈ E(B[H]) where x ∈ X and

y ∈ Y . Also, there are edges (x, 1)(x′, 2) ∈ M̂ and (y′, 1)(y, 2) ∈ M̂ contradicting the fact that M
is a σ-semi-induced matching. It only remains to prove the claim.

Proof of Claim 5.6. Recall that we have the ordering σ that is defined on the vertices of B[H], not

the vertices of H. We construct X and Y as follows. Order vertices in U ∩ V (M̂) according to the
ordering σ and define X to be the first γn vertices according to this ordering. So, we have obtained
X ⊆ U ∩ V (M̂) with the property that for any x ∈ X and y ∈ V (M̂) \X, σ(x) < σ(y).

Now, we define Y ⊆W ∩V (M̂) as the set of vertices that are not matched by M̂ with any vertices

in X. Since |X| = γn, the number of vertices in W ∩ V (M̂) that are matched by M̂ is only γn, so
we can choose arbitrary γn vertices that are not matched as our set Y .

21

As a corollary of Lemma 5.5, we relate the independent number the FGLSS graph G̃ to the final
graph G.

Corollary 5.7. Let G̃ and G be the graphs constructed as above. Then, for any permutation
(ordering) σ of vertices of G,

α(Ĝ) ≤ simσ(G) ≤ α(Ĝ) + 4γ|V (Ĝ)|

Proof. Recall that edges E(G) = E1∪E2. To prove the inequality on the left-hand-side, consider the

set of edges E1. Observe that edges of E1 =
{

(v, 1)(v, 2) : u ∈ V (Ĝ)
}

correspond to vertices of Ĝ as

Ĝ and Ĝ share the same vertex set. Let S be an independent set in Ĝ. We claim that the set ES =
{(u, 1)(u, 2) : u ∈ S} must be an induced matching in G, and this would immediately imply the first
inequality: Assume that there was an edge (u, 1)(v, 2) ∈ E(G) for some (u, 1)(u, 2), (v, 1)(v, 2) ∈ ES ,
so we must have that u, v ∈ S and that uv ∈ E(Ĝ) ⊆ E(Ĝ). This contradicts the fact that S is an
independent set.

Next, we prove the inequality on the right-hand-side. Let M be a σ-semi-induced matching in
G. We decompose M into M = M1 ∪ M2. By the argument similar to the previous para-
graph, it is easy to see that |M1| ≤ α(Ĝ): From the set M1, we can define a set S ⊆ V (G̃) by

S =
{
u ∈ V (G̃) : (u, 1)(u, 2) ∈M1

}
, and S must be an independent set in Ĝ; otherwise, if there

is an edge uv ∈ E(Ĝ) for u, v ∈ S, then we would have edges (u, 1)(v, 2), (v, 1)(u, 2) ∈ E(G),
contradicting to the fact that M1 is σ-semi-induced matching.

It is sufficient to show that |M2| ≤ 4γ|V (Ĝ)|. We do so by partitioning M2 into M2 =
⋃N
j=1M

j
2

where Mj
2 = {(u, 1)(v, 2) ∈M2, uv ∈ E(Hj)} (since Ĝ is the union of edges of subgraphs Hj).

Each set Mj
2 must be a σj-induced matching for the ordering σj obtained by projecting σ onto

the vertices of B[Hj], so we can invoke Lemma 5.5 to bound the size of Mj
2, i.e., |Mj

2| ≤ 4γnj .
Summing over all j, we have

|M2| ≤
N∑
j=1

|Mj
2| ≤

N∑
j=1

4γnj ≤ 4γqt|V (Ĝ)|

The last inequality follows because of basic counting arguments. Each vertex belongs to exactly qt
subgraphs Hj , so if we sum nj over all j = 1, 2, . . . , N , we get

∑N
j=1 nj = qt|V (Ĝ)|.

Completeness and Soundness: The completeness and soundness proofs are now easy. In the
Yes-Instance, α(Ĝ) ≥ c ·M implies that simσ(G) ≥ c ·M , and in the No-Instance, the fact that
α(Ĝ) ≤ s ·M + γqtwM implies that simσ(G) ≤ s ·M + 5γqtwM .

Now, we choose γ = s/(5qtw) and this would give d = O(1
γ log 1

γ) = O((wqt/s) log(wqt/s)). Then
we have the final graph G with the following properties:

Number of Vertices Degree Hardness Gap

n = 2wM ∆ = (2dq + 1) g =
c ·M

s ·M + 5γ · wM
≥ c

2s

22

Substituting c, s, w, q,M as in Theorem 4.1, we get

• The degree ∆ = O(t2k42t(k
2+2k−1)) = 2t(k

2+Θ(k)) = 2t(1/ε
2+Θ(1/ε))

• The number of vertices |V (G)| = 2t(k
2)N1+O(ε) = ∆1+O(ε)N1+O(ε)

• The hardness gap g ≥ 2t(k
2−1) ≥ ∆1−O(ε)

Success probability of the disperser construction: Notice that the failure probability of
the disperser construction given in Lemma 5.4 is large when Niγ is small. In our case, we have
Ni ≥ 2tk

2
N δ and γ ≥ 2−t(k

2+O(k)). So, we are guaranteed that Niγ ≥ N δ2−O(tk) = 2δ logN−O(tk).
As long as t ≤ O(δε) logN , we would be guaranteed that Niγ ≥ N δ/2, so the failure probability

in Lemma 5.4 is at most 2−N
δ/2

. This allows us to apply union bound over all variables xj in the
CSP and conclude that the construction is successful with high probability. If we appropriately
pick δ = Θ(ε) and t ≤ 5ε2 logN , then we obtain Theorem 5.1.

5.3 Subexponential Time Approximation Hardness for the Maximum Indepen-
dent Set and Induced Matching Problems

Here we present hardness results that show a trade-off between running-time and approximation-
ratio. Roughly speaking, we obtain the following results under the Exponential Time Hypothesis:
any algorithm that guarantees an approximation ratio of r for the maximum independent set
problem and the maximum bipartite induced matching problem on bipartite graphs, for any r ≥ r0

for some constant r0, must run in time at least 2n
1−ε/r1+ε

. This almost matches the upper bound
of 2n/r given by Cygan et al. [23] for the case of the maximum independent set problem and by
our simple algorithm given in Section 5.4 for the case of the bipartite induced matching problem.
These results are obtained as by-products of Theorems 5.1 and 5.2.

Theorem Theorem 5.2 implies almost immediately the following corollary.

Theorem 5.8. Consider the maximum independent set problem on an input graph G = (V,E). For
any ε > 0 and sufficiently large r ≤ |V (G)|1/2−ε, every algorithm that guarantees an approximation
ratio of r must run in time at least 2|V (G)|1−2ε/r1+4ε

unless the ETH is false.

Proof. The intuition is very simple. Theorem 5.2 can be seen as a reduction from SAT of size
N to the independent set problem whose instance size is, roughly, |V (G)| = Nr where r is the
approximability gap for the independent set problem (ignoring the small exponent ε in the theorem).
(In fact, the graph resulting from the reduction is an r-degree-bounded graph as we will set r ≈ d.)
It is immediate that getting a running time of 2o(|V (G)|/r) for the maximum independent set problem
is equivalent to getting a running time of 2o(N) for SAT (since N ≈ |V (G)|/r), contradicting the
ETH. Below we give a formal proof.

Assume for a contradiction that there is an algorithm A that obtains r-approximation in time
2|V (G)|1−2ε/r1+4ε

for some r ≤ |V (G)|1/2−ε and a small constant ε > 0. Then we can use the algorithm
A to decide the satisfiability of a given SAT formula ϕ as follows. First, we invoke the reduction
in Theorem 5.2 on the SAT formula ϕ to construct a graph G = (V,E) with parameters t, ε such

23

that d = 2t(1/ε
2+Θ(1/ε)) = r1+3ε. Notice that the value of t is at most t ≤ 2ε2 log r ≤ 5ε2 logN , so

the reduction is guaranteed to be successful with high probability.

