
O(log2 k/ log log k)-Approximation Algorithm for Directed
Steiner Tree: A Tight Quasi-Polynomial-Time Algorithm.

Fabrizio Grandoni ∗ Bundit Laekhanukit † Shi Li ‡

November 2, 2018

Abstract

In the Directed Steiner Tree (DST) problem we are given an n-vertex directed edge-weighted
graph, a root r, and a collection of k terminal nodes. Our goal is to find a minimum-cost arbores-
cence that contains a directed path from r to every terminal. We present an O(log2 k/ log log k)-
approximation algorithm for DST that runs in quasi-polynomial-time, i.e., in time npoly log(k).
By assuming the Projection Game Conjecture and NP 6⊆

⋂
0<ε<1

ZPTIME(2nε
), and adjust-

ing the parameters in the hardness result of Halperin and Krauthgamer [STOC’03], we show
the matching lower bound of Ω(log2 k/ log log k) for the class of quasi-polynomial-time al-
gorithms, meaning that our approximation ratio is asymptotically the best possible. This is
the first improvement on the DST problem since the classical quasi-polynomial-time O(log3 k)
approximation algorithm by Charikar et al. [SODA’98 & J. Algorithms’99]. (The paper erro-
neously claims an O(log2 k) approximation due to a mistake in prior work.)

Our approach is based on two main ingredients. First, we derive an approximation pre-
serving reduction to the Label-Consistent Subtree (LCST) problem. Here we are given a rooted
tree with node labels, and a feasible solution is a subtree satisfying proper constraints on the
labels. The LCST instance has quasi-polynomial size and logarithmic height. We remark that,
in contrast, Zelikovsky’s heigh-reduction theorem [Algorithmica’97] used in all prior work on
DST achieves a reduction to a tree instance of the related Group Steiner Tree (GST) problem of
similar height, however losing a logarithmic factor in the approximation ratio.

Our second ingredient is an LP-rounding algorithm to approximately solve LCST instances,
which is inspired by the framework developed by [Rothvoß, Preprint’11; Friggstad et al.,
IPCO’14]. We consider a Sherali-Adams lifting of a proper LP relaxation of LCST. Our round-
ing algorithm proceeds level by level from the root to the leaves, rounding and conditioning
each time on a proper subset of label variables. The limited height of the tree and small num-
ber of labels on root-to-leaf paths guarantees that a small enough (namely, polylogarithmic)
number of Sherali-Adams lifting levels is sufficient to condition up to the leaves.

We believe that our basic strategy of combining label-based reductions with a round-and
-condition type of LP-rounding over hierarchies might find applications to other related prob-
lems.

∗IDSIA, USI-SUPSI, E-mail: fabrizio@idsia.ch.
†Institute for Theoretical Computer Science, Shanghai University of Finance and Economics. E-mail: bundit@sufe.

edu.cn.
‡Department of Computer Science and Engineering, University at Buffalo. E-mail: shil@buffalo.edu.

fabrizio@idsia.ch
bundit@sufe.edu.cn
bundit@sufe.edu.cn
shil@buffalo.edu

1 Introduction

In the Directed Steiner Tree (DST) problem, we are given an n-vertex digraph G = (V, E) with cost
ce on each edge e ∈ E, a root vertex r ∈ V and a set of k terminals K ⊆ V \ {r}. The goal is to find a
minimum-cost out-arborescence H ⊆ G rooted at r that contains an r → t directed path for every
terminal t ∈ K. W.l.o.g. we assume that edge costs satisfy triangle inequality.

The DST problem is a fundamental problem in the area of network design that is known for
its bizarre behaviors. While constant-approximation algorithms have been known for its undi-
rected counterpart (see, e.g., [3, 30, 32]), the best known polynomial-time approximation algo-
rithm for this problem could achieve only an O((1/ε)3kε) approximation ratio in time O(n1/ε) for
any 0 < ε ≤ 1/ log2 k, due to the classical work of Charikar et al. [5]. Even allowing this algo-
rithm to run in quasi-polynomial-time, the best approximation ratio remains O(log3 k) [5]1. Since
then, there have been efforts to get improvements either in the running-time or in the approx-
imation guarantee of this problem, e.g, using the the primal-dual method [34], Sum-of-Squares
(a.k.a. Lasserre) hierarchy [31], Sherali-Adams and Lovász-Schrijver hierarchies [13]. Despite all
these efforts, there has been no significant improvement over the course of the last two decades
for both polynomial and quasi-polynomial time algorithms. In fact, it is known from the work of
Halperin and Krauthgamer [18] that unless NP ⊆ ZPTIME(npolylog(n)), it is not possible to achieve
an approximation ratio O(log2−ε k), for any constant ε > 0, and such lower bound applies to both
polynomial and quasi-polynomial time algorithms. This means that there is a huge gap between
the upper bound of kε and the lower bound of log2−ε k for polynomial-time algorithms. All efforts
were failed to obtain even an no(1)-approximation algorithm that runs in polynomial-time.

For the class of quasi-polynomial-time algorithms, the approximation ratio of O(log3 k) is ar-
guably disappointing. This is because its closely related special case, namely, the Group Steiner Tree
(GST) problem, is known to admit a quasi-polynomial-time O(log2 k)-approximation algorithm on
general graphs due to the work of Chekuri and Pal [6]. A natural question would be whether such
an approximation ratio could be achieved in quasi-polynomial-time for DST as well. Neverthe-
less, achieving this improvement with the known techniques seems to be impossible. Indeed, all
previous algorithms for DST [5, 31, 13] rely on the well-known Zelikovsky’s height-reduction the-
orem [33, 20]. These algorithms (implicitly) reduce DST to GST on trees, which loses an Θ(log k)
approximation factor in the process. Furthermore, the Ω(log2−ε k)-hardness of Halperin and
Krauthgamer [18] carries over to GST on trees. We remark that algorithms for many related prob-
lems (see, e.g., [11, 16]) rely on the same height-reduction theorem.

1.1 Our Results and Techniques

The purpose of this work is to close the gap between the lower and upper bounds on the approx-
imability of DST in quasi-polynomial time. Our main result is as follows.

Theorem 1.1. There is a randomized O(log2 k/ log log k)-approximation algorithm for DST with running
time nO(log5 k).

By analyzing the proofs in [18], we also show that this bound is asymptotically tight under
stronger assumptions; please see more discussion in Appendix C.

1The original paper claims an O(log2 k)-approximation algorithm; however, their result was based on the initial
statement of the Zelikovsky’s height-reduction theorem in [33], which was later found to contain a subtle flaw and was
restated by Helvig, Robin and Zelikovsky [20].

1

Theorem 1.2. There is no quasi-polynomial-time algorithm for DST that achieves an approximation ratio
o(log2 k/ log log k) unless NP ⊆

⋂
0<ε<1

ZPTIME(2nε
) or the Projection Game Conjecture is false.

Our upper bound is based on two main ingredients. The first one is a quasi-polynomial-time
approximation-preserving reduction to a novel Label-Consistent Subtree (LCST) problem. Roughly
speaking, in LCST we are given a rooted tree plus node labels of two types, global and local. A
feasible solution consists of a subtree that satisfies proper constraints on the labels. Intuitively,
local labels are used to guarantee that a feasible solution induces an arborescence rooted at r in
the original problem, while global labels are used to enforce that all the terminals are included in
such arborescence. In our reduction the tree has size npoly log(k) and height h = O(log k/ log log k),
with k global labels. For a comparison, Zelikovsky’s height-reduction theorem [33], used in all
prior work on DST, reduces (implicitly) the latter problem to a GST instance over a tree of height
O(log k). However, this reduction alone loses a factor Θ(log k) in the approximation (while our
reduction is approximation-preserving).

Our second ingredient is a quasi-polynomial-time O(log2 k/ log log k)-approximate LP-rounding
algorithm for LCST instances arising from the previous reduction. Here we exploit the LP-hierarchy
framework developed by Rothvoß [31] (and later simplified by Friggstad et al. [13]). We define
a proper LP relaxation for the problem, and solve an R-level Sherali-Adams lifting of this LP for
a parameter R = poly log k. We then round the resulting fractional solution level by level from
the root to the leaves. At each level we maintain a small set of labels that must be provided by
the subtree. By randomly rounding label-based variables and conditioning, we push the set of
labels all the way down to the leaves, guaranteeing that the output tree is always label-consistent.
Thanks to the limited height of the tree and to the small number of labels along root-to-leaf paths,
a polylogarithmic number of lifting levels is sufficient to perform the mentioned conditioning up
to the leaves. As in [31], the probability that each global label appears in the tree we directly con-
struct is only 1/(h + 1). We need to repeat the process O(h log k) = O(log2 k/ log log k) times in
order to make sure all labels are included with high probability, leading to the claimed approxima-
tion ratio. Our result gives one more application of using LP/SDP hierarchies to obtain improved
approximation algorithms, in addition to a few other ones (see, e.g., [2, 8, 9, 26, 15]).

We believe that our basic strategy of combining a label-based reduction with a round-and-
condition rounding strategy as mentioned above might find applications to other problems, and it
might therefore be of independent interest.

1.2 Comparison to Previous Work

Our algorithm is inspired by two results. First is the recursive greedy algortihm of Chekuri and
Pal for GST [6], and second is the hierrachical based LP-rounding techniques by Rothvoß [31].

As mentioned, the algorithm of Chekuri and Pal is the first one that yields an approximation
ratio of O(log2 k) for GST, which is a special case of DST, in quasi-polynomial-time. This is almost
tight for the class of quasi-polynomial-time algorithms. Their algorithm exploits the fact that any
optimal solution can be shortcut into a path of length k, while paying only a factor of 2 (such
path exists in the metric-closure of the input graph). This simple observation allows them to
derive a recursive greedy algorithm. In more detail, they try to identify a vertex that separates the
optimal path into two equal-size subpaths by iterating over all the vertices; then they recursively
(and approximately) solve two subproblems and pick the best approximate sub-solution greedily.

2

Their analysis, however, requires the fact that both recursive calls end at the same depth (because
each subpath has length different by at most one).

We imitate the recursive greedy algorithm by recursively splitting the optimal solution via
balanced tree separators. The same approach as in [6], unfortunately, does not quite work out for
us since subproblem sizes may differ by a multiplicative factor. This process, somehow, gives
us a decision tree that contains a branch-decomposition of every solution, which is sufficient to
devise an approximation algorithm. Note, however, that not every subtree of this decision tree can
be transformed into a connected graph, and thus, it is not guaranteed that we can find a feasible
DST solution from this decision tree. We introduce node-labels and label-consistent constraints
specifically to solve this issue.

The label-consistency requirement could not be handled simply by applying DST algorithms as
a blackbox. This comes to the second component that is inspired by the framework developed by
Rothvoß [31]. While the framework was originally developed for the Sum-of-Squares hierarchy,
it was shown by Friggstad et al. [13] that it also applies to Sherali-Adams, which is a weaker
hierarchy. We apply the framework of Rothvoß to our Sherali-Adams lifted-LP but taking the
label-consistency requirement into account.

1.3 Related Work

We already mentioned some of the main results about DST and GST. For GST there is a polynomial-
time algorithm by Garg et al. [14] that achieves an approximation factor of O(log2 k log n), where
k is the number of groups. Their algorithm first maps the input instance into a tree instance by
invoking the Probabilistic Metric-Tree Embeddings [1, 12], thus losing a factor O(log n) in the ap-
proximation ratio. They then apply an elegant LP-based randomized rounding algorithm to the
instance on a tree. A well-known open problem is whether it is possible to avoid the log n factor in
the approximation ratio. This was later achieved by Chekuri and Pal [6], however their algorithm
runs in quasi-polynomial-time.

Some works were devoted to the survivable network variants of DST and GST, namely `-DST
and `-GST, respectively. Here one requires to have ` edge-disjoint directed (resp., undirected)
paths from the root to each terminal (resp., group). Cheriyan et al. [7] showed that `-DST admits
no 2log1−ε n-approximation algorithm, for any ε > 0, unless NP ⊆ DTIME(2polylog(n)). Laekhanukit
[24] showed that the problem admits no `1/2−ε-approximation for any constant ε > 0, unless
NP = ZPP. Nevertheless, the negative results do not rule out the possibility of achieving reason-
able approximation factors for small values of `. In particular, Grandoni and Laekhanukit [16]
(exploiting some ideas in [25]) recently devised a poly-logarithmic approximation algorithm for
2-DST that runs in quasi-polynomial time.

