
Approximation algorithms for minimum-cost k-(S, T) connected
digraphs

J. Cheriyan ∗ B. Laekhanukit †

January 28, 2012

Abstract

In the minimum-cost k-(S, T) connected digraph (abbreviated, k-(S, T) connectivity) problem we
are given a positive integer k, a directed graph G = (V,E) with non-negative costs on the edges, and
two subsets S, T of V ; the goal is to find a subset of edges Ê of minimum cost such that the subgraph
(V, Ê) has k edge-disjoint directed paths from each vertex in S to each vertex in T .

Most of our results focus on a specialized version of the problem that we call the standard version,
where every edge of positive cost has its tail in S and its head in T . This version of the problem
captures NP-hard problems such as the minimum-cost k-vertex connected spanning subgraph problem.
We give an approximation algorithm with a guarantee of O((log k)(log n)) for the standard version of
the k-(S, T) connectivity problem, where n denotes the number of vertices. For k = 1, we give a simple
2-approximation algorithm that generalizes a well-known 2-approximation algorithm for the minimum-
cost strongly connected spanning subgraph problem. For k = 2, we give a 3-approximation algorithm.

Besides the standard version, we study another version that is intermediate between the standard
version and the problem in its full generality. In the relaxed version of the (S, T) connectivity problem,
each edge of positive cost has its head in T but there is no restriction on the tail. We study the relaxed
version with the connectivity parameter k fixed at one, and observe that this version is at least as hard to
approximate as the directed Steiner tree problem. We match this by giving an algorithm that achieves an
approximation guarantee of α(n) + 1 for the relaxed (S, T) connectivity problem, where α(n) denotes
the best approximation guarantee available for the directed Steiner tree problem. The key to the analysis
is a structural result that decomposes any feasible solution into a set of so-called junction trees that are
disjoint on the vertices of T . Our algorithm and analysis specialize to the case when the digraph is acyclic
on T , meaning that there exists no dicycle that contains two distinct vertices of T . In this setting, we
show that the relaxed (S, T) connectivity problem is at least as hard to approximate as the set covering
problem, and we prove that our algorithm achieves a matching approximation guarantee of O(log |S|).

Keywords: approximation algorithms, graph connectivity, network design, k-vertex connected spanning
subgraphs, rooted connectivity, directed Steiner tree.

MSC codes: 05C20, 05C21, 05C40, 05C85, 68W25, 90C27, 90C35

Abbreviated title: APPROXIMATION ALGORITHMS FOR k-(S, T) CONNECTIVITY

∗Dept. of Comb. & Opt., U. Waterloo, Waterloo ON Canada N2L 3G1. Email: jcheriyan@uwaterloo.ca
†Dept. of Computer Science, McGill University, Montreal QC Canada Email: blaekh@cs.mcgill.ca

1

1 Introduction

1.1 The model of k-(S, T) connectivity

We introduce a model for NP-hard problems pertaining to the connectivity of graphs. One of the well-
known NP-hard problems is to find a minimum-cost strongly connected spanning subgraph of a directed
network. In the minimum-cost k-(S, T) connected digraph (abbreviated, k-(S, T) connectivity) problem we
are given an integer k ≥ 0, a directed graph G = (V,E0∪E) with positive costs on the edges in E, and two
subsets S, T of V ; we may assume that each edge in E0 has zero cost. We use n to denote the number of
vertices. The goal is to find a subset of edges Ê ⊆ E of minimum cost such that the subgraph (V,E0 ∪ Ê)
has k edge-disjoint directed paths (abbreviated, dipaths) from each vertex in S to each vertex in T . When
k = 1 and S = T = V , we get the minimum-cost strongly connected spanning subgraph (abbreviated,
SCSS) problem.

We call E the set of augmenting edges, and we call G0 = (V,E0) the initial digraph. The vertices in
V − (S ∪ T) are called optional. The initial digraph G0 = (V,E0) can be arbitrary. Throughout, we use n
andm to denote the number of vertices and the number of edges, respectively. We use opt to denote the cost
of an optimal solution, and we use E∗ to denote the set of edges in an (fixed, arbitrary) optimal solution.
When k = 1 we drop the connectivity parameter k and refer to our problem as (S, T) connectivity.

Our model of k-(S, T) connectivity, in its full generality, is at least as hard for approximation as the
label-cover problem, even when the connectivity parameter k is one. There is a simple reduction from the
directed Steiner network (a.k.a. directed Steiner forest) problem, see Proposition 1, and it is well known that
the latter problem is at least as hard as the label-cover problem, see [1], [34, Corollary 16.39].