Since d = r1+3ε, we have r < d1−ε, which means we can use the algorithm A to distinguish between
Yes-Instance and No-Instance in time 2|V (G)|1−2ε/r1+4ε

< 2N
1−ε

. When plugging in the values
|V (G)| ≤ N1+εd1+ε and r1+4ε ≥ d, this violates the ETH.

Notice that, since t in Theorem 5.2 cannot be chosen beyond 5ε2 logN , we have no flexibility of
making r arbitrary close to |V (G)|1−ε. However, this can be easily fixed by slightly modifying the
proof of Theorem 5.2 and leaving the flexibility of choosing parameter δ as discussed in Section 4.
Since this is not necessary for the hardness of the k-hypergraph pricing problem and will make the
proof in Section 4 more complicated, the detail is omitted.

The subexponential time hardness of approximating the maximum induced matching problem can
be proved analogously, but we need Theorem 5.1 instead of Theorem 5.2.

Theorem 5.9. Consider the maximum induced matching problem on a bipartite graph G = (U, V,E).
For any ε > 0 and sufficiently large r ≤ |V (G)|1/2−ε, every algorithm that guarantees an approxi-
mation ratio of r must run in time at least 2|V (G)|1−2ε/r1+4ε

unless the ETH is false.

We skip the proof of Theorem 5.9 as it follows the same line as the proof of Theorem 5.8.

5.4 Subexponential-Time Approximation Algorithm for Induced Matching

In this section, we show r-approximation algorithms which run in 2n/r poly(n) time for the case of
bipartite graphs and 2(n/r) log ∆ poly(n) time for the general case, where ∆ is the maximum degree.
These running times are nearly tight, except that the second case incurs an extra O(log ∆) factor
in the exponent. We leave the question whether this extra term is necessary as an open problem.

Bipartite Graphs For the case of bipartite graphs, we prove the following theorem.

Theorem 5.10 (Algorithm on Bipartite Graphs). For any r ≥ 1, there is an r-approximation
algorithm for the maximum bipartite induced matching problem that runs in time 2n/r poly(n) where
n is the size of the input graph.

To prove Theorem 5.10, we will need the following lemma, which says that we can compute max-
imum induced matching in bipartite graphs in time 2n

′
where n′ is the cardinality of the smaller

side of the graph.

Lemma 5.11. For any bipartite graph G = (U,W,E), there is an algorithm that returns a maximum
induced matching in G and runs in 2min(|U |,|W |) poly |V (G)| time.

Proof. We assume without loss of generality that |U | ≤ |W |. We first need the characterization
of the existence of an induced matching in terms of good neighbors, defined as follows. Given a
subset U ′ ⊆ U and a fixed u ∈ U ′, we say that w ∈ W is a U ′-good neighbor of u if there is no
other u′ ∈ U ′ (where u′ 6= u) such that u′w ∈ E. We first note the observation that U ′ ⊆ U forms
end-vertices of some induced matchingM′ if and only if every vertex in U ′ has a U ′-good neighbor

24

in W . To see this, if U ′ ⊆ U is a set of end-vertices of matching M′, then it is clear that for each
uw ∈ M, the vertex w is a U ′-good neighbor. For the converse, for any u ∈ U ′, let wu ∈ W be a
U ′-good neighbor of u. Then {uwu : u ∈ U ′} must form an induced matching.

Now, using this observation, we compute a maximum induced matching in G as follows. For
each possible subset U ′ ⊆ U , we check whether vertices in U ′ can be end-vertices of any induced
matching. This can be done in poly(|V (G)|) time (simply by checking the existence of U ′-good
neighbors). We finally return the maximum-cardinality subset U ′ and its corresponding induced
matching M′.

From this lemma, given an input graph G = (U,W,E), we partition the vertices of U into r sets
U1, . . . , Ur in a balanced manner and define Gi = G[Ui ∪W], i.e., Gi is an induced subgraph on
vertices Ui ∪W . Our algorithm simply invokes the above lemma on each graph Gi to obtain an
induced matching Mi, and finally we return Mi∗ with maximum cardinality among M1, . . . ,Mr.
Since |Ui| ≤ dn/re, the running time of our algorithm is at most 2dn/re poly n. The following lemma
implies that Mi∗ is an r-approximation and feasible in G, thus completing the proof.

Lemma 5.12. The following holds on G and its subgraphs Gi.

• Any induced matching Mi in Gi is also an induced matching in G.

•
∑r

i=1 im(Gi) ≥ im(G)

Proof. First, we prove the first fact. If Mi is not an induced matching in G, then there must be
two edges uv, ab ∈Mi that are joined by some edge e in G. But, since u, v, a, b ∈ Ui ∪W , the edge
e must also be present in Gi, contradicting to the fact that Mi is an induced matching in Gi.

Next, we prove the second fact. Let M be a maximum induced matching in G. For i = 1, 2, . . . , r,
define Mi =M∩ E(Gi). It is clear that each Mi is an induced matching in Gi. Thus, it follows
immediately that

∑r
i=1 im(Gi) ≥

∑r
i=1 |Mi| = |M|.

General Graphs We note that almost the same running time can be obtained for the case of
general graphs, except that we have an extra log ∆ factor in the exponent, where ∆ is the maximum
degree.

Theorem 5.13 (Algorithm on General Graphs). For any r ≥ 1, there is an r-approximation
algorithm for the maximum induced matching problem that runs in time 2(n/r) log ∆ poly(n) where
n is the size of the input graph and ∆ is the maximum degree.

To prove Theorem 5.13, we give the following algorithm. Our algorithm takes as input a graph
G = (V,E) on n vertices and a parameter r. We first partition V arbitrarily into V =

⋃r
i=1 Vi such

that the size of Vi’s are roughly equal, i.e., |Vi| = bn/rc or |Vi| = bn/rc+ 1. For each i = 1, . . . , r,
we find a maximum-cardinality subset of edges Mi such that Mi is an induced matching in G and
every edge in Mi has at least one end-vertex in Vi. We implement this step by checking every
possible subset of edges: We choose one edge incident to each vertex in Vi or choose none and then
check whether the set of chosen edges F is an induced matching in G, and we pick the set F that

25

passes the test with maximum cardinality as the set Mi. Finally, we choose as output the set Mi

that has maximum-cardinality over all i = 1, 2, . . . , r.

It can be seen that the running time of our algorithm is O(∆n/r ·poly(n)) = O(2(n/r) log ∆ poly(n)),
where ∆ is the maximum degree of G. For the approximation guarantee, it suffices to show that

im(G) ≤
r∑
i=1

|Mi| ≤ r · im(G).

So, we shall complete the proof of Theorem 5.13 by proving the above inequalities as in the following
decomposition lemma.

Lemma 5.14. Consider any graph G = (V,E). Let V1∪V2∪ . . .∪Vr be any partition of V . For i =
1, 2, . . . , r, let Mi be a set of edges with maximum-cardinality such that Mi is an induced matching
in G and every edge in Mi has at least one end-vertex in Vi. Then im(G) ≤

∑r
i=1 |Mi| ≤ r · im(G).

Proof. LetM be any maximum induced matching in G. Then, clearly, |Mi| ≤ |M| = im(G) for all
i = 1, 2, . . . , r because Mi is an induced matching in G. Thus,

∑r
i=1 |Mi| ≤ r · im(G), proving the

second inequality.

For i = 1, 2, . . . , r, define Mi to be a subset of M such that each edge in Mi has at least one
end-vertex in Vi, and im(G) =

∑r
i=1 |Mi|. By the maximality of Mi, we have |Mi| ≤ |Mi|, for all

i = 1, 2, . . . , r. Thus, im(G) ≤
∑r

i=1 |Mi|, completing the proof.