Concerning `-GST, Gupta et al. [17] presented a Õ(log3 n log k)-approximation algorithm for
2-GST. The same problem admits an O(α log2 n)-approximation algorithm, where α is the largest
cardinality of a group [22]. Chalermsook et al. [4] presented an LP-rounding bicriteria approxi-
mation algorithm for `-GST that returns a subgraph with cost O(log2 n log k) times the optimum
while guaranteeing a connectivity of at least Ω(`/ log n). They also showed that `-GST is hard
to approximate to within a factor of `σ, for some fixed constant σ > 0, and if ` is large enough,
then the problem is at least as hard as the Label-Cover problem, meaning that `-GST admits no
2log1−ε n-approximation algorithm, for any constant ε > 0, unless NP ⊆ DTIME(2polylog(n)).

3

2 Preliminaries

Given a graph G′, we denote by V(G′) and E(G′) the vertex and edge set of G′, respectively.
Throughout this paper, we treat a rooted tree as an out-arborescence; that is, edges are directed
towards the leaves. Given a rooted tree T, we use root(T) to denote its root. For any rooted tree
T and v ∈ V(T), we shall use T[v] to denote the sub-tree of T containing v and all descendants of
v. For a directed edge e = (u, v), we use head(e) = u and tail(e) = v to denote the head and tail
of e. Generally, we will use the term vertex to mean a vertex of a DST instance, and we will use the
term node to mean a vertex in an instance of the Label-Consistent Subtree problem, defined below:

Label-Consistent Subtree (LCST). The new problem we introduce is the Label-Consistent Sub-
tree (LCST) problem. The input consists of a rooted tree T0 of size N = |V(T0)| and height

h, a node cost vector c ∈ R
V(T0)
≥0 , and a set L of labels, among which there are k global labels

K ⊆ L. The other labels L \ K are called local labels. Each node v ∈ V(T0) has two label sets: a set
dem(v) ⊆ L \ K of demand labels, and a set ser(v) ⊆ L of service labels.

We say that a subtree T of T0 with root(T) = root(T0) is label-consistent if for every vertex
u ∈ V(T) and ` ∈ dem(u), there is a descendant v of u in T such that ` ∈ ser(v). The goal of the
LCST problem is to find a label-consistent subtree T of T0 of minimum cost that contains all global
labels, i.e, for every ` ∈ K, there is a v ∈ V(T) with ` ∈ ser(v).

In Section 4, we give an (shN)O(sh2)-time O(h log k)-approximation algorithm for the LCST
problem, where s = max

v∈V(T0)
|dem(v)|. Thus we require s to be small in order to derive a quasi-

polynomial-time algorithm; fortunately, this is the case for the instance reduced from DST.

Balanced Tree Partition. A main tool in our reduction is the following standard balanced-tree-
partition lemma (with proof given in Appendix A for completeness).

Lemma 2.1 (Balanced-Tree-Partition). For any n ≥ 3, for any n-vertex tree T rooted at a vertex r,
there exists a vertex v ∈ V(T) such that T can be decomposed into two trees T1 and T2 rooted at r and v,
respectively, in such a way that E(T1)] E(T2) = E(T), V(T1) ∪V(T2) = V(T) and V(T1) ∩V(T2) =
{v} and |V(T1)|, |V(T2)| < 2n/3 + 1. In other words, T1 and T2 are sub-trees that form a balanced
partition of (the edges of) T.

Sherali-Adams Hierarchy. In this section, we give some basic facts about Sherali-Adams hier-
archy that we will need. Assume we have a linear program polytope P defined by Ax ≤ b. We
assume that 0 ≤ xi ≤ 1, ∀i ∈ [n] are part of the linear constraints. The set of integral feasible
solutions is defined as X = {x ∈ {0, 1}n : Ax ≤ b}. It is convenient to think of each i ∈ [n] as an
event, and in a solution x ∈ {0, 1}n, xi indicates whether the event i happens or not.

The idea of Sherali-Adams hierarchy is to strengthen the original LP Ax ≤ b by adding
more variables and constraints. Of course, each x ∈ X should still be a feasible solution to
the strengthened LP (when extended to a vector in the higher-dimensional space). For some
R ≥ 1, the R-th round of Sherali-Adams lift of the linear program has variables xS, for every

S ∈
(

[n]
≤ R

)
:= {S ⊆ [n] : |S| ≤ R}. For every solution x ∈ X , xS is supposed to indicate whether

all the events in S happen or not in the solution x; that is, xS = ∏i∈Sxi. Thus each x ∈ X can be
naturally extended to a 0/1-vector in the higher-dimensional space defined by all the variables.

4

To derive the set of constraints, let us focus on the j-th constraint
n

∑
i=1

aj,ixi ≤ bj in the original

linear program. Consider two subsets S, T ⊆ [n] such that |S|+ |T| ≤ R− 1. Then the following
constraint is valid for X ; i.e, all x ∈ X , the constraint is satisfied:

∏i∈S xi ∏i∈T(1− xi)
(
∑n

i=1 aj,ixi − bj
)
≤ 0.

To linearize the above constraint, we expand the left side of the above inequality and replace
each monomial with the corresponding xS′ variable. Then, we obtain the following :

∑T′⊆T(−1)|T
′| (∑n

i=1 aj,ixS∪T′∪{i} − bjxS∪T′
)
≤ 0. (1)

The R-th round of Sherali-Adams lift contains the above constraint for all j, S, T such that
|S|+ |T| ≤ R− 1, and the trivial constraint that x∅ = 1. For a polytope P and an integer R ≥ 1,
we use SA(P , R) to denote the poltyope obtained by the R-th round Sherali-Adams lift of P . For
every i ∈ [n], we identify the variable xi in the original LP and x{i} in a lifted LP.

Let x ∈ SA(P , R) for some linear program P on n variables and R ≥ 2. Let i ∈ [n] be an
event such that xi > 0; then we can define a solution x′ ∈ SA(P , R − 1) obtained from x by

“conditioning” on the event i. For every S ∈
(

[n]
R− 1

)
, x′S is defined as x′S :=

xS∪{i}
xi

. We shall

show that x′ will be in SA(P , R− 1) (Property (2.2e)).
It is useful to consider the ideal case where x corresponds to a convex combination of integral

solutions in X . Then we can view x as a distribution over X . Conditioning on the event i over the
solution x corresponds to conditioning on i over the distribution x. With this view, it is not hard
to image the statements in the following claim (which we prove in the appendix) should hold:

Claim 2.2. For some x ∈ SA(P , R) with R ≥ 2, the following statements hold:

(2.2a) xS ≥ xS′ for every S ⊆ S′ ∈
(

[n]
≤ R

)
.

(2.2b) If xi = 1 for some i ∈ [n], then x{i,i′} = xi′ for every i′ ∈ [n].
(2.2c) If every x̂ ∈ P has x̂i ≤ x̂i′ , then x{i,i′} = xi.

Letting x′ be obtained from x by conditioning on some event i ∈ [n], the following holds:
(2.2d) x′i = 1.
(2.2e) x′ ∈ SA(P , R− 1).
(2.2f) If xi′ ∈ {0, 1} for some i′ ∈ [n], then x′i′ = xi′ .

Keep in mind that the three properties (2.2a), (2.2d) and (2.2f) will be used over and over again,
often without referring to them. (2.2d) says that conditioning on i will fix xi to 1. (2.2f) says that
once a variable is fixed to 0 or 1, then it can not be changed by conditioning operations.

3 Reducing Directed Steiner Tree to Label-Consistent Subtree

In this section, we present a reduction from DST to LCST. In Section 3.1, we define a decomposition
tree, which corresponds to a recursive partitioning of a Steiner tree T of G. We show that the DST
problem is equivalent to finding a small cost decomposition tree. Due to the balanced-partition

5

lemma (Lemma 2.1), we can guarantee that decomposition trees have depth O(log k), a crucial
property needed to obtain a quasi-polynomial-time algorithm. Then in Section 3.2 we show that
the task of finding a small cost decomposition tree can be reduced to an LCST instance on a tree
of depth O(log k). Roughly speaking, for a decomposition tree to be valid, we require that the
separator vertex appears in both parts of a partition: as a root in one part and possibly a non-root
in the other. This can be captured by the label-consistency requirement.

We shall use T to denote a Steiner tree in the original graph G, and u, v to denote vertices in G.
We use τ to denote a decomposition tree, and α, β to denote nodes of a decomposition tree. T0 will
be used for the input tree of the LCST instance. We use T for a sub-tree of T0 and p, q, o for nodes
in T0. The convention extends to variants of these notations as well.

3.1 Decomposition Trees

We now define decomposition trees. Recall that in the DST problem, we are given a graph G =
(V, E), a root r ∈ V, and a set K ⊆ V \ {r} of k terminals.

Definition 3.1. A decomposition tree τ is a rooted tree where each node α is associated with a
vertex µα ∈ V(G) and each leaf-node α is associated with an edge eα ∈ E(G). Moreover, the
following conditions are satisfied:
(3.1a) µroot(τ) = r.
(3.1b) For every leaf β of τ, we have µβ = head(eβ).
(3.1c) For every non-leaf α of τ and every child α2 of α with µα2 6= µα the following holds. There

is a child α1 of α with µα1 = µα such that µα2 = tail(eβ) for some leaf β ∈ V(τ[α1]). In
particular, this implies that α has at least one child α1 with µα1 = µα.

The cost of a decomposition tree τ is defined as cost(τ) := ∑α a leaf of τ
c(eα).

We say a vertex v is involved in a sub-tree τ[α] of a decomposition tree τ if either v = µα or there
is a leaf β of τ[α] such that v = tail(eβ). So the second sentence in Property (3.1c) can be changed
to the following: There is a child α1 of α with µα1 = µα such that µα2 is involved in τ[α1].

We show that the DST problem can be reduced to the problem of finding a small-cost decom-
position tree of depth O(log k). This is done in two directions.

From Directed Steiner Tree to Decomposition Tree. We first show that the optimum directed
Steiner tree T∗ of G connecting r to all terminals in K gives a good decomposition tree τ∗ of cost
at most that of T∗, which we denote by opt. Since we assumed costs of edges in G satisfy tri-
angle inequalities, we can assume every vertex v ∈ V(T∗) \ ({r} ∪ K) has at least two children
in T∗. This implies |V(T∗)| ≤ 2k. The decomposition tree τ∗ can be constructed by apply-
ing Lemma 2.1 on T∗ recursively until we obtain trees with singular edges. Formally, we set
τ∗ ← cstr-opt-dcmp-tree(T∗), where cstr-opt-dcmp-tree is defined in Algorithm 1. Notice that the
algorithm is only for analysis purpose and is not a part of our algorithm for DST.

Claim 3.2. τ∗ is a full binary decomposition tree of height O(log k) and cost opt that involves all vertices
in K. Moreover, for every v ∈ K, there is exactly one leaf β of τ∗ with tail(eβ) = v.

From Decomposition Tree to Directed Steiner Tree. Now we show the other direction of the
reduction. The lemma we shall prove is the following:

6

Algorithm 1 cstr-opt-dcmp-tree(T)
1: if T consists of a single edge (u, v) then return a node β with µβ = u and eβ = (u, v)
2: else
3: create a node α with µα = root(T)
4: apply Lemma 2.1 to find two rooted trees T1 and T2 with root(T1) = root(T)
5: τ1 ← cstr-opt-dcmp-tree(T1), τ2 ← cstr-opt-dcmp-tree(T2)
6: return the tree rooted at α with two sub-trees τ1 and τ2

r

a

b c

d

e

f

g h

i

j

{r, a, b, c, d, e, f, g, h, i, j}

{r, a, b, c, d, e, j} {e, f, g, h, i}

{r, a, b, c} {r, d, e, j}

{r, a} {a, b, c}

{a, b} {a, c}

{r, d} {d, e, j}

{d, e} {d, j}

{e, f, i} {f, g, h}

{f, g} {f, h}{e, f} {e, i}

T ∗ τ ∗

Figure 1: An example for construction of τ∗. For each node τ∗, the set denotes the vertices in the
sub-tree of T∗ correspondent to the node; the µ value of the node is the first element in the set. For
a leaf node, its e value is the edge from the first element to the second element in the set.