Rather than focusing on this general version of the problem, most of our results focus on a specialized
version that we call the standard version, where every edge of positive cost has its tail in S and its head in
T . This version of the problem captures NP-hard problems such as the minimum-cost k-edge connected
spanning subgraph (abbreviated, k-ECSS) problem and the minimum-cost k-vertex connected spanning sub-
graph (abbreviated, k-VCSS) problem, which have been extensively studied in the area of approximation
algorithms for almost two decades yet there are significant problems left open. Moreover, this version of
the problem generalizes the special case of the directed subset k-connectivity problem where every edge
of positive cost has both endvertices in the set of terminals. We call it the standard version because a still
further specialization of it was introduced and studied by Frank and Jordan more than fifteen years ago
[15]. Part of their motivation was to extend their famous min-max theorem giving an optimal characteri-
zation for the vertex-connectivity augmentation problem on directed graphs to the more general setting of
the k-(S, T) connectivity augmentation problem, where every edge from S to T is present and has unit
cost. Thus the model introduced and studied in [15] is polynomial-time solvable; subsequently, improved
algorithms were presented by [33]. Moreover, [15] proves min-max results for some of these problems. To
the best of our knowledge, the minimum-cost version of the k-(S, T) connectivity augmentation model of
[15] has not been studied before. We mention that all of the problems studied in this paper are on digraphs,
thus k-VCSS and k-ECSS denote problems on digraphs; some of the literature studies similar problems on
undirected graphs; it can be seen that an approximation guarantee of ρ for the k-VCSS problem on digraphs
implies an approximation guarantee of 2ρ for the k-VCSS problem on undirected graphs; the same holds
for the k-ECSS problem.

One of our results is an approximation algorithm with a guarantee of O((log k)(log n)) for the standard
version of the k-(S, T) connectivity problem. Observe that any approximation guarantee for the min-cost
k-(S, T) connected digraph problem implies the same approximation guarantee for the k-VCSS problem.

1

We do not improve on the best known approximation guarantee for the latter problem, which is O(log k ·
log(n

n−k)) [26]. Our algorithm is based on an algorithmic paradigm that we call the halo-set method; it was
used previously in [9], building on previous work by [24], and others. Recently, Nutov [28, Theorem 1.1]
applied it to the problem of covering a crossing biset family by a set of edges of minimum cost, to get an
O(log n) approximation algorithm.

An immediate question is whether our approximation guarantee for k-(S, T) connectivity is optimal,
or (more realistically) whether the approximation guarantee can be improved substantially. For k = O(1),
note that our approximation guarantee is O(log n). It is not clear whether there exists a logarithmic (in n)
hardness threshold for k = O(1). For k = 1, we give a simple 2-approximation algorithm that generalizes a
well-known 2-approximation algorithm of [17, 21] for the SCSS problem. But already for k = 2, there are
substantial difficulties. We give a 3-approximation algorithm in Section 4; the algorithm is simple, but the
analysis is nontrivial. We could not find any simple way to achieve an approximation guarantee of O(1) for
the 2-(S, T) connectivity problem.

Besides the standard version, we study another version that is intermediate between the standard version
and the problem in its full generality (which is label-cover hard). In the relaxed version of the (S, T) con-
nectivity problem, each edge of positive cost has its head in T but there is no restriction on the tail. We study
the relaxed version with the connectivity parameter k fixed at one, and observe that this version is at least
as hard to approximate as the directed Steiner tree problem. The latter problem has a hardness threshold
of Ω(log2−ε n) assuming that NP is not contained in ZPTIME(npolylog n) [19]. Let α(n) denote the best
approximation guarantee available for the directed Steiner tree problem; the results of [3, 20] show that
an approximation guarantee of O(log3 n) can be achieved in time (nO(logn)). We give an algorithm that
achieves an approximation guarantee of α(n) + 1 for the relaxed (S, T) connectivity problem. The key
to the analysis is a structural result that decomposes any feasible solution into a set of junction trees that
are disjoint on the vertices of T ; in fact, each vertex of T appears in exactly one of these junction trees.
(See [7, 4] for other applications of junction trees.) Our algorithm and analysis specialize to the case when
the digraph is acyclic on T , meaning that there exists no dicycle that contains two distinct vertices of T .
In this setting, we show that the relaxed (S, T) connectivity problem is at least as hard to approximate as
the set covering problem, and we prove that our algorithm achieves a matching approximation guarantee of
O(log n).