6 Hardness of k-Hypergraph Pricing Problems

In this section, we prove the hardness of the k-hypergraph pricing problems, as stated formally in
the following theorem. Throughout this section, we use n and m to denote the number of items and
consumers respectively. We remark the difference between n (the number of items in the pricing
instance) and N (the size of 3SAT formula).

Theorem 6.1. Unless NP= ZPP, for any ε > 0, there is a universal constant k0 (depending on ε)
such that the k-hypergraph pricing problem for any constant k > k0 is k1−ε hard to approximate.
Assuming Hypothesis 3.1, for any ε > 0, the k-hypergraph pricing problem is hard to approximate
to within a factor of min(k1−ε, n1/2−ε).

Proof Overview and Organization For any k-hypergraph pricing instance (C, I), we denote
by OPT(C, I) the optimal possible revenue that can be collected by any price function. The key in
proving Theorem 6.1 is the connection between the hardness of the semi-induced matching and the
k-hypergraph pricing problem, as stated in the following lemma, which will be proved in Section 6.1.

Lemma 6.2 (From Semi-induced Matching to Pricing; Proof in Section 6.1). There is a randomized
reduction that, given a bipartite graph G = (U, V,E) with maximum degree d, outputs an instance
(C, I) of the k-hypergraph pricing problem such that, with high probability,

(6 ln d/ ln ln d)sim(G) ≥ OPT(C, I) ≥ im(G)

The number of consumers is |C| = |U |dO(d) and the number of items is |I| = |V |. Moreover, each
consumer c ∈ C satisfies |Sc| = d. The running time of this reduction is poly(|C|, |I|).

26

We remark that using the upper bound for OPT(C, I) in terms of sim(G) instead of im(G) seems
to be necessary. That is, getting a similar reduction with a bound OPT(C, I) = Õ(im(G)) may not
be possible.

Combining the above reduction in Lemma 6.2 with the hardness of the induced and semi-induced
matching problems in Theorem 5.1 (Section 5) leads to the following intermediate hardness result,
which in turn leads to all the hardness results stated in Theorem 6.1.

Lemma 6.3 (Intermediate Hardness; Proof in Section 6.2). Let ε > 0 be any constant. There
is a universal constant d0 = d0(ε) such that the following holds. For any function d(·) such that
d0 ≤ d(N) ≤ N1−ε, there is a randomized algorithm that transforms an N -variable 3SAT formula
ϕ to a k-hypergraph pricing instance (C, I) such that:

• For each consumer c, |Sc| = d(N).

• The algorithm runs in time poly(|C|, |I|).

• |C| ≤ dO(d)N1+ε and |I| ≤ N1+εd1+ε.

• There is a value Z such that (Yes-Instance) if ϕ is satisfiable, then OPT(C, I) ≥ Z; and
(No-Instance) if ϕ is not satisfiable, then OPT(C, I) ≤ Z/d1−ε.

In the next section, we prove the reduction in Lemma 6.2. We will prove the above intermediate
hardness result (Lemma 6.3) in Section 6.2 and then the main hardness results of this section
(Theorem 6.1) in Section 6.3.

6.1 From Semi-Induced Matching to Pricing Problems (Proof of Lemma 6.2)

Here we prove Lemma 6.2 by showing a reduction from the semi-induced matching problem on a d-
degree bounded bipartite graph to the k-hypergraph pricing problem. This reduction is randomized
and is guaranteed to be successful with a constant probability.

6.1.1 The Reduction

Let G = (U, V,E) be a bipartite graph with maximum degree d. Assume without loss of generality
the following, which will be important in our analysis.

Assumption 6.4. |U | ≤ |V |.

Notice that we always have sim(G) ≥ im(G) ≥ |U |/d. For each vertex u of G, we use NG(u) to
denote the set of neighbors of u in G. If the choice of a graph G is clear from the context, then we
will omit the subscript G. Our reduction consists of two phases.

Phase 1: Coloring We color each vertex u ∈ U of G by uniformly and independently choosing
a random color from {1, 2, . . . , d}. We denote by Ui ⊆ U , for each i = 1, 2, . . . , d, the set of left
vertices that are assigned a color i. We say that a right vertex v ∈ V is highly congested if there is

27

some i ∈ [d] such that |NG(v)∩Ui| ≥ 3 ln d/ ln ln d; i.e., v has at least 3 ln d/ ln ln d neighbors of the
same color. Let Vhigh ⊆ V be a subset of all vertices that are highly congested and V ′ = V \ Vhigh.
Thus, V ′ is the set of vertices in V with highly congested vertices thrown away. Let G′ be a
subgraph of G induced by (U, V ′, E). The following property is what we need from this phase in
the analysis in Section 6.1.2.

Lemma 6.5. With probability at least 1/2,

im(G′) ≥ (1− 2/d)im(G) and sim(G′) ≥ (1− 2/d)sim(G).

In particular, for d ≥ 4, im(G′) ≥ im(G)/2 and sim(G′) ≥ sim(G)/2 with probability at least 1/2.

Proof. First, consider any vertex v ∈ V . We claim that vertex v is highly congested with probability
at most 1/d. To see this, we map our coloring process of neighbors of v to the balls and bins problem,
where we think of each u ∈ NG(v) as a ball bu and a color c as a bin Bc. Coloring a vertex u ∈ NG(v)
with color c corresponds to putting a ball v to a bin c. By the well-known result on this problem
(e.g., see [43, Section 5.2] and [30]), we know that with probability at least 1 − 1/d, all bins have
at most 3 ln d/ ln ln d balls; i.e., |NG(v) ∩ Ui| ≤ 3 ln d/ ln ln d. Thus, v is highly congested with
probability at most 1/d as claimed.

Consider a maximum induced matching M = (A,B, F) of G, where A ⊆ U , B ⊆ V and F ⊆ E;
i.e., |A| = |B| = |F | = im(G). Let M ′ = (A′, B′, F ′) be the subgraph of M obtained by removing
vertices in Vhigh, i.e., A′ = A and B′ = B \ Vhigh. Note that edges in M ′ give an induced matching
of G′ of size |B′|, i.e.,

im(G′) ≥ |B′|.

Note that since every vertex v ∈ V is in Vhigh with probability at most 1/d, we have E[|B∩Vhigh|] ≤
|B|/d, and thus we can use Markov’s inequality to get

P[|B ∩ Vhigh| ≥ 2|B|/d] ≤ 1/2.

Thus,
P[|B′| ≤ (1− 2/d)|B|] ≤ 1/2.

It follows that im(G′) ≥ |B′| ≥ (1 − 2/d)|B| = (1 − 2/d)im(G) with probability at least 1/2. This
proves the first inequality in the statement. Proving the second inequality uses exactly the same
argument except that we let M be a maximum semi-induced matching and note that edges in M ′

give a semi-induced matching of G′ of size |B′|. This completes the proof of Lemma 6.5.

Phase 2: Finishing Now, we have a coloring of left vertices (in U) of G with desired properties.
We will construct an instance of the k-hypergraph pricing problem in both UDP and SMP models
as follows. For each vertex v ∈ V ′, we create an item I(v). For each vertex u ∈ Ui, we create
d3i consumers; we denote this set of consumers by C(u). We define the budget of each consumer
c ∈ C(u) where u ∈ Ui to be Bc = d−3i and define Sc = {I(v) : v ∈ NG(u)}, so it is immediate that
|Sc| ≤ d. To recap the parameters of our construction, we have

• The set of items I = {I(v) : v ∈ V ′}.

• The set of consumers C =
⋃
u∈U C(u), where |C(u)| = d3i for u ∈ Ui.

28

• A budget Bu =
1

d3i
for each consumer u ∈ Ui.

• A set of desired items Sc = {I(v) : v ∈ NG(u)} for each customer c ∈ C. (Note that |Sc| ≤ d.)

This completes the description of our reduction. Note that, in the k-hypergraph formulation, we
have I as a set of vertices, C as a set of hyperedges and k = d (since |Sc| ≤ d for all c ∈ C).