Lemma 3.3. Given a decomposition tree τ that involves all terminals in K, we can efficiently construct a
directed Steiner tree T in G connecting r to all terminals in K with cost at most cost(τ).

Thus, our goal is to find a decomposition tree of small cost involving all terminals in K. To do
so, we construct an instance of the LCST problem.

3.2 Construction of LCST Instance

Let h̄ be the O(log k) term in Claim 3.2 that upper bounds the height of τ∗. In the reduction, we
shall “collapse” every g := dlog2 log2 ke levels of a decomposition tree into one level; this is used
to obtain the improvement of Θ(log log k) in the approximation ratio. It motivates the definition
of a twig, which corresponds to a full binary tree of depth at most g that can appear as a part of a
decomposition tree:

Definition 3.4. A twig is a rooted full binary tree η of depth at most g, where
• each α ∈ V(η) is associated with a µα ∈ V(G), such that for every internal node α in η, at

least one child α′ of α has µα′ = µα, and
• each leaf β of η may or may not be associated with a value eβ ∈ E(G); if eβ is defined then

head(eβ) = µβ.

With the twigs defined, our LCST instance T0 is constructed by calling T0 ← cstr-label-tree(r, 0),

7

where cstr-label-tree is defined in Algorithm 2. See Figure 2 for illustration of one recursion of
cstr-label-tree.

Algorithm 2 cstr-label-tree(u, j)
1: create a new node p with cp = 0, up = u and dem(p) = {`} for a newly created local label `
2: if j <

⌈
h̄/g

⌉
then

3: for each possible non-singular twig η with µroot(η) = u do
4: create a node q with cq = ∑

leaf β of η:eβ defined
c(eβ), ηq = η, ser(q) = {`}, and dem(q) = ∅

5: let q be a child of p
6: for every leaf β of η do
7: if eβ is defined then
8: if tail(eβ) ∈ K then add the global label tail(eβ) to ser(q)
9: else

10: Tq
β ← cstr-label-tree(µβ, j + 1), let root(Tq

β) be a child of q
11: create a new label `′, add `′ to dem(q) and ser(root(Tq

β)).

12: for every internal node α of η do
13: let α1 be a child of α with µα1 = µα and α2 be the other child
14: if µα2 6= µα and @ leaf β of η[α1] with eβ defined and tail(eβ) = µα2 then
15: create a new label `′ and add it to dem(q)
16: for every leaf β of η[α1] with eβ undefined, and q′ in Tq

β do
17: if ηq′ has a leaf β′ with eβ′ defined and tail(eβ′) = µα2 then add `′ to ser(q′)

18: return the tree rooted at p

Remark 3.5. The u and η values of nodes in T0 are irrelevant for the LCST instance. They will,
however, help us in mapping the decomposition tree to its corresponding solution to LCST.

Notice that there are two types of nodes in T0: (1) p-nodes are those created in Step 1 and (2)
q-nodes are those created in Step 4. We always use p (q, resp.) and its variants to denote p-nodes
(q-nodes resp.).

We give some intuition behind the construction of T0. We can partition the edges of a decom-
position tree τ into an O(h̄/g)-depth tree H of twigs. For each η in the tree, we apply the following
operation. First, we replace η with a node q with ηq = η. Second, we insert a virtual parent p of q
with up = µroot(η) between this q and its actual parent. Then it is fairly straightforward to see that
we can find a copy of this resulting tree in T0. Thus, we reduced the problem of finding H (and
thus τ) to the problem of finding a subtree T of T0. The label-consistency requirements shall guar-
antee that T will correspond to a valid τ. In particular, the demand label ` for a node p created in
Step 1 guarantees that if p is selected then we shall select at least one child of p. The demand labels
created in Step 11 for a node q guarantee that if q is selected, then all its children must be selected,
while the demand labels created in Step 15 guarantee Property (3.1c) of τ. The set of global labels
is exactly K. In Step 8, we add a global label v ∈ K to q if ηq contains a leaf β with tail(eβ) = v.

A simple observation we can make is the following:

Claim 3.6. T0 is a rooted tree with nO(log2 k/ log log k) vertices and height O(h̄/g) = O(log k/ log log k),
where n = |V(G)|.

8

q-nodes

η η η

p-node

u u u u u u

u

p-nodes

Figure 2: Nodes created in one recursion of cstr-label-tree. Each p-node has a up value, and each
q-node is associated with a twig ηq with µroot(ηq) being the u value of its parent p-node. Each child
p′ of q corresponds to a leaf β of ηq with eβ undefined.

Also, it is easy to see that a node p will have exactly one demand label, while a node q can have
up to O(2g) demand labels. So, we have s := max

p∈V(T0)
|dem(v)| = O(2g) = O(log k).

We then show that the problem of finding a decomposition tree can be reduced to that of
finding a label-consistent subtree of T0. Again, this is done in two directions.

From Decomposition Tree to Label-Consistent Subtree To show that there is a good label-
consistent subtree T∗ of T0, we need to construct a tree of twigs from τ∗. This is done as follows.
For every i = 0, 1, 2, · · · , and every internal node α in τ∗ of depth ig, we create a twig rooted at
α containing all descendants of α at depth ig, ig + 1, ig + 2, · · · , (i + 1)g. Let V be the set of twigs
created. A rooted tree H over V can be naturally defined: a twig η is a parent of η′ if and only if
root(η′) is a leaf in η. So, H has depth at most

⌈
h̄/g

⌉
.

Algorithm 3 cstr-opt-LCST(p, η)

1: add p and the child q of p with ηq = η to T∗ . such a q exists since µroot(η) = up
2: for every leaf β of η such that eβ is not defined do
3: let η′ be the twig in V with root(η′) = β
4: cstr-opt-LCST(root(Tq

β), η′)

T∗ can be found naturally by calling cstr-opt-LCST(root(T0), root(H)) (with T∗ being empty
initially), where cstr-opt-LCST is defined in Algorithm 3, and the trees Tq

β are as defined in Algo-

rithm 2. The recursive procedure takes two parameters: a node p in T0 and a twig η ∈ V . It is guar-
anteed that up = µroot(η): The root recursion satisfy this condition since uroot(T0) = µroot(root(H)) =
r; in Step 4, we also have uroot(Tq

β)
= µβ = µroot(η′). The tree can be constructed as H has depth at

most
⌈

h̄/g
⌉
. Again, this algorithm is only for analysis purpose and is not a part of our algorithm

for DST. We prove in the appendix the following lemma.

Lemma 3.7. T∗ is a label-consistent sub-tree of T0 with cost exactly cost(τ∗) = opt. Moreover, all global
labels in K are supplied by T∗.

From Label-Consistent Subtree to Decomposition Tree. The following lemma gives the other
direction, and its proof will be deferred to the appendix.

9

Lemma 3.8. Given any feasible solution T to the LCST instance T0, in time poly(|V(T)|) we can con-
struct a decomposition tree τ with cost(τ) = cost(T). Moreover, if a global label v ∈ K is supplied by T,
then τ involves v.

Wrapping up. We prove the following theorem in the next section. Recall that N and h are
respectively the size and height of the input tree T0 to the LCST instance, and k is the number of
global labels.

Theorem 3.9. There is an (shN)O(sh2)-time O(h log k)-approximation algorithm for the Label-Consistent
Subtree problem where s := max

v∈V(T0)
|dem(v)|.

With this theorem at hand, we can now finish our O(log2 k/ log log k)-approximation for DST
that runs in quasi-polynomial time. Given a DST instance, we shall construct the LCST instance
T0 of size N = nO(log2 k/ log log k) and height h = O(log k/ log log k) as in Algorithm 2. Notice that
for the LCST instance, we have s := max

p∈V(T0)
|dem(p)| = O(2g) = O(log k). By Claim 3.2 and

Lemma 3.7, there is a solution T∗ to the LCST instance T0 of cost at most opt. Applying Theo-
rem 3.9, we can obtain a feasible solution T of cost at most O(h log k) · opt = O(log2 k/ log log k) ·
opt in time (shN)O(sh2) = nO(log5 k) (as s = O(log k)). Applying Lemma 3.8 and Lemma 3.3, we
can obtain a Directed Steiner tree T in G of cost at most O(log2 k/ log log k) · opt connecting r to all
terminals in K. This gives a O(log2 k/ log log k)-approximation for DST in running time nO(log5 k),
finishing the proof of Theorem 1.1.

4 Approximation Algorithm for Label-Consistent Subtree

The goal of this section is to prove Theorem 3.9, which is repeated below. Since we are not dealing
with the original DST problem any more, we use T0, T for trees and u, v for nodes in this section.

Theorem 3.9. There is an (shN)O(sh2)-time O(h log k)-approximation algorithm for the Label-Consistent
Subtree problem where s := max

v∈V(T0)
|dem(v)|.

4.1 Redefining the LCST Problem

We shall first simplify the input instance w.l.o.g in the following ways that will make our presen-
tation much cleaner. Indeed, some properties are already satisfied by the LCST instance reduced
from the DST problem; however we want to make Theorem 3.9 as general as possible and thus we
do not make these assumptions in the theorem statement.
1. We can assume for every two distinct nodes u and v, dem(u) and dem(v) are disjoint. If some

local label ` appears in dem(u) for t ≥ 2 different nodes u, we can make t copies of ` and let
each copy be contained in dem(u) for exactly one u. We can replace the appearance of ` in some
ser(v) with the t copies.

2. We can assume the demand labels are only at the internal nodes. Suppose a leaf v has ` ∈
dem(v). If ` ∈ ser(v), then ` can be removed from dem(v); otherwise v can never be selected
thus can be removed from T0.

10

3. We can assume that the service labels are only at the leaves and each leaf contains exactly one
service label. A leaf without a service label can be removed. For a non-leaf v with ser(v) 6= ∅,
we can attach |ser(v)| leaves of cost 0 to v and distribute the service labels to the newly added
leaves. Similarly, if a leaf v has |ser(v)| > 1, we can attach |ser(v)| new leaves to v.

Notice that the above operations do not change the set K of global labels and s = max
v∈V(T0)

|dem(v)|.
With the above operations and simplifications, we can redefine the LCST instance. Let Vleaf

and Vint respectively be the sets of leaves and internal nodes of T0. For every node v ∈ Vint, let
Λv be the set of children of v. For every v ∈ V(T0), let Λleaf

v = V(T0[v]) ∩ Vleaf be the set of
descendants of v that are leaves.

For every v ∈ Vleaf, let av be the unique label in ser(v). From now on we shall not use the
notation ser(·) anymore. Thus, a rooted subtree T of T0 with root(T) = root(T0) is label-consistent
if, for every u ∈ V(T) ∩Vint and ` ∈ dem(u), there is a node v ∈ V(T) ∩Λleaf

u with av = `.
The goal of the problem is to find the minimum cost label-consistent subtree T of T0 that

provides all the global labels, i.e, that satisfies for all ` ∈ K there exists a v ∈ V(T) ∩ Vleaf with

av = `. Recall that we are given a node-cost vector c ∈ R
V(T0)
≥0 . The cost of a sub-tree T of T0,

denoted as cost(T), is defined as cost(T) := ∑v∈V(T)cv.

We consider the change in the size and height of T0 after we applied the above operations.
Abusing notations slightly, we shall use N′ and h′ to store the size and height of the old T0 (i.e, the
T0 before we apply the operations), and N and h be the size and height of the new T0 (i.e, the T0

after we apply the operations). Notice that we only added leaves to T0. Thus, we have h ≤ h′ + 1.
The number of internal nodes in the new T0 is at most N′. A leaf v is relevant only when it is
providing a label that are in dem(u) for some ancestor u of v. If a node has many leaf children
with the same service label, we only need to keep the one with the smallest cost. Since each u has
|dem(u)| ≤ s and the height of the old T0 is h′, we can assume that the number of leaves in the
new T0 is at most s(h′ + 1)N′. So N ≤ s(h′ + 1)N′ + N′ = O(sh′N′).