In brief, the model of k-(S, T) connectivity captures several of the keystone problems in the area of ap-
proximation algorithms for network design, such as the SCSS problem and its extensions to k-edge connec-
tivity, the k-VCSS problem (Section 5.1), the directed Steiner-tree problem (Proposition 1), the set covering
problem (Theorem 5), and the directed Steiner network problem (Proposition 1). Despite this versatility,
the model is amenable to simple algorithmic schemes that give state-of-the-art approximation guarantees;
meaning that the approximation guarantees are almost as good as those for the well-studied studied special
cases.

Figure 1 summarizes the model via the three versions of k-(S, T) connectivity by illustrating some of
the key NP-hard problems in network design captured by it.

Many of the results of this paper were first presented in the second author’s thesis [25]. We mention that
many other types/models of connectivity problems have been studied from the perspective of approximation
algorithms [6, 11, 27], etc., but we restrict most of our discussion to the literature that connects directly to
our model.

2

SCP(set.covering) k=1, acyclic on T

k!(S,T) conn. general: E V V

k!(S,T) conn. relaxed: E V T

k!(S,T) conn. standard: E S T

k!VCSS k!ECSS

SCSS k=1

DSN(dir.Steiner.network) k=1

DST(dir.Steiner.tree) k=1

Figure 1: An illustration of the model of k-(S, T) connectivity, showing some of the key NP-hard problems
in network design captured by it.

1.2 Frank’s algorithm for rooted connectivity

Frank (see [16, 12, 13, 14]) gave polynomial-time algorithms and min-max theorems for finding a min-cost
“rooted out-subgraph”. More precisely, Frank’s results focus on the special case of the min-cost (S, T) con-
nectivity problem where S consists of a single vertex, called the root, and every augmenting edge has its
head in T , that is, (v, w) ∈ E =⇒ w ∈ T . Note that the restriction on E is critical; without this restriction,
the directed Steiner tree problem would be a special case of this problem.

We stress that Frank’s results (see Theorem 9) immediately give an approximation guarantee of min{|S|, |T |}
for the k-(S, T) connectivity problem. The main point of the results in our paper is to obtain substantial
improvements on this approximation guarantee. (We have no results of our own on the problems addressed
by Frank.)

1.3 Summary of results on k-(S, T) connectivity

This subsection summarizes our results in the model of k-(S, T) connectivity, see Sections 3–6. These
results are proved under the assumption that the sets S and T are disjoint; this is without loss of generality,
see Proposition 7.

Proposition 1. Consider the k-(S, T) connectivity problem with the connectivity parameter k equal to one.
The hardness of approximation of the problem depends on the version of the problem (and thus on the
restrictions on the augmenting edges).

(1) The standard (S, T) connectivity problem is at least as hard as the SCSS problem.

(2) The relaxed (S, T) connectivity problem is at least as hard as the directed Steiner tree problem.

(3) The (S, T) connectivity problem (without any restrictions on the augmenting edges) is at least as hard
as the directed Steiner network problem.

3

We have (almost) matching approximation guarantees for the first two versions.
The next result gives a 2-approximation algorithm for the standard (S, T) connectivity problem, and the

details are given in Section 3. Note that no approximation guarantee better than 2 is known for the SCSS
problem which is a special case of our problem (standard (S, T) connectivity), although the former problem
(SCSS) has been studied for almost two decades.

Theorem 2. Consider the standard version of the (S, T) connectivity problem; thus k = 1. There is a
2-approximation algorithm that runs in polynomial time.

The next result addresses the 2-(S, T) connectivity problem; the details are in Section 4. For the special
case of the 2-VCSS problem, the best approximation guarantee known is 3 [23].

Theorem 3. Consider the standard version of the 2-(S, T) connectivity problem. There is a 3-approximation
algorithm that runs in polynomial time.

The next result addresses the standard version of the k-(S, T) connectivity problem; the details are
in Sections 5. For the special case of the k-VCSS problem, the best approximation guarantee known is
O(log k · log(n

n−k)) [26].

Theorem 4. There is a polynomial-time approximation algorithm for the standard version of the min-cost
k-(S, T) connected digraph problem that achieves a guarantee of O(log k · log n).

The next result gives an almost tight approximation guarantee for the relaxed version of the (S, T) con-
nectivity problem, where each augmenting edge has its head in T but the tail is unrestricted. The guarantee
is tight up to an additive term of one. Moreover, we have some results on the relaxed (S, T) connectivity
problem on a restricted class of digraphs. These results are proved in Section 6.

Theorem 5. Consider the relaxed k-(S, T) connectivity problem with the connectivity parameter k equal to
one.

(1) There exists a (α(n) + 1)-approximation algorithm, where α(n) denotes the (best available) ap-
proximation guarantee for the directed Steiner tree problem. In particular, there is an O(log3 n)-
approximation algorithm that runs in quasi-polynomial time.