6.1.2 Analysis

Completeness: We will show that the profit we can collect is at least im(G′) ≥ im(G)/2 (by
Lemma 6.5). Let M be any induced matching in the graph G′. For each item I(v) with uv ∈ M
and u ∈ Ui, we set its price to p(I(v)) = 1/d3i. For all other items, we set their prices to ∞ for
UDP and 0 for SMP. Notice that, for each u ∈ Ui that belongs to M, any consumer c ∈ C(u) only
sees one item of finite price (that is, 1/d3i). So, for UDP the consumer c must buy the item I(v)
and thus contributes 1/d3i to the total profit. Similarly, for SMP, the consumer c can afford to
buy the whole set Sc of total cost 1/d3i. Since |C(u)| = d3i, the profit contributed from each set of
consumers C(u) is 1. This implies that the total profit we obtain from this price function is |M|.

Soundness: Now, suppose that an optimal price function p yields a profit of r (for either UDP or
SMP). We will show that sim(G) ≥ r log log d/(12 log d). The proof has two steps. In the first step,
we identify a collection of “tight consumers” which roughly correspond to those consumers who pay
sufficiently large fraction of their budgets. Then we construct a large semi-induced matching from
these tight consumers. We say that a consumer c ∈ C is tight if she spends at least 1/4d fraction
of her budget for her desired item. A vertex u ∈ U is tight if its set of consumers C(u) contains a
tight consumer. Let C′ be the set of tight consumers.

Claim 6.6. The profit made only by tight consumers is at least r/2.

Proof. Observe that profitable non-tight consumers contribute at most |U |/4d to the profit. Since we
prove in the last section that r ≥ im(G′) ≥ im(G)/2 ≥ |U |/2d (from Assumption 6.4 and Lemma 6.5),
the revenue made from non-tight consumers is at most r/2.

Now, we construct from the set of tight consumers C′, a σ-semi-induced matching in G for some
total order σ. We define σ in such a way that vertices in U is ordered by their colors (increasingly
for the case of UDP and decreasingly for the case of SMP).

Definition 6.7. Let σ be a total order of vertices such that vertices in Ui always precede vertices
in Uj if i < j for UDP (and i > j for SMP). (Recall that Ui is the set of vertices in U of color i.)

Let U ′ = {u ∈ U : C(u) ∩ C′ 6= ∅}; i.e., it is the set of left vertices whose C(u) contains a tight
consumer. Note that |U ′| ≥ r/2 by Claim 6.6. For UDP, we define a set of edges M to be such
that an edge uv is in M if u ∈ U ′ and a tight consumer in C(u) buys an item I(v). For SMP, M
is defined to contain uv such that u ∈ U ′ and I(v) is the most expensive item for a consumer in
C(u). Note that

|M| ≥ |U ′| ≥ r/2 .

29

This collection M may not be a σ-semi-induced matching and may not even be a matching. So,
we have to remove some edges from M so that the resulting set is a σ-semi-induced matching. To
be precise, we will next extract fromM a set of edgesM′ ⊆M that is a σ-semi-induced matching
with cardinality |M′| ≥ r log log d/6 log d, implying that sim(G) ≥ r log log d/6 log d.

Our intention is to construct M′ by adding to it one edge from M at a time, as long as M′ is
a σ-semi-induced matching (if adding an edge makes M′ not a σ-semi-induced matching, then
we will not add it). The order of edges we pick from M depends reversely on σ, and we will
also do this process separately for different colors of left vertices as follows. We partition M into
M1 ∪M2 ∪ . . . ∪Md, where

Mi = {uv ∈M : u ∈ Ui};

i.e., Mi contains edges uv whose end-vertex u is colored i. Then we construct from each set Mi

a set of edges M′i as follows. We process each edge uv ∈ Mi in the reverse order of σ; i.e., an
edge uv is processed before an edge u′v′ if σ(u) > σ(u′). For each edge uv ∈ Mi, we remove from
Mi all edges u′v′ such that u′ is adjacent to v. Then we add uv to the set M′i and proceed to the
next edge remaining in Mi. Notice that, each time we add an edge uv to M′i, we remove at most
3 log d/ log log d edges from Mi because its end-vertex is not highly congested by the construction
of Mi. So, |M′i| ≥ |Mi| log log d/3 log d. Moreover, it can be seen by the construction that M′i is

a σ-semi-induced matching. Finally, define M′ =
⋃d
i=1M′i. Then we have that

|M′| ≥ |M| log log d

3 log d
.

We now claim that M′ is a σ-semi-induced matching. Suppose not. Then there is a pair of edges
uv, u′v′ ∈ M′ such that σ(u) < σ(u′) and uv′ ∈ E(G). We need two cases to distinguish between
the two models of SMP and UDP.

• For UDP, by the construction, the two vertices u and u′ must belong to different color class
Ui and Uj , respectively, where i < j. Since uv′ ∈ E(G), consumers in C(u) are interested in
item I(v′), whose prices are 1/d3j (which is strictly less than 1/2di+1) because u′ is a tight
index. But, then u would have never been tight, a contradiction.

• For SMP, the two vertices u and u′ belong to Ui and Uj respectively where i > j. Since
uv′ ∈ E(G), consumers in C(u) are interested in item I(v′), whose prices are 1/2d3j+1 > 1/d3i.
Then consumers in C(u) would not have enough budget to buy their item sets, contradicting
the fact that they are tight.

Thus, we have

sim(G′) ≥ |M′| ≥ |M| log log d

3 log d
≥ r log log d

6 log d

as desired.

6.2 Intermediate Hardness (Proof of Lemma 6.3)

We prove Lemma 6.3 using Theorem 5.1 and Lemma 6.2. We restate Theorem 5.1 here:

30

Theorem 5.1 (Hardness of ∆-Degree Bounded Bipartite Semi-induced Matching). Let ε > 0 be
any constant and t > 0 be a positive integer. There is a randomized algorithm that transforms a

SAT formula ϕ of input size N into a ∆-degree bounded bipartite graph, where ∆ = 2t(
1
ε2

+O(1
ε
))

such that:

• (Yes-Instance:) If ϕ is satisfiable, then im(G) ≥ |V (G)|/∆ε.

• (No-Instance:) If ϕ is not satisfiable, then sim(G) ≤ |V (G)|/∆1−ε.

The construction size is |V (G)| ≤ N1+ε∆1+ε, and the running time is poly(N,∆). Moreover, as
long as t ≤ 5ε2 logN , the reduction is guaranteed to be successful with high probability.

To see how to prove Lemma 6.3 by combining Theorem 5.1 with Lemma 6.2, we start from an
N -bit 3SAT formula ϕ and invoke Theorem 5.1 to obtain a d-degree bounded bipartite graph
G = (U, V,E). Then we apply a reduction as in Theorem Lemma 6.2 and obtain an instance (C, I)
of UDP or SMP with |C| = |V (G)|dO(d) = N1+O(ε)dO(d) and |I| = N1+O(ε)d1+O(ε). It is immediate
that the gap between Yes-Instance and No-Instance is d1−2ε for all values of d.

Notice that our reduction gives (nearly) tight hardness results for all values of d. The complexity
assumptions that we make are different for different values of d. (Note that d = 2t(1/ε

2+O(1/ε)), so
our parameter is indeed t and ε.) For example, if d is constant, then our complexity assumption is
NP 6= ZPP, and if d = polylog(N), then our assumption is NP * ZPTIME(2polylog(N)).

To see this, consider the size (which also implies the running time) of our reduction. Our instance
for UDP (resp., SMP) has the number of consumers m = |C| = N1+O(ε)dO(d) ≤ N1+O(ε)2d

1+ε

and the number of items n = |I| = N1+O(ε)d1+O(ε). Suppose we have an algorithm with a
running time of poly(n,m). Then we also have a randomized algorithm with a running time

of poly(N1+O(ε), 2d
1+O(ε)

) that solves SAT exactly.