Let T∗ be the optimum tree for the given instance. Let opt be the cost of the T∗, i.e, opt =
cost(T∗).2 As every local label appears only once in Vint, we can assume that for every ` ∈ L, there
is at most one node v ∈ V(T∗) ∩Vleaf with av = `: if there are multiple such nodes v, we can keep
one without violating the label-consistency condition and that all global labels are provided. Thus
additionally we can assume T∗ satisfies the following conditions:
(4.1a) For every ` ∈ K, there is exactly one node v ∈ V(T∗) ∩Vleaf such that av = `.
(4.1b) For every ` ∈ L \ K, there is at most one node v ∈ V(T∗) ∩Vleaf such that av = `.

The main theorem we shall prove is the following

Theorem 4.2. There is an (sN)O(sh2)-time algorithm that outputs a random label-consistent tree T̃ such

that, E
[
c(T̃)

]
≤ opt, and for every ` ∈ K, we have Pr

[
∃v ∈ Vleaf ∩V(T̃) : av = `

]
≥ 1

h + 1
.

With theorem 4.2, we can finish the proof of Theorem 3.9.

Proof of Theorem 3.9. We run O(h log k) times the algorithm stated in Theorem 4.2 and let T′ be the
union of all the trees T̃ produced. It is easy to see that T′ is always label-consistent. The expected

2We remark that it is easy to check whether a valid solution exists or not: an u ∈ Vint is useless if for some ` ∈ dem(u)
there is no v ∈ Λleaf

u with av = `. We repeatedly remove useless nodes and their descendents until no such nodes exist.
There is a valid solution iff the remaining T0 provides all labels in K. So we can assume the instance has a valid solution.

11

cost of T′ is

E
[
cost(T′)

]
≤ O(h log k)opt.

If the O(h log k) term is sufficiently large, by the union bound, we can obtain

Pr
[
∀` ∈ K, ∃v ∈ Vleaf ∩V(T′), av = `

]
≥ 1/2. (2)

We repeatedly run the above procedure until ∀` ∈ K, ∃v ∈ Vleaf ∩ V(T′), av = ` happens and
output the tree T′ satisfying the property. Let Tfinal be this tree. Then we have E

[
cost(Tfinal)

]
≤

O(h log k)opt due to (2). In expectation we only need run the procedure twice.
Thus, we obtain an O(h log k)-approximation algorithm for LCST. The running time of the

algorithm is (sN)O(sh2) = (sh′N′)O(sh′2). Recall that h′ and N′ are the height and size of T0 before
we applied the operations; thus the theorem follows.

Thus, our goal is to prove Theorem 4.2. Our algorithm is very similar to that of [31] for GST
on trees. We solve the lifted LP relaxation for the LCST problem and then round the fractional
solution via a recursive procedure. In the procedure, we focus on some sub-tree T0[u], and we are
given a set L′ of labels that must appear in T̃[u], where T̃ is our output tree. We are also given a
lifted LP solution x; we can restrict x on the tree T0[u]. The set L′ of labels appear in T0[u] fully ac-
cording to x. Then, for every ` ∈ L′, we randomly choose child v of u that is responsible for this `
and then apply some conditioning operations on x. We recursively call the procedure for the chil-
dren of u. This way, we can guarantee that the tree T̃ we output is always label-consistent. Finally,
we show that each global label v ∈ K appears in T̃ with large probability, using the technique that
is very similar to that of [31].

4.2 Basic LP Relaxation

The remaining part of the section is dedicated to the proof of Theorem 4.2. We formulate an
LP relaxation that aims at finding the T∗, where the variables of the LP are indexed by D =
V(T0) ∪ (V(T0) × L). We view every element in D also as an event. Supposedly, an event u ∈
V(T0) happens if and only if u ∈ V(T∗), and an event (u, `) ∈ V(T0) × L happens if and only
if u ∈ V(T∗) and Λleaf

u ∩ V(T∗) has a node with label ` (such a node is unique if it exists by
Properties (4.1a) and (4.1b)). For every e ∈ D, xe ∈ {0, 1} is supposed to indicate whether event e
happens or not. Then the following linear constraints are valid:

xv ≤ xu, ∀u ∈ Vint, v ∈ Λu (3)

x(u,`) ≤ xu, ∀u ∈ V(T0), ` ∈ L (4)

x(u,`) = xu, ∀u ∈ Vint, ` ∈ dem(u) (5)

x(v,av) = xv, ∀v ∈ Vleaf (6)

x(u,`) = ∑
v∈Λu

x(v,`), ∀u ∈ Vint, ` ∈ L (7)

x(v,`) = 0, ∀v ∈ Vleaf, ` 6= av (8)

x(root(T0),`) = 1, ∀` ∈ K (9)

(3) holds since T∗ is rooted sub-tree of T0 with root(T∗) = root(T0), (4) holds by definition
of events, (5) follows from that T∗ is label-consistent, and (6) holds trivially. (7) follows from
Properties (4.1a) and (4.1b). (8) holds trivially and (9) follows from Property (4.1a).

Let P be the polytope containing all vectors x ∈ [0, 1]D satisfying constraints (3) to (9). The
following simple observation can be made:

12

Claim 4.3. For every x ∈ P , u′ ∈ V(T0), and `′ ∈ L, we have ∑
v∈Λleaf

u′

xv,`′ = xu′,`′ .

Proof. The claim holds trivially if u′ ∈ Vleaf. When u′ /∈ Vleaf, summing up (7) over all internal
nodes u in T0[u′] and ` = `′ gives the equality.

4.3 Rounding a Lifted Fractional Solution

Let R = O(sh2) be large enough. Since P contains an integral solution of cost at most opt, we can
find a solution x∗ ∈ SA(P , R) with ∑v∈V(T0)

cvx∗v ≤ opt in running time |D|O(sh2) = (sN)O(sh2).

Remark 4.4. Indeed, our algorithm only needs to use variables that correspond to paths of T0

starting at the root. Using this one can remove a log k/ log log k factor from the exponent of the
running time. However, we choose to use the Sherali-Adams hierarchy as it is much easier to
describe.

In the main rounding algorithm (Algorithm 4), we let Ṽ = ∅ initially and call solve(root(T0),
dem(root(T0)), x∗), as described in Algorithm 5. We output the subtree T̃ of T0 induced by Ṽ.

Algorithm 4 Main Rounding
Given: x∗ ∈ SA(P , R)
Output: a label-consistent tree T̃

1: Ṽ ← ∅
2: solve(root(T0), dem(root(T0)), x∗)
3: return the tree T̃ induced by Ṽ

Algorithm 5 solve(u, L′, x)
1: Ṽ ← Ṽ ∪ {u}
2: if u ∈ Vleaf then return
3: let Sv ← ∅ for every v ∈ Λu
4: for every ` ∈ L′ do
5: randomly choose a child v of u, so that v is chosen

with probability x(v,`) (see Property (4.5b))
6: Sv ← Sv ∪ {`}
7: x ← x conditioned on the event (v, `)
8: for every v ∈ Λu, with probability xv, do
9: solve(v, Sv ∪ dem(v), x conditioned on event v)

In the recursive algorithm solve(u, L′, x), u is the current node we are dealing with. L′ is the set
of labels that must be supplied in T̃[u]; in particular, we shall guarantee that dem(u) ⊆ L′. x is
the LP hierarchy solution that is passed to u, which satisfies xu = 1 and x(u,`) = 1 for every ` ∈ L′

(Property (4.5a) in Claim 4.5 that appears later). We add u to Ṽ in Step 1; thus the final T̃ contains
the set of nodes for which we called solve.

If u ∈ Vleaf, we then do nothing; so focus on the case u /∈ Vleaf. To guarantee that a label ` ∈ L′

is supplied in T̃[u], we need to specify one child v of u such that T̃[v] supplies `; we say that v
is responsible for this label `. This is done via a random procedure by using the solution x as a
guide: the probability that v is chosen is exactly x(v,`) (Step 5). We shall show that ∑v∈Λu

xv,` = 1
(Property (4.5b)) and thus the process is well-defined. After choosing the v for this ` ∈ L′, we
update x by conditioning on the event (v, `) (Step 7). So far the number of nested conditioning
operations we apply on x is |L′|; we will see soon that |L′| is small and thus we can apply these
operations.

For every v ∈ Λu, let Sv be the set of labels in L′ that v is responsible for. In Loop 8, we
independently and recursively call solve on the children of u. Notice that xv is the extent to which

13

v is included in V(T∗). So we only call solve on v with probability xv; the LP solution passed to the
sub-recursion is x conditioned on the event v. In particular if Sv 6= ∅ then xv = 1. We remark that
the conditioning operations for all children v of u are done “in parallel” and thus we “lose only 1
level” of our Sherali-Adams lifting.

We now analyze the algorithm. To prove Theorem 4.2, we need to show that T̃ is a label-
consistent subtree with small expected cost; moreover, every label ` ∈ K is provided by T̃ with
large enough probability. Let us first assume that the number R of rounds is large enough so that
all the conditioning operations can be applied. We start from some simple observations for the
algorithm.

Claim 4.5. For every recursion of solve that the algorithm invokes,
(4.5a) at the beginning the recursion, we have xu = 1 and x(u,`) = 1 for all ` ∈ L′, and

(4.5b) the random sampling process in Step 5 is well-defined: we have ∑v∈Λu
x(v,`) = 1 before the step.

Proof. (4.5a) holds for the root recursion as (9) implies x∗root(T0) = 1 and (5) implies x∗root(T0),` =

x∗root(T0) = 1 for every ` ∈ dem(root(T0)).

Now assume (4.5a) holds for some recursion for u /∈ Vleaf. So, at the beginning of an iteration
of Loop 4, we have xu,` = 1 for every ` ∈ L′. Thus, by (7), we have ∑

v∈Λu

xv,` = 1, implying (4.5b)

for this recursion.
Since we conditioned on the event (v, `) in Step 7 after adding ` to Sv, we have x(v,`) = 1

for every v ∈ Λu and ` ∈ Sv after finishing Loop 4. (Notice that Property (2.2f) says that once
a variable has value 0 or 1, conditioning operations do not change its value.) Focus on Step 9
for some v ∈ Λu, and let x′ be the x passed to the sub-recursion, i.e, x′ is obtained from x by
conditioning on the event v. Then we have that x′v = 1 and x′(v,`) = 1 for every ` ∈ Sv. Also,
x′(v,`) = x′v = 1 for every ` ∈ dem(v) by (5). Since L′ = Sv ∪ dem(v) in the sub-recursion of solve
for v, (4.5a) holds for the sub-recursion for v.

Claim 4.6. The tree T̃ returned by Algorithm 4 is label-consistent.

Proof. When we call solve for an u, it is guaranteed that dem(u) ⊆ L′ (by Step 2 in Algorithm 4
and Step 9 in Algorithm 5). By the way we construct Sv’s in Loop 4 of Algorithm 5, each label
` ∈ dem(u) will be passed down all the way to some leaf node v ∈ Λleaf

u . By Property (4.5a) for
the recursion of solve for v, we must have xv,` = 1 at the beginning of this recursion. Then by (8),
` = av must hold.

Claim 4.7. If R = O(sh2) is large enough, then all the conditioning operations can be performed.

Proof. Notice that for the recursion of solve for u, the size of |L′| passed to the recursion is at most
s(depth(u) + 1), where depth(u) is the depth of u in the tree T0, i.e, the distance from root(T0)
to u. This holds since in a recursion of solve for u, Sv’s are subsets of L′, and the L′ passed to the
sub-recursion for v is Sv ∪ dem(v) and |dem(v)| ≤ s.

Inside each recursion of solve, the number of nested conditioning operations is |L′| + 1 ≤
s(depth(u) + 1) ≤ s(h + 2). Since the recursion can take up to h + 1 levels, the number R of
rounds we need is at most s(h + 2)(h + 1) + 1 = O(sh2).