(2) Consider the special case of the problem where the given digraphG is acyclic on T . This problem is at
least as hard as the set covering problem. Moreover, there is an O(log |S|)-approximation algorithm
that runs in polynomial time.

2 Preliminaries

Most of our notation and terms are standard, see e.g., Schrijver [31]. When we say that two sets S1, S2
intersect (or, are intersecting), then we mean that S1 ∩ S2 is nonempty. We call a directed graph a digraph,
and call a directed path a dipath. Suppose that G = (V,E) is a graph or digraph that is an input for our
problem instance; then we use n to denote |V |,m to denote |E|, and, when stating running times, we assume
m = Ω(n). By an edge we mean an arc (directed edge) of a digraph, as well as an undirected edge of a graph.
For a set of nodesU and a set of edgesF of a digraph, δoutF (U) denotes the set of edges inF with tail inU and
head not in U , thus, δoutF (U) = {(v, w) ∈ F : v ∈ U, w ∈ V − U}, and doutF (U) denotes the size of this
set, |δoutF (U)|; δinF (U) and dinF (U) are defined similarly. Given two vertices s, t, an s, t dipath means a dipath

4

with start-vertex s and end-vertex t. Given a digraph G = (V,E) and two sets of vertices S, T ⊆ V , we
use (S, T) connectivity to mean the minimum over all pairs s ∈ S, t ∈ T of the maximum number of edge-
disjoint s, t dipaths; by Menger’s theorem, this equals mins∈S,t∈T {|F | : F ⊆ E, G−F has no s, t dipath}.
We say that the digraph is (S, T) connected (or, has (S, T) connectivity of one) if there exists an s, t dipath
for each pair of vertices s ∈ S, t ∈ T . Similarly, we say that the digraph is k-(S, T) connected if it has
k edge-disjoint s, t dipaths for each pair s ∈ S, t ∈ T . We assume that the sets S and T are disjoint in
Sections 3–6; this is without loss of generality, see Proposition 7.

By a T, S dipath, we mean a dipath that has its start-vertex in T and its end-vertex in S.

Fact 6. In the relaxed version of (S, T) connectivity (where all augmenting edges have heads in T), the input
digraph G has a T, S dipath iff the initial digraph G0 has a T, S dipath. Moreover, G has ν edge-disjoint
T, S dipaths iff G0 has ν edge-disjoint T, S dipaths.

Proof. Consider the first part. Let P be any T, S dipath of G. If P has no augmenting edges, then it is in
G0. Otherwise, consider the suffix of P between the last augmenting edge and the end-vertex of P . This
subpath has a start vertex in T , an end vertex in S, and no augmenting edges, so it is a T, S dipath of G0.

The second part follows in a similar way.

The standard version (where all augmenting edges have tails in S and heads in T) is a special case of
the relaxed version, hence, G has a T, S dipath iff the initial digraph G0 has a T, S dipath.

A digraph G = (V,E) with T ⊆ V is called acyclic on T if there is no dicycle in G that contains two
distinct vertices of T (by a dicycle we mean a connected subgraph having the same in-degree and out-degree
at every vertex). Observe that if G contains both a t, t′ dipath and a t′, t dipath for t, t′ ∈ T , then the union
of these two dipaths is a dicycle. Another way to view this is via the reachability digraph on T ; this is an
auxiliary digraph with vertex set T , and for t, t′ ∈ T , t 6= t′, it has an edge (t, t′) iff G has a t, t′ dipath;
observe that G is acyclic on T iff the reachability digraph on T has no dicycles.

Let r be a vertex. An in-tree (or in-branching) J in rooted at r is a minimal digraph (w.r.t. the edge
set) that has a v, r dipath for each vertex v ∈ V (J in). An out-tree (or out-branching) Jout rooted at r is a
minimal digraph (w.r.t. the edge set) that has an r, v dipath for each vertex v ∈ V (Jout). Edmonds [8] gave
a polynomial-time algorithm that finds a minimum cost in-branching (respectively, out-branching), see also
[13, 14].

A directed Steiner tree rooted at r is a digraph that has an r, t dipath for every vertex t ∈ T , where
T ⊆ V is a given set of terminal vertices; the digraph may contain vertices of V − {r} − T ; these are
called the Steiner vertices or the optional vertices. In the directed Steiner tree problem, we are given a
digraph G = (V,E), nonnegative costs on the edges, r ∈ V , and T ⊆ V ; the goal is to find a directed
Steiner tree of minimum cost. The problem has a hardness threshold of Ω(log2−ε n) assuming that NP is
not contained in ZPTIME(npolylog n), [19]. Charikar et al. [3] gave an O(log3 n)-approximation algorithm
for the directed Steiner tree problem that runs in quasi-polynomial time, also see [20]. More precisely,
this algorithm achieves an approximation guarantee of O(`3|T |1/`) in a running time of nO(`), where `
is a positive number; thus, fixing ` = log |T | gives an approximation guarantee of O(log3 |T |) in quasi-
polynomial time.