6.3 Main Hardness Results (Proof of Theorem 6.1)

From the above discussion, we can see that the complexity assumption that we have to make is
NP * ZPTIME(poly(N, 2O(d))). Thus, if t is constant, then d is also a constant, i.e., d = 2O(1/ε2),
and the corresponding complexity assumption is, indeed, NP 6= ZPP. In this case, we get the
hardness of the k-hypergraph pricing problems when k is constant (note that k = d). To be more
precise, we have proved that: For any ε > 0, there is a constant k0 that depends on ε such that the
k-hypergraph pricing problem is k1−ε hard for any k ≥ k0.

We note that our reduction also implies the hardness of Ω(log1−εm), as proved by Chalermsook et
al. [14]. In this case, if the value of k is chosen to be polylog(N), then the complexity assumption

is NP * ZPTIME(2polylog(N)). In particular, we can plug in k = log1/εN , so we have m = N log1/εN

and the hardness factor of k1−ε = log1/ε−1N = log1−O(ε)m.

Now, let us incorporate the ETH (Hypothesis 3.1) with our hardness result. So, we assume
that there is no exponential-time (randomized) algorithm that solves 3SAT. We choose t = (ε2 −
O(ε)) logN , so we have k = 2t(1/ε

2−O(1/ε) = 2(1−O(ε)) logN = N1−O(ε). Moreover, |I| = N2+O(ε), and
the size of the resulting pricing instance (as well as the running time) is dominated by kO(k) ≤ 2N

1−ε
,

31

which is fine (still subexponential time) because we assume ETH. Writing k in terms of the num-
ber of items, we have that k = N1−O(ε) = n1/2−O(ε). Thus, our k1−ε-hardness result rules out a
polynomial-time algorithm that gives n1/2−ε-approximation for UDP (resp., SMP), assuming ETH.

6.4 Subexponential-Time Approximation Hardness for the k-Hypergraph Pric-
ing Problem

In this section, we present the approximability/running time trade-off for the pricing problems. We
note that this hardness is in different catalogs as for the maximum independent set and maximum
induced matching problems (shown in Section 5): our inapproximability result shows that any
nδ-approximation algorithm for the k-hypergraph pricing problem (both UDP and SMP) must run

in time at least 2(logm)
1−δ−ε
δ for any constant δ, ε > 0. This almost matches the running time of

O

(
2(logm)

1−δ
δ log logm poly(n,m)

)
presented in Section 7.

Theorem 6.8. Consider the k-hypergraph pricing problem (with either SMP or UDP buying rule).
For any δ > 0 and a sufficiently small ε : ε < ε0(δ), every nδ approximation algorithm for UDP

(resp., SMP) must run in time at least 2(logm)
1−δ−ε
δ unless the ETH is false.

To see the implication of this theorem, we may try plugging in δ = 1/3, and this corollary says that
if we want to get n1/3 approximation for the pricing problem, it would require the running time at
least mlog1−εm, assuming the ETH.

Proof. Fix δ < 1/2. Let ε be as in Lemma 6.3. Assume (for contradiction) that we have an nδ

approximation algorithm A for UDP (resp., SMP) that runs in time 2(logm)
1−δ−100ε

δ . We apply a
reduction in Lemma 6.3 with d = nδ(1+10ε). Then the algorithm A can distinguish between the
Yes-Instance and No-Instance, thus deciding the satisfiability of SAT. Now, we only need to
analyze the running time of the algorithm and show that the algorithm runs in time O(2N

1−ε
),

which will contradict the ETH.

Since we have n ≤ d1+εN1+ε, by plugging in the value of d = nδ(1+10ε), we get n ≤ nδ(1+20ε)N1+ε,
implying that n ≤ N1+δ+40ε. Now, we also plug in the value of d into m ≤ 2d

1+ε
N1+ε, and we get

m ≤ 2n
δ(1+20ε) ≤ 2N

δ(1+δ+40ε)

Hence, we have logm ≤ N δ(1+δ+40ε), implying the running time of log
1−δ−100ε

δ m ≤ N1−10ε, which
is subexponential in the size of SAT instance, contradicting ETH.

7 Approximation Scheme for k-Hypergraph Pricing

In this section, we present an approximation scheme for the k-hypergraph pricing problem, which
works for both UDP and SMP buying rules. Throughout, we denote by n and m the number of
items and the number of consumers, respectively. For any parameter δ, our algorithm gives an

approximation ratio of O(nδ) and runs in time O(2(logm)
1−δ
δ log logm poly(n,m)).

32

In the underlying mechanism, we employ as subroutines an O(logm)-approximation algorithm
for UDP (resp., SMP) and an O((logm)n)-time constant-approximation algorithm for UDP (resp.,
SMP) as stated in the following two lemmas.

Lemma 7.1 ([31]). There is an O(logm)-approximation algorithm for UDP (resp., SMP), where
m = |C| is the number of consumers.

Lemma 7.2. There is a constant-factor approximation algorithm for UDP (resp., SMP) that runs
in time O((log nm)n poly(n,m)).

For the sake of presentation flow, we defer the proof of Lemma 7.2 to Section 7.5. Now, we present
our approximation scheme and its analysis.

7.1 Approximation Scheme

We exploit a trade-off between the approximation ratio and the running time. In particular, the
O(logm)-approximation algorithm from Lemma 7.1, denoted by A1, always runs in polynomial
time but yields a bad approximation ratio in terms of n when nδ � logm. In contrast, the
O((log nm)n poly(n,m))-time O(1)-approximation algorithm from Lemma 7.2, denoted by A2, has
a slow running time but always gives a good approximation ratio. So, we take advantage of the
trade-off between the running time and approximation ratio by selecting one of these two algorithms
according to the values of nδ and logm. To be precise, our approximation scheme takes as input a
set of consumers C, a set of items I and a parameter δ : 0 < δ < 1. If the number of items is large,
i.e., nδ > logm, then we apply the O(logm)-approximation algorithm A1. Otherwise, we partition
the set of m items into nδ (almost) equal subsets, namely, I1, . . . , Inδ , and we apply the algorithm
A2 to each subinstance (C, Ii), for i = 1, . . . , nδ. We then sell to consumers the set Ii∗ that yields a
maximum revenue over all i = 1, . . . , nδ. Here the key idea is that one of the sets Ii gives a revenue
of at least OPT/nδ in the optimal pricing, where OPT is the optimal revenue. So, by choosing the
set that maximizes a revenue, we would get a revenue of at least O(OPT/nδ) (because A2 is an
O(1)-approximation algorithm). Since we have two different buying rules, UDP and SMP, there is
some detail that we need to adjust. When we assign the prices to all the items, we need to ensure
that the consumers will (and can afford to) buy the set of items we choose. So, we price items in
the set Ii∗ by a price function returned from the algorithm A2, and we apply two different rules
for filling the prices of items in I \ Ii∗ for the cases of UDP and SMP. In UDP, we price items in
I \ Ii∗ by ∞ to guarantee that no consumers will buy items outside Ii∗ . In SMP, we price items in
I \ Ii∗ by 0 to guarantee that consumers can afford to buy the whole set of items that they desire
(although we get no profit from items outside Ii∗). The running time of the algorithm A2 in general
is large, but since nδ < logm and each subinstance contains at most n1−δ items, we are able to
guarantee the desired running time. Our approximation scheme is summarized in Algorithm 7.1.

7.2 Cost Analysis

First, we analyze the approximation guarantee of our algorithm. If nδ > logm, then our algorithm
immediately gives O(nδ)-approximation. So, we assume that nδ ≥ O(logm). We will use the
following two lemmas.

33

Algorithm 1 Pricing(C,I,δ)

1: if nδ > logm then
2: Apply an O(logm) approximation algorithm for UDP (resp., SMP) from Lemma 7.1.
3: return The price function p obtained by the O(logm)-approximation algorithm.
4: else
5: Partition I into nδ equal sets, namely I1, I2, . . . , Inδ . So, each Ij has size |Ij | ≤ n1−δ.
6: for j = 1 to nδ do
7: Apply Lemma 7.2 on the instance Πj = (C, Ij), i.e., restricting the set of items to Ij .
8: end for
9: Choose an instance Πj∗ that maximizes the revenue over all j = 1, 2, . . . , nδ.