14

Notations and Maintenance of Marginal Probabilities. We say that an event e ∈ D is inside
T0[u] for some u ∈ V(T0) if either e = v ∈ V(T0[u]) or e = (v, `) for some v ∈ V(T0[u]). For
every integer i ∈ [0, sh], let x(u,i) be the value of x after the i-th iteration of Loop 4 in the recursion
solve(u, ·, ·). If this recursion does not exist, then let x(u,i) be the all-0 vector over D; if this recursion
exists but Loop 4 terminates in less than i iterations in the recursion, then let x(u,i) be the value of
x at the end of loop. Notice that Loop 4 terminates in at most sh iterations from the proof of
Claim 4.7.

The randomness of the algorithm comes from Steps 5 and 8 in solve. Each time we run Step 5
or 8, we assume we first generate a random number and then use it to make the decision. We say
a random number is generated before x(u,i), if the random number is generated in solve(u′, ·, ·) for
some ancestor u′ of u, or in solve(u, ·, ·) before or at the i-th iteration of Loop 4. Notice that each
x(u,i) is completely determined by the random numbers generated before it. The following two
claims state that the marginal probabilities of events are maintained in our random process.

Claim 4.8. Let u ∈ V(T0), i ∈ [sh], xold = x(u,i−1) and xnew = x(u,i). Let E be any event determined by
the random numbers generated before xold = x(u,i−1). Then, for every e ∈ D, we have

E[xnew
e |xold

e , E] = xold
e .

Proof. Conditioned on that the i-th iteration of solve(u, ·, ·) does not exist, the equality holds triv-
ially. So we condition on that the iteration exists. Let L′ be the L′ passed to solve(u, ·, ·); then the `
handled in the i-th iteration is determined by L′ and i. So,

E
[

xnew
e
∣∣xold, L′

]
= ∑

v∈Λu

xold
(v,`) ·

xold
{e,(v,`)}

xold
(v,`)

= ∑
v∈Λu

xold
{e,(v,`)} = xold

{e,(u,`)} = xold
e .

The first equality is by the random process for choosing v and the definition of the conditioning
operation. The second-to-last equality follows from Constraint (7), and the last equality follows
from xold

(u,`) = 1 and Property (2.2b).

Also, given xold and L′, the random process in the i-th iteration of solve(u, ·, ·) does not de-
pend on the random numbers generated before xold, and thus does not depend on E . Therefore,
E
[

xnew
e
∣∣xold, L′, E

]
= xold

e . Deconditioning over L′ and the components inside xold other than xold
e

gives E
[

xnew
e
∣∣xold

e , E
]
= xold

e .

Claim 4.9. Let u ∈ Vint, v ∈ Λu, xold = x(u,sh) and xnew = x(v,0). Let E be any event determined by the
random numbers generated before xold = x(u,sh). Then, for any event e inside T0[v], we have

E
[

xnew
e
∣∣xold

e , E
]
= xold

e .

Proof. Again we can condition on that the recursion solve(u, ·, ·) exists. Consider the iteration of
Loop 8 for v in solve(u, ·, ·). We have

E
[

xnew
e
∣∣xold, E

]
= xold

v ×
xold
{e,v}
xold

v
= xold

{e,v} = xold
e .

15

The first equality holds since we make the recursive call for v with probability xold
v ; given xold, this

is independent of E . The last equality comes from that event e is inside T0[v] and thus x̂e ≤ x̂v for
every x̂ ∈ P ; Property (2.2c) gives the equality.

Again, deconditioning over the components inside xold other than xold
e gives E

[
xnew

e
∣∣xold

e , E
]
=

xold
e .

Corollary 4.10. For every v ∈ V(T0), we have Pr[v ∈ Ṽ] = x∗v .

Proof. Let u1 = root(T0), u2, · · · , ut = v be the path from root(T0) to v in T0. Applying Claims 4.8
and 4.9, we can obtain that the sequence x(u1,0)

v , x(u1,1)
v , · · · , x(u1,sh)

v , x(u2,0)
v , x(u2,1)

v , · · · , x(u2,sh)
v , · · · ,

x(ut−1,0)
v , x(ut−1,1)

v , · · · , x(ut−1,sh)
v , x(ut,0)

v forms a martingale. This holds since all variables before a
variable x(u

′,i) in the sequence are determined only by random numbers generated before x(u
′,i).

Thus Pr[v ∈ Ṽ] = E
[

x(v,0)
v

]
= x(root(T0),0) = x∗v as x(root(T0),0)

v is deterministic.

Then it is immediately true that the expected cost of T̃ is small.

Corollary 4.11. E[cost(T̃)] ≤ opt.

Proof. E[cost(T̃)] = ∑
v∈V(T0)

Pr[v ∈ Ṽ] · cv = ∑
v∈V(T0)

x∗vcv ≤ opt.

Bounding Probability of Label ` ∈ K Appearing in T̃ To finish the proof of Theorem 4.2, it
suffices to show that the probability that a label ` ∈ K is provided by T̃ with high probability. Till
the end of the proof, we shall fix a label ` ∈ K.

Let t` =
∣∣{v ∈ Ṽ ∩Vleaf : av = `}

∣∣ be the number of nodes in Ṽ ∩Vleaf with label `. Our goal is
to prove that t` ≥ 1 with high probability. The proof is almost the same as the counterpart in [31];
we include it here for completeness.

Lemma 4.12. E [t`] = 1.

Proof. By Corollary 4.10, we have

E[t`] = E
[∣∣{v ∈ Ṽ ∩Vleaf : av = `}

∣∣] = ∑
v∈Vleaf :av=`

Pr[v ∈ Ṽ] = ∑
v∈Vleaf:av=`

x∗v = x∗(root(T0),`) = 1,

where the second-to-last equality follows from Claim 4.3, and the last equality is by (9).

Lemma 4.13. For every w ∈ Vleaf with aw = `, we have E[t`|w ∈ Ṽ] ≤ h + 1.

Proof. Assume w is at depth h′ in the tree T0. We partition the set {w′ ∈ Vleaf \ {w} : aw′ = `} of
leaves into h′ sets U0, U1, · · · , Uh′−1 according to the LCA of w′ and w: w′ is in Ui if the LCA of w′

and w has depth i in the tree T0 (the root root(T0) has depth 0). Notice that w′ 6= w and thus the
LCA has depth between 0 and h′ − 1. We show that for every i = 0, 1, · · · , h′ − 1,

E
[
|Ui ∩ Ṽ|

∣∣w ∈ Ṽ
]
≤ 1. (10)

Summing up the inequality over all i = 0, 1, · · · , h′ − 1 and taking w itself into account implies
E[t`|w ∈ Ṽ] ≤ h′ + 1 ≤ h + 1.

16

Thus, it remains to prove (10). We fix an i ∈ {0, 1, · · · , h′ − 1} and let u be the ancestor of w
with depth i. Focus on any w′ ∈ Ui; thus u is the LCA of w′ and w. Let (Sv)v∈Λu be the vector
(Sv)v∈Λu before Loop 8 in solve(u, ·, ·).

Given {Sv}v∈Λu and x(u,sh), the two events w ∈ Ṽ and w′ ∈ Ṽ are independent. Thus,

Pr
[
w′ ∈ Ṽ

∣∣{Sv}v∈Λu , x(u,sh), w ∈ Ṽ
]
= Pr

[
w′ ∈ Ṽ

∣∣{Sv}v∈Λu , x(u,sh)
]

= E
[

x(w
′,0)

w′
∣∣{Sv}v∈Λu , x(u,sh)

]
= x(u,sh)

w′ .

To see the third equality, consider the path u, u1, u2, · · · , ut = w′ from u to w′ in T0. Then Claims 4.8
and 4.9 imply that conditioned on {Sv}v∈Λu and x(u,sh), the sequence x(u1,0),
x(u1,1), · · · , x(u1,sh), x(u2,0), x(u2,1) · · · , x(ut−1,sh), x(ut,0) is a martingale.

Summing up over all w′ ∈ Ui, we have

E
[
|Ui ∩ Ṽ|

∣∣{Sv}v∈Λu , x(u,sh), w ∈ Ṽ
]
= ∑

w′∈Ui

x(u,sh)
w′ = ∑

w′∈Ui

x(u,sh)
(w′,`) ≤ x(u,sh)

(u,`) ≤ 1.

The first inequality used Claim 4.3 and Ui ⊆ Λleaf
u . Deconditioning gives (10).

Lemma 4.14. For every ` ∈ K, we have E[t`|t` ≥ 1] ≤ h + 1.

Proof. In the following, w and w′ in summations are over all nodes in Vleaf with label `.

E[t`|t` ≥ 1]2 ≤ E[t2
` |t` ≥ 1] = ∑

w,w′
Pr[w ∈ Ṽ, w′ ∈ Ṽ|t` ≥ 1]

(by Jansen’s inequality and the definition of t`)

= ∑
w

Pr[w ∈ Ṽ|t` ≥ 1]∑
w′

Pr[w′ ∈ Ṽ|w ∈ Ṽ, t` ≥ 1]

= ∑
w

Pr[w ∈ Ṽ|t` ≥ 1]E[t`|w ∈ Ṽ]

(by the definition of t` and that w ∈ Ṽ implies t` ≥ 1)

≤ (h + 1)∑
w

Pr[w ∈ Ṽ|t` ≥ 1] (by Lemma 4.13)

= (h + 1)E[t`|t` ≥ 1] (by the definition of t`).

This implies E[t`|t` ≥ 1] ≤ h + 1.

Corollary 4.15. Pr[t` ≥ 1] ≥ 1
h + 1

for every ` ∈ K.

Proof. Notice that 1 = E[t`] = E[t`|t` ≥ 1] ·Pr[t` ≥ 1]. The corollary follows from Lemma 4.14.

Thus we have finished the proof of Theorem 4.2.

17

5 Discussion and Open Problems

In this paper we close the gap on the approximability of DST for the class of quasi-polynomial-
time algorithms. However, there is still a huge gap between the lower and upper bounds on ap-
proximation ratios for the class of polynomial-time algorithms. In particular, it has been an open
problem that perplex many researchers whether DST admits a polylogarithmic approximation al-
gorithm that runs in polynomial-time. There are both positive and negative evidence that suggest
DST may or may not admit such algorithm. On one hand, Rothvoß [31] observes that despite an
algorithm based on hierarchical techniques (i.e., Sum-of-Squares) runs in super polynomial-time
due to the size of the lifted linear program, the rounding algorithm itself reads only a polynomial
number of variables of the fractional solution with high probability. This also applies to all the LP
techniques including the folklore path-tree formulation (please see, e.g., [25]). Thus, some may
believe that DST admits polylogarithmic approximation algorithms that run in polynomial-time.
On the other hand, the factor nε/ε that appears in the approximation ratio shows that same be-
havior as in other problems whose trade-off between approximation ratio and running-time are
tight under the Exponential-Time Hypothesis, e.g., Dense CSP [28] and Densest k-Subgraph [27]3

Our result removes the factor 1/ε from the approximation ratio, suggesting that DST may have
a different behavior than the other problems mentioned above. Nevertheless, our technique does
not yield a good trade-off between approximation ratio and running-time as it requires exactly
quasi-polynomial-time to remove such factor. It seems that there is still a major barrier in answer-
ing the open question.

Acknowledgement. We would like to thank Uriel Feige for useful discussions over two years,
and we would like to thank Jittat Fakcharoenphol for useful discussion on the balanced tree sepa-
rator.

F. Grandoni is partially supported by the SNSF Grant 200021 159697/1 and the SNSF Excel-
lence Grant 200020B 182865/1.

B. Laekhanukit is supported by the National 1000-Youth Award by the Chinese government.
Parts of this work was done when Laekhanukit was at the Weizmann Institute of Science, partially
supported by ISF grant #621/12 and I-CORE grant #4/11, while he was visiting the Simons Insti-
tute for the Theory of Computing, which was partially supported by the DIMACS/Simons Col-
laboration on Bridging Continuous and Discrete Optimization through NSF grant #CCF-1740425,
and while he was at the Max-Plack Institute for Informatics.

S. Li is supported by NSF grant #CCF-1566356 and #CCF-1717134. Some critical parts of this
work were done while Li was visiting the Institute for Theoretical Computer Science at Shanghai
University of Finance and Economics.

References

[1] Yair Bartal. Probabilistic approximations of metric spaces and its algorithmic applications.
In 37th Annual Symposium on Foundations of Computer Science, FOCS ’96, Burlington, Vermont,
USA, 14-16 October, 1996, pages 184–193, 1996.