In the directed Steiner network problem, also known as the directed Steiner forest problem, we are given
a digraph G = (V,E), nonnegative costs on the edges, and a set of requirement pairs D ⊆ V × V ; the
goal is to find a subgraph (V, F) of minimum cost that contains an si, ti dipath for each requirement pair
(si, ti) ∈ D. This problem is at least as hard for approximation as the label-cover problem, see [1], [34,

5

Corollary 16.39]; in particular, assuming that NP is not contained in DTIME(npolylog n), the problem has
a hardness threshold of 2log

(1−ε) n, for any fixed ε > 0.
In the directed minimum-cost k-edge connected spanning subgraph problem we are given a digraph

G = (V,E), and nonnegative costs on the edges; the goal is to find a subgraph (V, F) of minimum cost that
contains k edge-disjoint s, t dipaths for each ordered pair of vertices s, t.

In the directed subset k-connected subgraph problem, we are given a digraph G = (V,E), nonnegative
costs on the edges, and a set of terminals T ⊆ V ; the goal is to find a subgraph (V, F) of minimum cost that
contains k openly disjoint s, t dipaths for each ordered pair of vertices s, t ∈ T . The directed minimum-cost
k-vertex connected spanning subgraph problem is the special case where T = V .

In the set covering problem we are given a ground-set U of so-called points, subsets S1, . . . , Sq of U ,
and a nonnegative cost for each subset Sj , j = 1, . . . , q; the goal is to cover U by picking a family of subsets
from S1, . . . , Sq of minimum cost, that is, each point of U should be in at least one of the picked subsets. A
greedy algorithm achieves an approximation guarantee of O(log maxqj=1 |Sj |), and there exists a constant
c such that improving on the approximation guarantee of (c log |U |) in polynomial time would imply that
P = NP, see [2, 30, 10].

2.1 Basic results

This subsection has some basic results on the k-(S, T) connectivity problem.

Proposition 7. There is a polynomial-time reduction from instances of the (S, T) connectivity problem (with
the connectivity parameter k equal to one) where S∩T 6= ∅ to instances such that S∩T = ∅ that preserves
the feasibility and the cost of candidate solutions.

Proof. For each vertex v ∈ S ∩ T , we split v into two vertices v+ and v−, and join them by a pair of new
edges (v−, v+) and (v+, v−) with zero cost. For each old edge having v as tail (respectively, head), we
change the tail (respectively, head) to v+ (respectively, v−). Finally, for each vertex v ∈ S∩T , we replace v
by v+ in S and we replace v by v− in T . It can be seen that this preserves any restrictions on the augmenting
edges, that is, an edge has its head in T (respectively, has its tail in S) iff the old edge corresponding to it
has its head in T (respectively, has its tail in S).

We can map any dipath in the original instance to a dipath in the transformed one by replacing a vertex
v ∈ S ∩ T by a subpath v−, v+. Conversely, we can map any dipath in the transformed instance to a dipath
in the original one by replacing subpaths v−, v+ or v+, v− (or v+ or v−) by a single vertex v. Edges of
the form (v+, v−) guarantee that S, T dipaths of the form v (with no edges) in the original instance map
to S, T dipaths of the form v+, v− in the transformed instance. Hence, a subgraph (candidate solution)
of the original instance is feasible iff the corresponding subgraph of the transformed instance is feasible.
Moreover, optimal solutions of both instances have the same cost.

Remark 8. There is a similar reduction for the k-(S, T)-connectivity problem that reduces instances with
S ∩T 6= ∅ to instances such that S ∩T = ∅: the only difference is that we keep k parallel copies of the edge
(v−, v+), as well as k parallel copies of the edge (v+, v−).

The proofs of our hardness-of-approximation results on different versions of the (S, T) connectivity
problem are given below; the results are stated in Proposition 1 in Section 1.3.

Proof of Proposition 1. We will describe the hardness construction of each version of the problem. We
recall that an instance of the (S, T) connectivity problem consists of a digraph G = (V,E0 ∪ E), sets of
vertices S and T , and a positive cost c(e) on each augmenting edge e ∈ E.