10: Let p be the price function obtained by solving an instance Πj∗ .
11: For UDP (resp. SMP), set the prices of all the items in I \ Ij∗ to ∞ (resp. 0).
12: return the price function p.
13: end if

Lemma 7.3. For any instance (C, I) of UDP (resp. SMP), let I ′ be any subset of I. Let p′ be a
price function that collects a revenue of r from (C, I ′). Then, the price function p : I → R obtained
by setting p(i) =∞ (resp. p(i) = 0) for i ∈ I \ I ′ and p(i) = p′(i) for i ∈ I ′ gives revenue at least
r for the instance (C, I).

Proof. We first prove the lemma for UDP. Consider the price function p′ that collects a revenue of
r. Notice that, under the price p, each customer c ∈ C who has positive payment in p′ also pays for
the same amount in p (since items in Sc ∩ (I \ I ′) have infinite prices).

For SMP, for each customer c ∈ C who pays positive price in p′, we have by construction that∑
i∈Sc p(i) =

∑
i∈Sc∩I′ p

′(i). So, the customer c can still afford the set and pays the same amount
as in the subinstance (C, I ′).

The above lemma allows us to focus on analyzing the revenue obtained from the subinstance (C, Ij∗).
Since we apply a constant-factor approximation algorithm to the instance (C, Ij∗), it suffices to show
that OPT(C, Ij∗) ≥ OPT(C, I)/nδ, which follows from the following lemma.

Lemma 7.4. Let q be any positive integer. For any set of consumers C and any partition of I into
I =

⋃q
j=1 Ij, the following holds for UDP (resp., SMP)

OPT(C, I) ≤
q∑
j=1

OPT(C, Ij)

Proof. Consider an optimal price function p∗ for (C, I). Fix some optimal assignment of items to
customers with respect to p∗. Now for each j = 1, . . . , q, let rj be the revenue obtained by function
p∗ from items in Ij , so we can write

∑q
j=1 rj = OPT(C, I). Notice that, in each sub-instance (C, Ij),

we can restrict the price function p∗ onto the set Ij and obtain the same revenue. This means that
OPT(C, Ij) ≥ rj , implying that

q∑
j=1

OPT(C, Ij) ≥
q∑
j=1

rj = OPT(C, I)

34

as desired.

7.3 Running Time Analysis

If nδ > logm, then our algorithm runs in polynomial-time (since we apply a polynomial-time
O(logm)-approximation algorithm). So, we assume that nδ ≤ logm. In this case, we run an
algorithm from Lemma 7.2 on nδ sub-instances having n1−δ items each. It follows that the running
time of this algorithm is

O
(
nδ(log nm)n

1−δ
poly(n1−δ,m)

)
= O

(
2(logm)

1−δ
δ log lognm poly(n,m)

)
.

The equality follows since logm ≥ nδ implies that n1−δ ≤ (logm)(1−δ)/δ. Thus, for any constant
δ > 0, our algorithm runs in quasi-polynomial time.

7.4 Polynomial-Time O(
√
n log n)-Approximation Algorithm

Now, we will set δ so that our approximation scheme runs in polynomial-time. To be precise, we
set δ so that nδ =

√
n log n. It follows that our algorithm yields an approximation guarantee of

O(
√
n log n). The running time of our algorithm is (note that n1−δ =

√
n

logn)

O
(
nδ · (log nm)n

1−δ
poly(n,m)

)
= O

(
2

√
n√

logn
log lognm

poly(n,m)

)
= O

(
2

√
n logn
logn

log lognm
poly(n,m)

)

If
√
n log n ≤ log nm/ log lognm, then we are done because the running time of the algorithm will

be O(2lognm poly(n,m)) = poly(n,m). Thus, we assume that
√
n log n > log nm/ log lognm. So,

we have

log n > log

(
log nm

log log nm

)
= log log nm− log log log nm ≥ 1

2
log log nm

This means that log n/ log lognm ≥ 1/2. Thus, the running time of our algorithm is

O

(
2

√
n logn
logn

log lognm
poly(n,m)

)
≤ O

(
22
√
n logn poly(n,m)

)
≤ O(2logm poly(n,m)) = poly(n,m)

The last inequality follows since nδ =
√
n log n ≤ logm. Thus, in polynomial-time, our approxima-

tion scheme yields an approximation ratio of O(
√
n log n) for both UDP and SMP.

7.5 A Constant-Factor Approximation Algorithm with a Running Time of
O((log nm)n poly(n,m)) (Proof of Lemma 7.2)

In this section, we present an O(1)-approximation algorithm for UDP and SMP that runs in
O((log nm)n poly(n,m)) time. Our algorithm reads as input an instance (C, I) of SMP (resp.,

35

UDP) and a parameter α > 1. Let W be the largest budget of the consumers in I, and define a set

P =

{
W,

W

α1
,
W

α2
, . . . ,

W

αdlogα(αnm)e , 0

}
Our algorithm tries all the possible price functions that take values from the set P and returns as
output a price function p that maximizes the revenue (over all the sets of price functions p : I → P).
It is easy to see that the running of the algorithm is O(dlogα nm+ 3en poly(n,m)). Thus, we can
set α = 2 + ε for some ε > 0 so that the running time is O((log nm)n poly(n,m)). We claim that
our algorithm gives an approximation ratio of α2/(α− 1) (proved in Section 7.5.1), thus yielding a
constant-factor approximation.

7.5.1 Cost Analysis

We will focus on the case of SMP. The case of UDP can be analyzed analogously. Fix any optimal
price function p∗, which yields a revenue of OPT. We will construct from p∗ a price function p′ that
takes values from the set P by rounding down each p∗(i) to its closest value in P. Since p′(i) ∈ P
for all i ∈ I, we can use p′ to lower bound the revenue that we could obtain from our algorithm.
For the ease of analysis, we will do this in two steps. First, we define a price function p1 by setting

p1(i) =

{
0 if p∗(i) < W

αnm
p∗(i) otherwise

In this step, we lose a revenue of at most OPT/α. This is because we have m consumers, and each
consumer wants at most n items. So, the revenue loss is at most nm ·W/(αnm) ≤ OPT/α (since
OPT ≥W). That is, p1 yields a revenue of at least (1− 1/α)OPT. Next, we define a price function
p2 from p1 by setting

p2(i) =

{
0 if p1(i) = 0 (i.e., p∗(i) < W

αnm)
W
αj

, for some j : W
αj+1 < p∗(i) ≤ W

αj
otherwise

So, p2(i) = p1(i) for all i such that p∗(i) < W/(αnm). Observe that p2(i) ≥ p1(i)/α for all i ∈ I.
Hence, the revenue obtained from p2 is within a factor of 1/α of the revenue obtained from p1.
Thus, p2 yields a revenue of at least (1/α − 1/α2)OPT. Thus, the approximation ratio of our
algorithm is O(α2/(α − 1)), for all α > 1. In particular, by setting α = 2 + ε for ε > 0, we have a
(4 + ε2)-approximation algorithm.

7.5.2 Remark: An Exact-Algorithm for UDP

In this section, we observe that for the case of UDP, an optimal solution can be obtained in time
O(n! poly(n,m)) by using a price ladder constraint. To be precise, the price ladder constraint
says that, given a permutation σ of items, the price of an item σ(i) must be at most the price
of an item σ(i + 1), i.e., p(σ(i)) ≤ p(σ(i+ 1)), for all i = 1, . . . , n − 1. Briest and Krysta [11]
showed that UDP with the price ladder constraint (i.e., the permutation is additionally given as
an input) is polynomial-time solvable. Thus, we can solve any instance of UDP optimally in time
O((n!) poly(n,m)) by trying all possible permutations of the items.