3In [28], the trade-off is slightly weaker, say O(nε3
/ε)-approximation ratio versus n1/ε-running time.

18

[2] MohammadHossein Bateni, Moses Charikar, and Venkatesan Guruswami. Maxmin alloca-
tion via degree lower-bounded arborescences. In Proceedings of the 41st Annual ACM Sym-
posium on Theory of Computing, STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009, pages
543–552, 2009.

[3] Jaroslaw Byrka, Fabrizio Grandoni, Thomas Rothvoß, and Laura Sanità. Steiner tree approx-
imation via iterative randomized rounding. J. ACM, 60(1):6:1–6:33, 2013.

[4] Parinya Chalermsook, Fabrizio Grandoni, and Bundit Laekhanukit. On survivable set con-
nectivity. In SODA, pages 25–36, 2015.

[5] Moses Charikar, Chandra Chekuri, To-Yat Cheung, Zuo Dai, Ashish Goel, Sudipto Guha, and
Ming Li. Approximation algorithms for directed steiner problems. J. Algorithms, 33(1):73–91,
1999.

[6] Chandra Chekuri and Martin Pál. A recursive greedy algorithm for walks in directed graphs.
In 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2005), 23-25 October
2005, Pittsburgh, PA, USA, Proceedings, pages 245–253, 2005.

[7] Joseph Cheriyan, Bundit Laekhanukit, Guyslain Naves, and Adrian Vetta. Approximating
rooted steiner networks. ACM Transactions on Algorithms, 11(2):8:1–8:22, 2014.

[8] Eden Chlamtac. Approximation algorithms using hierarchies of semidefinite programming
relaxations. In 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2007),
October 20-23, 2007, Providence, RI, USA, Proceedings, pages 691–701, 2007.

[9] Marek Cygan, Fabrizio Grandoni, and Monaldo Mastrolilli. How to sell hyperedges: The
hypermatching assignment problem. In Proceedings of the Twenty-Fourth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2013, New Orleans, Louisiana, USA, January 6-8, 2013,
pages 342–351, 2013.

[10] Marek Cygan, Guy Kortsarz, and Bundit Laekhanukit. On subexponential running times
for approximating directed steiner tree and related problems. Preprint available at http:
//itcs.shufe.edu.cn/~blaekh/paper/subexpo-dst.pdf.

[11] Alina Ene, Deeparnab Chakrabarty, Ravishankar Krishnaswamy, and Debmalya Panigrahi.
Online buy-at-bulk network design. In Venkatesan Guruswami, editor, IEEE 56th Annual
Symposium on Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20 October,
2015, pages 545–562. IEEE Computer Society, 2015.

[12] Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A tight bound on approximating arbi-
trary metrics by tree metrics. J. Comput. Syst. Sci., 69(3):485–497, 2004.

[13] Zachary Friggstad, Jochen Könemann, Young Kun-Ko, Anand Louis, Mohammad Shadra-
van, and Madhur Tulsiani. Linear programming hierarchies suffice for directed steiner tree.
In Integer Programming and Combinatorial Optimization - 17th International Conference, IPCO
2014, Bonn, Germany, June 23-25, 2014. Proceedings, pages 285–296, 2014.

[14] Naveen Garg, Goran Konjevod, and R. Ravi. A polylogarithmic approximation algorithm for
the group steiner tree problem. J. Algorithms, 37(1):66–84, 2000.

19

http://itcs.shufe.edu.cn/~blaekh/paper/subexpo-dst.pdf
http://itcs.shufe.edu.cn/~blaekh/paper/subexpo-dst.pdf

[15] Shashwat Garg, Janardhan Kulkarni, and Shi Li. Lift and project algorithms for precedence
constrained scheduling to minimize completion time. In Proceedings of the Thirtieth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, New Orleans, Louisiana, USA, Jan-
uary 6-8, 2019.

[16] Fabrizio Grandoni and Bundit Laekhanukit. Surviving in directed graphs: a quasi-
polynomial-time polylogarithmic approximation for two-connected directed steiner tree. In
Hatami et al. [19], pages 420–428.

[17] Anupam Gupta, Ravishankar Krishnaswamy, and R. Ravi. Tree embeddings for two-edge-
connected network design. In Proceedings of the Twenty-First Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2010, Austin, Texas, USA, January 17-19, 2010, pages 1521–1538,
2010.

[18] Eran Halperin and Robert Krauthgamer. Polylogarithmic inapproximability. In Lawrence L.
Larmore and Michel X. Goemans, editors, Proceedings of the 35th Annual ACM Symposium on
Theory of Computing, June 9-11, 2003, San Diego, CA, USA, pages 585–594. ACM, 2003.

[19] Hamed Hatami, Pierre McKenzie, and Valerie King, editors. Proceedings of the 49th Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada, June 19-
23, 2017. ACM, 2017.

[20] Christopher S. Helvig, Gabriel Robins, and Alexander Zelikovsky. An improved approxima-
tion scheme for the group steiner problem. Networks, 37(1):8–20, 2001.

[21] Camille Jordan. Sur les assemblages de lignes. Journal fr die reine und angewandte Mathematik,
70:185–190, 1869.

[22] Rohit Khandekar, Guy Kortsarz, and Zeev Nutov. Approximating fault-tolerant group-
steiner problems. Theorerical Computer Science, 416:55–64, 2012.

[23] Guy Kortsarz. On the hardness of approximating spanners. Algorithmica, 30(3):432–450, 2001.

[24] Bundit Laekhanukit. Parameters of two-prover-one-round game and the hardness of connec-
tivity problems. In SODA, pages 1626–1643, 2014.

[25] Bundit Laekhanukit. Approximating directed steiner problems via tree embedding. In Ioan-
nis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi, editors,
43rd International Colloquium on Automata, Languages, and Programming, ICALP 2016, July
11-15, 2016, Rome, Italy, volume 55 of LIPIcs, pages 74:1–74:13. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2016.

[26] Elaine Levey and Thomas Rothvoss. A (1+epsilon)-approximation for makespan scheduling
with precedence constraints using LP hierarchies. In Proceedings of the 48th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21,
2016, pages 168–177, 2016.

[27] Pasin Manurangsi. Almost-polynomial ratio eth-hardness of approximating densest k-
subgraph. In Hatami et al. [19], pages 954–961.

20

[28] Pasin Manurangsi and Prasad Raghavendra. A birthday repetition theorem and complexity
of approximating dense csps. In Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and
Anca Muscholl, editors, 44th International Colloquium on Automata, Languages, and Program-
ming, ICALP 2017, July 10-14, 2017, Warsaw, Poland, volume 80 of LIPIcs, pages 78:1–78:15.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017.

[29] Dana Moshkovitz. The projection games conjecture and the np-hardness of ln n-
approximating set-cover. Theory of Computing, 11:221–235, 2015.

[30] Gabriel Robins and Alexander Zelikovsky. Tighter bounds for graph steiner tree approxima-
tion. SIAM J. Discrete Math., 19(1):122–134, 2005.

[31] Thomas Rothvoß. Directed steiner tree and the lasserre hierarchy. CoRR, abs/1111.5473, 2011.

[32] Alexander Zelikovsky. An 11/6-approximation algorithm for the network steiner problem.
Algorithmica, 9(5):463–470, 1993.

[33] Alexander Zelikovsky. A series of approximation algorithms for the acyclic directed steiner
tree problem. Algorithmica, 18(1):99–110, 1997.

[34] Leonid Zosin and Samir Khuller. On directed steiner trees. In David Eppstein, editor, Proceed-
ings of the Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms, January 6-8, 2002,
San Francisco, CA, USA., pages 59–63. ACM/SIAM, 2002.

21

A The Missing Proofs from Section 2

We provide in the section the proof of Lemma 2.1.

Lemma 2.1 (Balanced-Tree-Partition). For any n ≥ 3, for any n-vertex tree T rooted at a vertex r,
there exists a vertex v ∈ V(T) such that T can be decomposed into two trees T1 and T2 rooted at r and v,
respectively, in such a way that E(T1)] E(T2) = E(T), V(T1) ∪V(T2) = V(T) and V(T1) ∩V(T2) =
{v} and |V(T1)|, |V(T2)| < 2n/3 + 1. In other words, T1 and T2 are sub-trees that form a balanced
partition of (the edges of) T.

This can be proved via the well-known Tree-Separator Theorem:

Theorem A.1 (Tree-Separator Theorem [21]). For any n-vertex tree T, there is a vertex v ∈ V(T) such
that removing v from T results in a graph where each (connected) component contains at most n/2 vertices.

Proof of Lemma 2.1. The proof follows straightforward from Theorem A.1. We may assume that T
is an out-arborescence rooted at a vertex r. We pick a vertex v as in Theorem A.1 (it could be the
case that v = r). Then we have weakly connected subgraphs of T \ v, say H1, . . . , Hq. It is not hard
to see that each subgraphs Hi, for i ∈ [q], is an arborescence.

We start from T′ = ∅. As long as there is an Hi 6⊆ T′ such that |V(Hi)|+ |V(T′)| < 2n/3, we
add Hi to T′. Let T1 contain v, T′ and the edges between v and T′; let T2 contain v, sub-graphs Hi
that are not in T′, and the edges joining v and these sub-graphs.

It follows from the construction that both T1 and T2 are sub-arborescences of T that have only v
as a common vertex and that T1 ∪ T2 = T. Renaming T1 and T2 in the end of the proof if necessary
so that T1 is rooted at r. Notice that |V(T′)| < 2n/3, implying that V(T1) < 2n/3+ 1. It is sufficient
to show that |V(T′)| > n/3− 1, which will imply V(T2) < 2n/3 + 1 since |V(T′)|+ |V(T2)| = n.

Suppose |V(T′)| < n/3− 1. Then every component Hi not included in T′ must contain more
than n/3 + 1 vertices. So there are at most two such components. Also, there can not be just one
such component since otherwise it has size more than 2n/3 > n/2, a contradiction. So, there are

exactly two components not in T′, and one of them, say Hi, has at most
n− 1− |V(T′)|

2
vertices.

But then |V(T′)|+ |V(Hi)| ≤
n− 1 + |V(T′)|

2
≤ 2n/3− 1 < 2n/3, a contradiction.

Claim 2.2. For some x ∈ SA(P , R) with R ≥ 2, the following statements hold:

(2.2a) xS ≥ xS′ for every S ⊆ S′ ∈
(

[n]
≤ R

)
.

(2.2b) If xi = 1 for some i ∈ [n], then x{i,i′} = xi′ for every i′ ∈ [n].
(2.2c) If every x̂ ∈ P has x̂i ≤ x̂i′ , then x{i,i′} = xi.

Letting x′ be obtained from x by conditioning on some event i ∈ [n], the following holds:
(2.2d) x′i = 1.
(2.2e) x′ ∈ SA(P , R− 1).
(2.2f) If xi′ ∈ {0, 1} for some i′ ∈ [n], then x′i′ = xi′ .

Proof. Let x ∈ SA(P , R) for some R ≥ 2.
(2.2a) Consider the case where S′ = S ∪ {i} for some i /∈ S. Linearizing the constraint xi ≤ 1

multiplied by ∑
i′∈S

xi gives the constraint xS′ ≤ xS.

22

(2.2b) Multiplying 1− xi ≥ 0 and 1− xi′ ≥ 0 and linearizing the product gives the constraint
1− xi − xi′ + x{i,i′} ≥ 0. Then xi = 1 implies xi′ ≤ x{i,i′}. But xi′ ≥ x{i,i′}; thus xi′ = x{i,i′}.

(2.2c) xi ≤ xi′ is implied by the constraints for the basic polytope. Multiplying both sides by xi
and linearizing the constraint gives xi ≤ x{i,i′}; but xi ≥ x{i,i′} by (2.2a). Thus xi = x{i,i′}.

Now, let x′ be obtained from x by conditioning on some event i ∈ [n].

(2.2d) By definition of the conditioning operation, we have x′i =
x{i}∪{i}

xi
=

xi

xi
= 1.

(2.2e) x′∅ =
x∅∪{i}

xi
=

xi

xi
= 1. (1) on x′ for j, S and T is implied by (1) on x for j, S ∪ {i} and T.