6

The standard (S, T) connectivity problem: The reduction from the SCSS problem to the standard
(S, T) connectivity problem is straightforward. In fact, the SCSS problem is a special case of the stan-
dard (S, T) connectivity problem where S = T = V . It is clear that the restriction on heads and tails of
augmenting edges holds because S = T = V . Moreover, By Proposition 7, we can transform this instance
to an instance such that S ∩ T = ∅.

The relaxed (S, T) connectivity problem: The reduction from the directed Steiner tree problem is as
follows. The given instance of the in-directed Steiner tree problem consists of a digraph G′ = (V ′, E′)
with non-negative cost on edges, a root vertex r ∈ V ′ and a set of terminals S′ ⊆ V ′. We may assume
that r 6∈ S′. Moreover, we may assume that each terminal s ∈ S′ is incident to a unique edge which is
outgoing from s and has zero-cost. Otherwise, we can replace each terminal s ∈ S′ by a dummy terminal
s+ and attach s+ to s by a zero-cost edge (s+, s). Observe that the reduction does not increase the cost
or violate the feasibility of an optimal solution. We construct the digraph G for the instance of the relaxed
(S, T) connectivity problem by starting with G′, and then adding auxiliary edges with zero-cost from the
root vertex r to all non-terminal vertices. Thus, the digraph is G = (V,E0 ∪ E), where V = V ′ and
E0 ∪ E = E′ ∪ {(r, v) : v ∈ V ′ − S′}. We define S to be the set of terminals S′ and T to be the set of
non-terminal vertices, that is, S = S′ and T = V − S. Note that T also includes the root vertex r. We
define the set of edges E0 of the initial digraph to be the set of all zero-cost edges including the auxiliary
ones. We define the set of augmenting edges E to be the set of all positive-cost edges. The construction is
valid for the relaxed (S, T) connectivity problem because all positive-cost edges have heads in T , the set
of non-terminal vertices. It can be seen that the reduction is approximation-preserving. The reduction is
illustrated in Figure 2.

Figure 2: The reduction from an instance of the directed Steiner tree problem to an instance of the relaxed
(S, T) connectivity problem. The left figure shows the instance of the former problem. The squares denote
terminals, and the circles denote Steiner vertices; r is the root vertex. The right figure shows the instance
of the relaxed (S, T) connectivity problem. The black lines denote positive cost edges, and the grey lines
denote zero-cost edges.

The (general) (S, T) connectivity problem: The reduction from the directed Steiner network problem is
as follows. The given instance of the directed Steiner network problem consists of a digraph G′ = (V ′, E′)
with non-negative cost on the edges, and a set of requirement pairs D ⊆ V ′×V ′. We may assume that there
exist a set of sources S ⊆ V ′ and a set of sinks T ⊆ V ′ such that D ⊆ S × T . Moreover, we may assume
that each source s ∈ S is incident to one outgoing edge but incident to no incoming edges. Similarly, we

7

may assume that each sink t ∈ T is incident to one incoming edge but incident to no outgoing edges. The
reduction can be done similarly to that of the directed Steiner tree problem. For each source s ∈ S, we add
a dummy vertex s+ and attach it to s by a zero-cost edge (s+, s). Likewise, for each sink t ∈ T , we add a
dummy vertex t− and attach it to t by a zero-cost edge (t, t−). We then replace the requirement pair (s, t) by
(s+, t−) for all (s, t) ∈ D. Since the dummy sources and sinks are attached to the original ones by zero-cost
edges, the reduction does not increase the cost or violate the feasibility. Note that each source and sink may
occur in more than one requirement pair, e.g., we may have both (s, t1) and (s, t2) in D. We construct the
digraph G for the instance of the (general) (S, T) connectivity problem by starting with G′, and then adding
some auxiliary edges with zero cost. We define S and T to be the set of sources and sinks, respectively.
For all ordered pairs (s, t) with s ∈ S and t ∈ T , if (s, t) /∈ D, then we add an auxiliary edge (s, t) to G
with zero cost. In other words, we pad the digraph with auxiliary edges to handle the new requirement pairs
implicit in the (general) (S, T) connectivity problem. The set of edges E0 is defined to be the set of all
zero-cost edges including the auxiliary ones. The set of augmenting edges E is defined to be the set of
positive-cost edges. The construction is valid for the (general) (S, T) connectivity problem because there is
no restriction on augmenting edges. It can be seen that the reduction is approximation-preserving.

2.2 Frank’s result on rooted connectivity

Recall that a digraph G′ = (V ′, E′) is said to be k-(r, T) connected, where k ≥ 0 is an integer, r ∈ V ′ and
T ⊆ V ′, if it has k edge-disjoint r, t dipaths, for each t ∈ T . Below, we state a result of Frank on a version
of the min-cost k-(r, T) connectivity problem: there is an LP relaxation that is integral, i.e., the problem can
be captured as a linear programming problem. Our algorithmic results in Section 5 rely on Frank’s results
on rooted k-connectivity. Also, our algorithms in Section 4 apply Frank’s results with k = 2.