36

8 Open Problems

There are many problems left open. The most fundamental one in algorithmic pricing (from the
perspective of approximation algorithms community) is perhaps the graph pricing problem which is
the k-hypergraph pricing problem where k = 2. Currently, only a simple 4-approximation algorithm
and a hardness of 2− ε assuming the Unique Game Conjecture, are known [37]. It is interesting to
see if the techniques in this paper can be extended to an improved hardness (which will likely to
require even tighter connections). Other interesting problems that seem to be unachievable using
the current techniques are the Stackelberg network pricing, Stackelberg spanning tree pricing, and
tollbooth pricing problems.

Another interesting question is whether our techniques can be used to make a progress in the pa-
rameterized complexity domain. In particular, it was conjectured in [41, 19] that the maximum
independent set problem parameterized by the size of the solution does not admit a fixed param-
eter tractable approximation ratio ρ for any function ρ. It might be also interesting to improve
our 2n

1−ε/r1+ε
time lower bound for r-approximating the maximum independent set and induced

matching problems, e.g., to 2(n·polylog(r))/(r·polylog(n)). Other (perhaps less important) open prob-
lems also remain: (1) Is the ETH necessary in proving the lower bound of this problem? For
example, can we get a better approximation guarantee for the k-hypergraph pricing problem if
there is a subexponential-time algorithm for solving SAT (see, e.g., [22] for similar questions in the
exact algorithm domain)? (2) Is it possible to obtain an r-approximation algorithm in 2n/r time
for the maximum induced matching problem in general graphs?

References

[1] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and the hardness
of approximation problems. J. ACM, 45(3):501–555, 1998. Also, in FOCS 1992. 3

[2] S. Arora and S. Safra. Probabilistic checking of proofs: A new characterization of NP. J.
ACM, 45(1):70–122, 1998. Also, in FOCS 1992. 3

[3] M.-F. Balcan and A. Blum. Approximation algorithms and online mechanisms for item pricing.
Theory of Computing, 3(1):179–195, 2007. Also, in EC 2006. i, 1, 2, 4

[4] M.-F. Balcan, A. Blum, J. D. Hartline, and Y. Mansour. Mechanism design via machine
learning. In FOCS, pages 605–614, 2005. 2

[5] M. Bellare, O. Goldreich, and M. Sudan. Free bits, PCPs, and nonapproximability-towards
tight results. SIAM J. Comput., 27(3):804–915, 1998. Also, in FOCS 1995. 3

[6] M. Bellare and M. Sudan. Improved non-approximability results. In STOC, pages 184–193,
1994. 3, 9

[7] V. Bonifaci, P. Korteweg, A. Marchetti-Spaccamela, and L. Stougie. Minimizing flow time in
the wireless gathering problem. ACM Transactions on Algorithms, 7(3):33, 2011. 3

37

[8] N. Bourgeois, B. Escoffier, and V. T. Paschos. Approximation of max independent set, min
vertex cover and related problems by moderately exponential algorithms. Discrete Applied
Mathematics, 159(17):1954–1970, 2011. Also, in WADS’09. 5

[9] P. Briest. Uniform budgets and the envy-free pricing problem. In ICALP (1), volume 5125 of
Lecture Notes in Computer Science, pages 808–819. Springer, 2008. 1, 2, 4, 6

[10] P. Briest and P. Krysta. Single-minded unlimited supply pricing on sparse instances. In SODA,
pages 1093–1102, 2006. 1, 2, 4

[11] P. Briest and P. Krysta. Buying cheap is expensive: Approximability of combinatorial pricing
problems. SIAM J. Comput., 40(6):1554–1586, 2011. Also, in SODA 2007. 3, 7, 36

[12] R. A. Brualdi, F. Harary, and Z. Miller. Bigraphs versus digraphs via matrices. Journal of
Graph Theory, 4(1):51–73, 1980. 11

[13] K. Cameron. Induced matchings. Discrete Appl. Math., 24(1-3):97–102, 1989. 3

[14] P. Chalermsook, J. Chuzhoy, S. Kannan, and S. Khanna. Improved hardness results for profit
maximization pricing problems with unlimited supply. In APPROX-RANDOM, volume 7408
of Lecture Notes in Computer Science, pages 73–84. Springer, 2012. 1, 2, 4, 7, 31

[15] P. Chalermsook, S. Kintali, R. J. Lipton, and D. Nanongkai. Graph pricing problem on
bounded treewidth, bounded genus and k-partite graphs. CoRR, abs/1203.1940, 2012. 2

[16] P. Chalermsook, B. Laekhanukit, and D. Nanongkai. Graph products revisited: Tight approx-
imation hardness of induced matching, poset dimension and more. In SODA, pages 1557–1576,
2013. 2, 3, 4, 5, 6, 7

[17] S. O. Chan. Approximation resistance from pairwise independent subgroups. Electronic Col-
loquium on Computational Complexity (ECCC), 19:110, 2012. To appear in STOC 2013. 3

[18] S. Chawla, J. D. Hartline, and R. D. Kleinberg. Algorithmic pricing via virtual valuations. In
ACM Conference on Electronic Commerce, pages 243–251, 2007. 2

[19] R. Chitnis, M. Hajiaghayi, and G. Kortsarz. Fixed-parameter and approximation algorithms:
A new look. Unpublished Manuscript, 2013. Available at http://www.crab.rutgers.edu/

~guyk/pub/1.pdf. i, 1, 4, 5, 37

[20] M. Chleb́ık and J. Chleb́ıková. Complexity of approximating bounded variants of optimization
problems. Theor. Comput. Sci., 354(3):320–338, 2006. 3

[21] A. Cohen and A. Wigderson. Dispersers, deterministic amplification, and weak random sources
(extended abstract). In FOCS, pages 14–19, 1989. 6

[22] M. Cygan, H. Dell, D. Lokshtanov, D. Marx, J. Nederlof, Y. Okamoto, R. Paturi, S. Saurabh,
and M. Wahlström. On problems as hard as cnf-sat. In IEEE Conference on Computational
Complexity, pages 74–84. IEEE, 2012. 37

[23] M. Cygan, L. Kowalik, M. Pilipczuk, and M. Wykurz. Exponential-time approximation of
hard problems. CoRR, abs/0810.4934, 2008. i, 1, 4, 5, 23

38

http://www.crab.rutgers.edu/~guyk/pub/1.pdf
http://www.crab.rutgers.edu/~guyk/pub/1.pdf

[24] R. Diestel. Graph Theory (Graduate Texts in Mathematics). Springer, August 2005. 12

[25] K. M. Elbassioni, R. Raman, S. Ray, and R. Sitters. On the approximability of the maximum
feasible subsystem problem with 0/1-coefficients. In SODA, pages 1210–1219, 2009. 3

[26] B. Escoffier, E. J. Kim, and V. T. Paschos. Subexponential and FPT-time inapproximability
of independent set and related problems. CoRR, abs/1211.6656, 2012. i, 1

[27] S. Even, O. Goldreich, S. Moran, and P. Tong. On the NP-completeness of certain network
testing problems. Networks, 14(1):1–24, 1984. 3

[28] U. Feige, S. Goldwasser, L. Lovász, S. Safra, and M. Szegedy. Interactive proofs and the
hardness of approximating cliques. J. ACM, 43(2):268–292, 1996. Also, in FOCS 1991. 3, 8, 9

[29] M. R. Fellows, J. Guo, D. Marx, and S. Saurabh. Data Reduction and Problem Kernels
(Dagstuhl Seminar 12241). Dagstuhl Reports, 2(6):26–50, 2012. 1

[30] G. H. Gonnet. Expected length of the longest probe sequence in hash code searching. J. ACM,
28(2):289–304, 1981. 28

[31] V. Guruswami, J. D. Hartline, A. R. Karlin, D. Kempe, C. Kenyon, and F. McSherry. On
profit-maximizing envy-free pricing. In SODA, pages 1164–1173, 2005. v, 1, 33