(2.2f) If xi′ = 0, then x′i′ =
x{i′,i}

xi
= 0 since x{i′,i} ≤ xi′ = 0. Consider the case xi′ = 1. Prop-

erty (2.2b) says x{i,i′} = xi, implying x′i′ =
x{i,i′}

xi
= 1.

B Missing Proofs from Section 3

Claim 3.2. τ∗ is a full binary decomposition tree of height O(log k) and cost opt that involves all vertices
in K. Moreover, for every v ∈ K, there is exactly one leaf β of τ∗ with tail(eβ) = v.

Proof. Clearly, τ∗ is a full binary tree. It has depth O(log k) since |V(T∗)| ≤ 2k and the size of
|V(T)| goes down by a constant factor in each level of the recursion for cstr-opt-dcmp-tree. It
is easy to see that (eβ)β is leaf of τ∗ is a 1-to-1 mapping from leaves of τ∗ to E(T∗), where an edge
(u, v) ∈ E(T∗) corresponds to a leaf β of τ∗ with eβ = (u, v). This holds as E(T1) and E(T2)
produced in Step 4 form a partition of E(T), and in Step 1 the leaf-node β created has eβ = (u, v).
Thus, cost(τ∗) = ∑

β a leaf of τ∗
c(eβ) = ∑

e∈E(T∗)
c(e) = opt. Since every terminal v ∈ K has in-degree

exactly 1 in T∗, there is exactly one leaf β ∈ V(τ∗) with tail(eβ) = v. In particular, all terminals in
K are involved in τ∗.

A simple observation is that any tree τ∗ returned by the procedure cstr-opt-dcmp-tree(T) will
have µroot(τ) = root(T). Properties (3.1a) and (3.1b) hold trivially. Thus, to show that τ∗ is indeed
a decomposition tree, it suffices to prove Property (3.1c).

Focus on a node α created in Step 3 in some recursion of cstr-opt-dcmp-tree; we shall prove
Property (3.1c) for this α. Focus on the moment before we return the tree in Step 6 in the recursion.
Let α1 = root(τ1) and α2 = root(τ2) be the two children of α. Then we have µα1 = root(T1) =
root(T) = µα and µα2 = root(T2). If root(T2) = root(T), then µα2 = µα and there is nothing
to prove. Thus, we assume root(T2) 6= root(T). Then root(T2) ∈ V(T1), and it has exactly one
incoming edge in T1. By our construction, there will be a leaf node β ∈ V(τ1) with eβ being the
edge and thus tail(eβ) = root(T2). So µα2 = root(T2) is involved in τ1. Thus, Property (3.1c)
holds.

Lemma 3.3. Given a decomposition tree τ that involves all terminals in K, we can efficiently construct a
directed Steiner tree T in G connecting r to all terminals in K with cost at most cost(τ).

Proof. We simply let T contain the edges eα for all leaves α of τ. Then the cost of T is exactly
cost(τ). We shall show that T contains a path from r to every terminal v ∈ K. At the end of the
proof, we can remove edges in T so that T forms an out-arborescence rooted at r.

23

Given a node α of τ, let Hα := (V, {eβ : β is a leaf of τ[α]}). We will show the following:

For every α ∈ V(τ), Hα contains a path from µα to every vertex v involved in τ[α]. (*)

Since E(T) = E(Hroot(τ)), µroot(τ) = r and every terminal v ∈ K is involved in τ, applying (*) to
root(τ) gives that T contains a path from r to every terminal in K, which finishes our proof.

We prove (*) by induction from the bottom to the top of the tree τ. If α is a leaf, then Hα contains
the edge eα, only head(eα) and tail(eα) are involved, and µα = head(eα). Thus, (*) holds.

Now consider an internal node α in τ, and assume (*) holds for every child α′ of α. Focus
on any vertex v involved in τ[α]. If v = µα, then trivially there is a path from µα to v in Hα.
Otherwise, v = tail(eβ) for some leaf β of τ[α]. Let α2 be the child of α such that β ∈ V(τ[α2]). By
induction hypothesis, there is a path from µα2 to v in Hα2 . If µα2 = µα, there is a path from µα to v
in Hα2 ⊆ Hα. Otherwise, by Property (3.1c), there is a child α1 of α such that µα1 = µα and µα2 is
involved in τ[α1]. By induction hypothesis, there is a path from µα = µα1 to µα2 in Hα1 . Since Hα

contains both Hα2 and Hα1 , there is a path from µα to v in Hα. So, (*) holds.

Claim 3.6. T0 is a rooted tree with nO(log2 k/ log log k) vertices and height O(h̄/g) = O(log k/ log log k),
where n = |V(G)|.

Proof. The height of T0 is easily seen to be O(h̄/g) = O(log k/ log log k). The number of children of
a p-node is dominated by the number of different twigs with a specific µ value for the root. This is
at most 22g · n2·2g ≤ n2g+2

= nO(log k). 4 The number of children of a q-node is at most 2g = O(log k).

Thus, the number of nodes in T0 is at most
(
(log k)nO(log k)

)O(log k/ log log k)
= nO(log2 k/ log log k).

Lemma 3.7. T∗ is a label-consistent sub-tree of T0 with cost exactly cost(τ∗) = opt. Moreover, all global
labels in K are supplied by T∗.

Proof. We define a collapsing operation over a rooted tree T as follows. Given an internal node in
T with exactly one child, collapsing the node means removing the node and directly connect its
child to its parent. If the node is the root of T, we then simply remove the root. It is easy to see
that T∗ satisfies the following properties:

(A1) Every p-node in T∗ has exactly one child which is a q-node.
(A2) If a q-node is in T∗, then all its children in T0 are in T∗.
(A3) Let T̃ be the tree obtained from T∗ by collapsing all p-nodes. Then T̃ is isomorphic to H:

replacing each node q in T̃ with ηq gives H.

With this correspondence, it is obvious that cost(T∗) = cost(τ∗) = opt: this holds since the
cost of a q node is exactly the total cost of leaves of τ∗ that are in ηq. We then show that T∗ is indeed
label-consistent. Notice that each p-node in T∗ has exactly 1 child in T∗, and so the demand label
for a p-node is satisfied. For a node q in T∗, all the demand labels added to dem(q) in Loop 6 are
satisfied since all children of q are included in T∗.

Now focus on a label `′ added to dem(q) in an iteration of Loop 12; let η, α, α1, α2 be the values
of the correspondent variables in the end of the iteration. Since we assumed a label `′ was created

4We first describe the shape of the tree. The perfect binary-tree of depth g contains 2g − 1 internal nodes we just
need to specify whether each internal node has children or not. Now each node can have n2 different choices for its µ
and e values.

24

and added to dem(q) in this iteration, we have µα2 6= µα. As τ∗ is a valid decomposition tree,
there is a leaf β′ of τ∗[α1] such that tail(eβ′) = µα2 . If this leaf β′ is in η then it is in η[α1]; in this
case the label `′ can not be created. So, β′ is not in η, which means there is a leaf β of η[α1] with eβ

undefined, a twig η′ ∈ H[η] with β′ being a leaf of η′. By the correspondence between T∗ and H
in (A3), there is a leaf β in η[α1] with eβ undefined, and a node q′ ∈ V(Tq

β) ∩ V(T∗) such that ηq′

contains a leaf β′ with eβ′ defined and tail(eβ′) = µα2 . Thus, the label `′ will be satisfied by this q′.
Finally, all the global demand labels K are provided by T∗: for every terminal v, τ∗ contains a

leaf β with tail(eβ) = v this β will appear in some twig η and the node q with ηq = η will provide
the label v.

Lemma 3.8. Given any feasible solution T to the LCST instance T0, in time poly(|V(T)|) we can con-
struct a decomposition tree τ with cost(τ) = cost(T). Moreover, if a global label v ∈ K is supplied by T,
then τ involves v.

Proof. We pick the twigs ηq over all nodes q in T. For a technical issue, we also pick a singular
root-twig α with µα = r. Then our decomposition tree τ is constructed by taking the collection C
of twigs we picked, identifying some pairs of nodes in these twigs naturally. We shall make sure
that when we identify two nodes, they will have the same µ-value and they do not have e values.

Focus on a node p in T. Let q be the parent of p and β be the leaf of ηq such that p = root(Tq
β); If

p = root(T0), then q is not defined and we let β be the node in the root-twig. Then for every child
q′ of p in T, we identify root(ηq′) with β. Clearly we have µroot(ηq′)

= up = µβ. eβ is not defined

since otherwise Tq
β does not exist. eroot(ηq′)

is not defined either since ηq′ is a non-singular twig.
This finishes the construction of τ. We need to show that τ is a decomposition tree. root(τ) is

the root of the root-twig and thus we have µroot(τ) = r. For each leaf node β with eβ undefined in
any twig ηq in our collection C, p := root(Tq

β) must be in T as all children of q should be in T in
order to make it label-consistent. The label for p must be satisfied by one of its children. Thus we
must have identified β with the root of some non-singular twig in C. Thus e values are defined for
exactly the set of leaves of τ. Clearly, for a leaf β′ of τ we have µβ′ = head(eβ′); so Property (3.1b)
also holds.

We then prove Property (3.1c) for an internal node α of τ, and a child α2 of τ such that µα2 6= µα.
The edge (α, α2) must be in ηq for some q in T. Let α1 be the other child of α in ηq. So, we have
µα1 = µα by the definition of a twig. If there is a leaf β of ηq[α1] with eβ defined and tail(eβ) = µα2 ,
then Property (3.1c) holds for this α and α2. Otherwise in the iteration of Loop 12 in cstr-label-tree
for this α, α1 and α2, we have created a label `′. In order for this `′ to be satisfied, there must be
a leaf β of ηq[α1] with eβ undefined, and a twig η′ ∈ H[ηq] that contains a leaf β′ with eβ′ defined
and tail(eβ′) = µα2 . Thus this β′ will be a leaf node of τ[α1]; thus Property (3.1c) holds.

The cost of T is exactly cost(τ) since every q-node of T is correspondent to a twig ηq with cost
being the cost of leaves in ηq. If a global demand label v ∈ K is provided by T∗, then some node
q with ηq containing a leaf β with tail(eβ) = v will be in T, and our τ will contain the leaf β and
thus v will be involved in τ.

C Hardness of DST for the Class of Quasi-Polynomial-Time Algorithms

In this section, we present the hardness result for the Directed Steiner Tree problem for the class
of quasi-polynomial-time algorithms.

25

Our hardness result is a refinement of the hardness construction of Halperin and Krauthgamer
[18]. To avoid repeating all the proofs in [18], it suffices for us to consider the size of the construc-
tion. It is worth remarking that the hardness result of Halperin and Krauthgamer is designed for
an instance of the group Steiner tree problem (GST) on a tree. To be formal, GST is defined as follows.

Definition C.1. In GST, we are given an n-vertex undirected graph G with edge-costs, a root
vertex r and a collection of subsets S1, . . . , Sk of vertices (groups); the goal is to find a minimum-
cost subgraph that contains a path from the root to at least one vertex of each group.

It can be seen that GST is a special case of DST. One can reduce GST to DST by first making G
bi-directed by making two copies for each of G, one for each direction, and then add a terminal
ti, for each group Si, with zero cost edges directed from every vertex of Si to ti. Thus, we will
focus on the construction and the size of the tree constructed in [18]. The parameter that we are
interested in is the number of the group (as we claim the lower bound of Ω(log2 k/ log log k)).

The starting point of the reduction is the Label-Cover problem defined below.

Definition C.2 (Label-Cover (a.k.a. Projection Game)). Let G = (U, W; E) be a bipartite (directed)
graph on n vertices and m edges. Let Σ be a set of labels (or alphabet). Each edge (u, w) ∈ E
(where u ∈ U and w ∈ W) of the graph G is associated with a projection πuw : Σ → Σ. A labeling
f is an assignment f : U ∪W → Σ that assigns one label from Σ to each vertex of G. The labeling f
is said to cover an edge (u, w) ∈ E(G) if πuw(f (u)) = f (w). The goal in the Label-Cover problem
is to find a labeling that covers the maximum number of edges.