Theorem 9 (Frank 2009 Theorems 4.4,5.9[14]). Given a digraph G = (V,E0 ∪ E), a vertex r ∈ V , a
set of vertices T ⊆ V − {r} that contains the head of every edge in E, and positive costs on the edges
in E, there is a polynomial-time algorithm for finding a set of edges F ⊆ E of minimum cost such that
the subgraph (V,E0 ∪ F) is k-(r, T) connected. Moreover, the optimal cost equals the optimal value of a
linear-programming (LP) relaxation.

It is easily seen that Frank’s result applies also for the min-cost “rooted in-subgraph” problem, by re-
placing each edge (v, w) by its reverse edge (w, v) and making appropriate changes for T and E; that is,
we have a set of vertices S ⊆ V −{r} that contains the tail of every edge of positive cost, and the goal is to
find a subgraph of minimum cost that is k-(S, r) connected.

2.3 Reducing algorithm for digraphs

This subsection presents a simple algorithm that, given a digraph and a set of its vertices Z, finds a minimal
subset of Z that preserves some reachability properties; precise statements are given in the next result. We
apply this algorithm in Sections 3 and 4.

Proposition 10. Let H ′ = (V ′, E′) be a digraph, and let Z ⊆ V ′ be a set of vertices. Then there is a
linear-time algorithm to find a subset Y of Z such that

(1) for each vertex v ∈ Z, there is a vertex y ∈ Y such that H ′ has a v, y dipath,

(2) H ′ has no dipath from any vertex of Y to another vertex of Y , and

8

(3) if H ′ has a dipath from a vertex y ∈ Y to a vertex v ∈ Z, then y and v are in the same strongly-
connected component of H ′.

Proof. We apply the following method to output the vertices of Y sequentially. This method can be imple-
mented to run in linear time.

We contract the strongly-connected components of H ′ into single vertices, to obtain an acyclic digraph
H ′′. Observe that Y can have at most one vertex from each strongly-connected component of H ′. Thus we
transform the problem from H ′ to the acyclic digraph H ′′ in an obvious way. (A vertex v of H ′′ is in Z iff
the strongly-connected component of H ′ associated with v contains a vertex of Z; similarly, a set Y of H ′′

can be mapped to a set Y of H ′ of the same size.) Then we assign a topological numbering to the vertices
of H ′′.

We start withX = Z. We output the vertex y ofH ′′ that is inX and has the highest topological number;
thus this vertex is placed in Y . Then we find the vertices of X that have dipaths to y in H ′′; we remove all
these vertices (including y) from X . We repeat this step until X becomes empty.

This method can be implemented to run in time O(|V ′| + |E′|). At the start, we can construct H ′′, a
topological numbering of V (H ′′), and a labeling of V (H ′′) by X = Z in linear time, see [31]. We have
an outer loop that scans the vertices of H ′′ according to the topological numbering (highest to lowest);
whenever the outer loop finds a vertex y of X , then y is placed in Y , and then we execute an inner loop
that visits all vertices that have dipaths to y in H ′′, and then we remove all these vertices from H ′′ and X .
Finally, the mapping of Z from H ′ to H ′′, and the mapping of Y from H ′′ to H ′ can be computed in linear
time.

To verify the correctness, note that the initial set X satisfies

(∗) for each vertex v ∈ Z −X there is a vertex y ∈ Y such that H ′ has a v, y dipath.

Whenever we add a vertex y to Y , we remove from X all vertices v that can reach y. Clearly, this preserves
(∗). At termination, X = ∅ and (∗) holds, hence, (1) holds. Consider (2): whenever we add a vertex y to
Y , there is no dipath from y to vertices already in Y , and there is no dipath from y to vertices in the current
set X; hence, (2) holds. Consider (3): whenever we add a vertex y to Y , then y has the highest topological
number among the vertices in the current X; this implies that (3) holds. (If (3) fails, then there is a vertex
y ∈ Y and a vertex v ∈ Z such that v and y are in different strongly-connected components ofH ′, and there
is a y, v dipath in H ′. Thus, y and v are associated with distinct vertices of H ′′, call them y′′ and v′′, and H ′′

has a dipath from y′′ to v′′. This is not possible because when we add y to Y , then either v ∈ X or v 6∈ X;
in the first case, v has a higher topological number than y, and in the second case, y and v would have been
removed from X at the same step.)