[32] J. H̊astad. Clique is hard to approximate within n1-epsilon. In FOCS, pages 627–636, 1996. 3

[33] J. H̊astad and S. Khot. Query efficient PCPs with perfect completeness. Theory of Computing,
1(1):119–148, 2005. Also, in FOCS 2001. 3

[34] R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly exponential complexity?
J. Comput. Syst. Sci., 63(4):512–530, 2001. Also, in FOCS 1998. 14

[35] W. Imrich and T. Pisanski. Multiple kronecker covering graphs. European Journal of Combi-
natorics, 29(5):1116–1122, 2008. 11

[36] C. Joo, G. Sharma, N. B. Shroff, and R. R. Mazumdar. On the complexity of scheduling in
wireless networks. EURASIP J. Wireless Comm. and Networking, 2010, 2010. 3

[37] R. Khandekar, T. Kimbrel, K. Makarychev, and M. Sviridenko. On hardness of pricing items
for single-minded bidders. In APPROX-RANDOM, pages 202–216, 2009. 2, 37

[38] R. Kumar, U. Mahadevan, and D. Sivakumar. A graph-theoretic approach to extract storylines
from search results. In KDD, pages 216–225, 2004. 3

[39] D. Lokshtanov, D. Marx, and S. Saurabh. Lower bounds based on the exponential time
hypothesis. Bulletin of the EATCS, 105:41–72, 2011. 14

[40] D. Marušič, A. Malnič, K. Kutnar, and Y.-Q. Feng. On 2-fold covers of graphs. J. comb.
theory, Ser. B, 98(2):324–341, 2008. 11

[41] D. Marx. Completely inapproximable monotone and antimonotone parameterized problems.
J. Comput. Syst. Sci., 79(1):144–151, 2013. Also in CCC’10. 37

39

[42] N. Milosavljevic. On complexity of wireless gathering problems on unit-disk graphs. In
ADHOC-NOW, pages 308–321, 2011. 3

[43] M. Mitzenmacher and E. Upfal. Probability and Computing: Randomized Algorithms and
Probabilistic Analysis. Cambridge University Press, New York, NY, USA, 2005. 28

[44] D. Moshkovitz and R. Raz. Two-query PCP with subconstant error. J. ACM, 57(5), 2010.
Also, in FOCS 2008. iv, 3, 9, 10, 14, 15

[45] P. Popat and Y. Wu. On the hardness of pricing loss-leaders. In SODA, pages 735–749, 2012.
1, 2

[46] O. Reingold, S. P. Vadhan, and A. Wigderson. Entropy waves, the zig-zag graph product, and
new constant-degree expanders and extractors. In FOCS, pages 3–13, 2000. 20

[47] P. Rusmevichientong, S. U. D. of Management Science, and Engineering. A Non-parametric
Approach to Multi-product Pricing Theory and Application. Stanford University, 2003. 1, 2

[48] P. Rusmevichientong, B. V. Roy, and P. W. Glynn. A nonparametric approach to multiproduct
pricing. Operations Research, 54(1):82–98, 2006. 1, 2

[49] A. Samorodnitsky and L. Trevisan. A PCP characterization of NP with optimal amortized
query complexity. In STOC, pages 191–199, 2000. iv, 3, 9, 10, 15

[50] E. Sampathkumar. On tensor product graphs. J Aust Math Soc Ser A, 20(03):268–273, 1975.
11

[51] M. Sipser. Expanders, randomness, or time versus space. J. Comput. Syst. Sci., 36(3):379–383,
1988. Also, in CCC’86. 6

[52] L. J. Stockmeyer and V. V. Vazirani. NP-completeness of some generalizations of the maximum
matching problem. Inf. Process. Lett., 15(1):14–19, 1982. 2, 3

[53] L. Trevisan. Non-approximability results for optimization problems on bounded degree in-
stances. In STOC, pages 453–461, 2001. 8, 9, 10, 11, 12, 19, 20, 41

[54] D. Zuckerman. On unapproximable versions of NP-complete problems. SIAM J. Comput.,
25(6):1293–1304, 1996. 15, 17

[55] D. Zuckerman. Linear degree extractors and the inapproximability of max clique and chromatic
number. Theory of Computing, 3(1):103–128, 2007. Also, in STOC 2006. 3

40

Appendix

A FGLSS and Dispersers Replacement

Beside the size of the graph as discussed, the FGLSS reduction has another property, which was
observed by Trevisan [53]: the FGLSS graph G is formed by a union of N ′ bipartite cliques where

N ′ is the number of variables of ϕ2, i.e., G =
⋃N ′

i=1Gi. The dispersers replacement indeed replaces
each bipartite clique Gi = (Ai, Bi, E) with a d-regular bipartite graph (with a certain property).
This techniques involves the following parameters of ϕ2.

(1) Linearity: Each constraint of ϕ2 is linear.

(2) Min-Degree δ: The minimum number of clauses that each variable participates in.

(3) Clause-Size q: The number of literal in each clause.

Let H =
⋃N ′

i=1Hi, where Hi = (Ai, Bi, Fi) is a disperser, denote the graph obtained after the
disperser replacement. Then the followings are parameters transformation:

Properties of ϕ2 Properties of G =
⋃N′

i=1 Gi Properties of H =
⋃N′

i=1 Hi
All constraints are linear. ⇒ ∀i, Gi = (Ai, Bi, Ei) has |Ai| = |Bi|. ⇒ ∀i, Hi = (Ai, Bi, Fi) has |Ai| = |Bi|.
Min CSP Degree δ. ⇒ minN

′
i=1 |V (Gi)| ≥ δ. ⇒ minN

′
i=1 |V (Hi)| ≥ δ.

Clause-Size q. ⇒ ∆(G) ≤ q ·maxN
′

i=1 ∆(Gi). ⇒ ∆(H) ≤ q · d.

We can set d so that ∆(H) ≈ k and get ∆-hardness. The linearity of ϕ2 is required because
we need each bipartite clique Gi to be balanced. Also, because the construction of dispersers is
randomized, we need δ ≥ N ε, for some constant ε : 0 < ε < 1, to guarantee that each disperser can
be constructed with high probability for all hardness parameters k, which thus means that we can
apply the union bound to show the success probability of the whole construction. (When k = O(1)
or k = poly(N), the property is not needed.) To guarantee that δ ≥ N ε for all k, we modify the
CSP instance ϕ1 by making N ε copies of each clauses in Step (4).

41

	Introduction
	Problems
	Our Results
	Techniques
	Organization

	Overview of the Hardness Proof
	The Main Reduction: SAT pricing
	Intermediate Steps: SAT independent set/induced matching pricing
	Step I: SAT Independent Set (eq:sattoindepset)
	Step II: independent set induced matching (eq:indepsettoinduce)
	Step III: Induced matching Pricing (eq:indepsettopricing)

	Preliminaries
	Nearly-linear size sparse PCP with small free-bit complexity and large degree
	PCP Construction

	Tight Hardness of Semi-Induced Matching
	The Reduction
	Analysis
	Subexponential Time Approximation Hardness for the Maximum Independent Set and Induced Matching Problems
	Subexponential-Time Approximation Algorithm for Induced Matching

	Hardness of k-Hypergraph Pricing Problems
	From Semi-Induced Matching to Pricing Problems (Proof of thm:semi-ind-to-pricing)
	Intermediate Hardness (Proof of thm:main:hardness)
	Main Hardness Results (Proof of thm:main hardness)
	Subexponential-Time Approximation Hardness for the k-Hypergraph Pricing Problem

	Approximation Scheme for k-Hypergraph Pricing
	Approximation Scheme
	Cost Analysis
	Running Time Analysis
	Polynomial-Time O(nlogn)-Approximation Algorithm
	A Constant-Factor Approximation Algorithm with a Running Time of O((lognm)npoly(n,m)) (Proof of Lemma 7.2)

	Open Problems
	FGLSS and Dispersers Replacement