To the best of our knowledge, the hardness factor log2−ε) k, for any ε > 0, is the best one could
prove under the standard assumption NP 6⊆ ZPTIME(npolylog(n)). To show a strong hardness,
we need to assume a strongly: (1) The Exponential-Time Hypothesis (ETH) for k-SAT and (2) The
Projection Games Conjecture.

Hypothesis C.3 ((randomized) Exponential-Time Hypothesis for k-SAT). For any constant k > 0,
there exists a constant ck such that k-SAT admits no (randomized) 2ckn-time algorithm. In particular, there
is no 2o(n)-time algorithm that solves SAT.

Hypothesis C.4 (Projection Games Conjecture [29]). There exists a constant c > 0 such that, for every
ε > 1/nc, a SAT instance φ on input of size n can be efficiently reduced to a Label-Cover instance on a
poly(1/ε)-regular bipartite graph with n1+o(1) veritces over a set of label of size poly(1/ε) in such a way
that
• Yes-Instance: If φ is satisfiable, then there exists a labeling that covers all the edges of G.
• No-Instance: If φ is not satisfiable, then there exists no labeling that covers more than ε fraction of

the edges of G.

Combining the two hypotheses, we may assert that, for any 1 < ε ≤ c (for c from Hypoth-
esis C.4), there is no 2nε

-time algorithm that approximates the Label-Cover problem to within a
factor of nε. In fact, we do not need the full power of ETH and may weaken the assumption as
below.

Hypothesis C.5 (ETH for Projection Games). Unless NP ⊆ ∩ε>0ZPTIME(2nε
), there exists a constant

0 < ε∗ such that, for any constant 0 < ε ≤ ε∗, there exist constants cε, dε and δε ≤ ε depending on ε such
that, the Label-Cover problem on a ndε -regular bipartite graph G with n vertices and a set of labels of size
ncε admits no 2nδε -time algorithm that distinguishes the following two cases:

26

• Yes-Instance: There exists a labeling that covers all the edges of G.
• No-Instance: There exists no labeling that covers more than 1/nε fraction of the edges of G.

In particular, the Label-Cover problem admits no 2nδε -time nε-approximation algorithm for any 0 < ε ≤ ε∗

unless every NP problem admits a randomzied algorithm that runs in time 2no(1)
.

Applying Hypothesis C.5 to the proof in [18] with slightly different parameters setting imme-
diately gives us the approximation hardness of Ω(log2 k/ log log k) for the directed Steiner tree
problem. To avoid overwhelming readers with too much information (and avoid repeating the
proof in [18]), we re-state the reduction in [18] as below.

Theorem C.6 ([18]). Consider an instance ψ of the Label-Cover problem on a ∆-regular n-vertex bipartite
graph with a set of labels Σ of size σ. For any parameter 1 ≤ h ≤ O(log2 n), there exists a randomized
reduction from ψ to an instance of the Group Steiner Tree problem on a tree T with costs on edges and with
k groups such that |V(T)| = (σn)h and k = ∆nh. Moreover, with high probability, the following holds:
• Yes-Instance: If there exists a labeling that covers all the edges of G, then there exists a feasible

solution T′ ⊆ T to the Group Steiner Tree problem with cost(T′) = h2.
• No-Instance: If there is no labeling that covers more than γ fraction of the edges of G, then every

feasible solution T′ ⊆ T to the Group Steiner Tree problem must have cost at least cost(T′) ≥
min{γ−1/2h, Ω(h log k)}.

We will now prove our hardness result, which can be considered as a corollary of Theorem C.6.

Theorem C.7. Suppose Hypothesis C.5 is true, i.e., NP 6⊆
⋂
ε>0

ZPTIME(2nε
) and the Projection Games

Conjectures holds. Then there exists no quasi-polynomial-time algorithm for the Directed Steiner Tree
problem on a graph with N vertices (resp., the Group Steiner tree problem on a tree with N vertices) that
yields an approximation ratio of o(log2 k/ log log k) or o(log2 N/ log log N).

Proof. Let h be a parameter as in Theorem C.6 (which we will specify later). We first take an
instance of the Label-Cover problem on a bipartite graph G = (U, W; E) on n vertices and with
the set of labels Σ from Hypothesis C.5. Thus, we have an instance of the Label-Cover problem
with parameter ∆ = ndε (which is the degree of G) and the set of labels of size σ = ncε , and
γ = 1/nε. (The parameter γ is usually called the soundness error in literature.)

Now we choose the parameter h = nz, for some constant 0 < z < 1, that will be specified later.
Observe that

k = ∆nh =⇒ log k = h · log(∆ · n) = h · (log ∆ + log n) = h ·Θ(log n) =⇒ h =
log k

Θ(log n)

Moreover, it is not hard to see that log n = Θ(log log k) because

k = ∆nh = nh+dε = 2(n
z+dε) log2 n =⇒ log log k = Θ(log n)

Therefore, we have the hardness gap of Ω(log2 k/ log log k) as claimed. Observe that log |V(T)| =
Θ(log k). Thus, we have the same hardness gap for both in terms of k and that of N = |V(T)|.

Next we prove the running-time lower bound. Assume for a contrary that there exists an
algorithm for GST on the tree T that runs in time O(|V(T)|logζ |V(T)|), for some constant ζ > 0, and

27

yields approximation guarantee o(log2 k/ log log k). Then by setting z < δε/(3ζ), we would have
an algorithm that runs in time

O(|V(T)|logζ |V(T)|) = O(((σn)h)(h log(σn))ζ
) = O((σn)(h

2 log(σn))ζ
) = 2(O(h2 log2(σn)))ζ

= 2(O(h log(σn))2ζ
= 2(O(nδε/(3ζ) log(n1+cε))2ζ

< 2nδε

This running time contradicts the statement of Hypothesis C.5.

D Hardness of the Label-Consistent problem on General Graphs

This section provides the proof for the hardness of the generalization of the Label-Consistent Sub-
tree problem to general graphs, which we may call the Label-Consistent Subgraph problem (LCSG).

Definition D.1. In LCSG, the input is an undirected graph G = (V, E) with vertex (or edge) costs
with a root vertex r, a set of labels L and a set of global labels K ⊆ L. Each vertex of G is associated
with a demand function dem(v) ⊆ L and a service function ser(v) ⊆ L. The goal in LCSG is to
find a minimum-cost subgraph H ⊆ G such that the following two properties hold:
• For every global label t ∈ K, there is a path from r to t in H.
• For every vertex v ∈ V(H) and every label ` ∈ dem(v), there exists a path from v to a vertex

w with ` ∈ ser(v).

We will now show that LCSG is at least as hard as the minimum Label-Cover problem. The
definition of the minimum Label-Cover problem is slightly different from that of the (maximum)
Label-Cover problem; here we are allowed to assign multiple labels to each vertex, but we have
to cover all the edges. The formal definition of the minimum Label-Cover problem is defined as
below.

Definition D.2 (Minimum Label-Cover (a.k.a. Min-Rep [23]). Let G = (U, W; E) be a bipartite
(directed) graph on n vertices and m edges. Let Σ be a set of labels (or alphabet). Each edge
(u, w) ∈ E (where u ∈ U and w ∈W) of the graph G is associated with a projection πuw : Σ→ Σ. A
multi-labeling f is an assignment f : U ∪W → 2Σ that assigns a set of labels from Σ to each vertex
of G. The multi-labeling f is said to cover an edge (u, w) ∈ E(G) if there exists a label a ∈ f (u) and
b ∈ f (w) such that πuw(f (u)) = f (w). The cost of the multi-labeling f is ∑

v∈U∪W
| f (v)|. The goal in

the Label-Cover problem is to find a multi-labeling with minimum-cost that covers all the edges.

We remark that the standard hardness of the Label-Cover problem is between the case that the
optimal solution is a labeling versus the case that the optimal solution is a multi-labeling.

Theorem D.3 (Hardness of the Label-Consistent problem on General Graphs). There exists a polynomial-
time reduction from an instance ψ of the Label-Cover problem on a bipartite graph G = (U, W; E) with n
vertices, m edges and with the set of labels Σ to an instance I of the Label-Consistent Subgraph problem on
a graph G′ on a set of label L′ of size m + Σ. Moreover, the following holds.
• Yes-Instance: Suppose there is a labeling f that covers all the edges of G, then there exists a solution

to the instance I of LCSG with cost n.
• No-Instance: Suppose there is no multi-labeling f with cost γn that covers all the edges of G, then

any feasible solution to the instance I of LCSG must have cost at least γn.

28

In particular, LCSG is at least as hard as the Label-Cover problem with perfect completeness.

Proof. First, take an instance of the Label-Cover problem consisting of a graph G = (U, W; E) with
the constraints πuw on edges (u, w) ∈ E(G) and a set of label L. We first construct a graph G′ by
adding a root vertex r. Then we add to G′ a set of vertices U′ = {ua : u ∈ U, a ∈ L} and W ′ =
{wb : w ∈ W, b ∈ L}. For each vertex u ∈ U (resp., w ∈ W), we denote by U′(u) = {ua : a ∈ L}
(resp., W ′(w) = {wb : b ∈ L}) the set of vertices corresponding to a vertex u (resp., w) in G.

We add edges joining r to every vertex of U′, and we add an edge uawb to G′ if (u, w) ∈ E(G)
and πuw(a) = b. We set cost of each vertex in U′ ∪W ′ to be one.

Now we define the set of labels of the instance I of LCSG. Let the set of all labels be L =
(U ∪W ′) ∪ Σ, and the set of global labels be K = U. We assign the service label ser(ua) = {u}
and the demands dem(ua) = {wb ∈ W ′ : (u, w) ∈ E(G) ∧ πuw(a) = b}, for all vertices ua ∈ U′.
Next we assign the service labels dem(wb) = {wb}, for all vertices wb ∈ W ′; these vertices have
no demands (i.e., dem(wb) = ∅). This completes the construction.

Completeness. Suppose there is a labeling f that covers all the edges of G. Then we choose the
root vertex r, all the vertices ua ∈ U′ such that f (u) = a, and all the vertices wb ∈ W ′ such that
f (w) = b. We denote such a subgraph by H′ ⊆ G′. By feasibility of f , we know that, for every
vertex ua ∈ V(H′) and for every edge (u, w) ∈ E(G), there exists a vertex wb ∈ V(H′) such
that πuw(a) = b; moreover, by construction, H′ must contain a path (r, ua, wb). Consequently, for
every global label u ∈ K, the graph H′ has an r, ua-path, for a = f (u), and for every demand
label wb ∈ dem(ua), we have a ua, wb-path (which is just a single edge). Thus, the graph H′ is
label-consistent and must be a feasible solution to the LCSG instance I with the same cost as f .

Soundness. Suppose there is no multi-labeling of cost less than γn that covers all the edges of
G. Then we claim that every feasible solution to the instance I of LCSG must have cost at least
γn. Suppose to a contrary that there exists a subgraph H′ ⊆ G′ that is feasible to the instance I of
LCSG, but H′ has cost less than γn. Then we can obtain a feasible multi-labeling f by assigning
f (u) = V(H′)∩U′(u), for all u ∈ U, and f (w) = V(H′)∩W ′(w), for all w ∈W. We know that, for
every vertex ua ∈ V(H′) and for all edges (u, w) ∈ E(G), H′ must contain a ua, wb-path such that
b = fuw(a). This means that a ∈ f (u), b ∈ f (w) and that fuw(a) = b, for every edge (u, w) ∈ E(G),
i.e., f covers all the edges of G. It is not hard to see that f has the same cost as H′, i.e., f has cost
less than than γn. But, this is a contradiction since any multi-labeling that covers all the edges of
G must have cost at least γn.

29

	Introduction
	Our Results and Techniques
	Comparison to Previous Work
	Related Work

	Preliminaries
	Reducing Directed Steiner Tree to Label-Consistent Subtree
	Decomposition Trees
	Construction of LCST Instance

	Approximation Algorithm for Label-Consistent Subtree
	Redefining the LCST Problem
	Basic LP Relaxation
	Rounding a Lifted Fractional Solution

	Discussion and Open Problems
	The Missing Proofs from sec:prelim
	Missing Proofs from sec:reduction
	Hardness of DST for the Class of Quasi-Polynomial-Time Algorithms
	Hardness of the Label-Consistent problem on General Graphs