3 A 2-approximation algorithm for standard (S, T) connectivity

This section has our 2-approximation algorithm for the standard version of the (S, T) connectivity problem,
that is, the problem of finding an (S, T) connected digraph of minimum cost, assuming that each augmenting
edge has its tail in S and its head in T .

This problem is a generalization of the SCSS problem. We sketch a well-known 2-approximation al-
gorithm for the latter problem, see [17]: Let opt denote the cost of an optimal solution. The algorithm
picks any vertex to be the root vertex r, and then computes a min-cost out-branching (V, F out) with root r;
similarly, the algorithm computes a min-cost in-branching (V, F out) with root r; then, the algorithm outputs

9

(V, F out ∪ F in). It can be seen that the solution is strongly-connected. Moreover, it can be seen that the
cost of the solution is ≤ 2opt.

Recall that a T, S dipath is a dipath that has its start-vertex in T and its end-vertex in S; moreover, G
has a T, S dipath iff the initial digraph G0 has one.

We consider two cases:

1. G has a T, S dipath.

2. G has no T, S dipath.

We give a 2-approximation algorithm for the first case in Section 3.1, by designing a simple extension
of the above 2-approximation algorithm for the SCSS problem. We handle the second case in Section 3.2
by giving a polynomial-time algorithm that solves it optimally.

To solve the standard (S, T) connectivity problem, we first run a depth first search algorithm to find
a T, S dipath, if one exists. If there is no such dipath, then we run the algorithm given in Section 3.2.
Otherwise, we run the 2-approximation algorithm given in Section 3.1. Combining these two cases, we get
a 2-approximation algorithm for the problem. This proves Theorem 2 in Section 1.3.

3.1 A 2-approximation algorithm for the case when a T, S dipath exists

First, suppose that there exists a T, S dipath, call it P̂ , with start-vertex t̂ ∈ T and end-vertex ŝ ∈ S.
Then, we apply Frank’s algorithm (see Theorem 9) for min-cost rooted in-subgraphs to our digraph G =
(V,E0 ∪ E) with root t̂, to find a min-cost set of edges F in such that the rooted in-subgraph (V,E0 ∪ F in)
is (S, t̂) connected, that is, the subgraph contains an s, t̂ dipath for each vertex s ∈ S. Next, we apply
Frank’s algorithm (see Theorem 9) for min-cost rooted out-subgraphs to our digraph G = (V,E0 ∪ E),
but now we take the root to be ŝ and we find a min-cost set of edges F out such that the “out-subgraph”
(V,E0 ∪ F out) is (ŝ, T) connected, that is, the subgraph contains an ŝ, t dipath for each vertex t ∈ T . The
algorithm outputs F in ∪ F out as its solution. Below, we show that the algorithm is correct, that is, the
subgraph Ĝ = (V,E0 ∪ F in ∪ F out) is (S, T) connected, and it achieves an approximation guarantee of 2,
that is, c(F in ∪ F out) ≤ 2opt.

Proposition 11. Suppose that the digraphG has a T, S dipath. Then the above algorithm runs in polynomial
time and finds a feasible solution of cost ≤ 2opt.

Proof. First, we show that the output is correct, that is, the digraph Ĝ returned by the algorithm is (S, T) con-
nected. Consider any pair of vertices s, t where s ∈ S and t ∈ T . Observe that Ĝ is (S, t̂) connected;
similarly, Ĝ is (ŝ, T) connected. Hence, Ĝ has an s, t dipath of the form

s→ . . . (F in) . . .→ t̂→ . . . (P̂) . . .→ ŝ→ . . . (F out) . . .→ t.

Therefore, Ĝ is (S, T) connected.
To see that the algorithm achieves an approximation guarantee of 2, note that a set of edges that is

feasible to the (S, T) connectivity problem is also feasible to each of the two rooted subproblems solved by
Frank’s algorithm, hence, the cost of a feasible solution to each rooted subproblem is ≤ opt. Therefore, Ĝ
has cost ≤ 2opt.

The algorithm runs in polynomial time because a T, S dipath of G0 can be found in linear time (if it
exists), and each of the two applications of Frank’s algorithm runs in polynomial time (see Theorem 9). This
completes the proof.

Figure 3 illustrates the working of this algorithm.

10

Figure 3: The figure illustrates the working of our 2-approximation algorithm for the standard (S, T) con-
nectivity problem on an example that has a T, S dipath. The left figure shows an instance of the rooted
out-subgraph problem with root vertex s and set of terminals T . The right figure shows an instance of the
rooted in-subgraph problem with a root vertex t and a set of terminals S. The grey lines denote the edges of
the initial digraph G0. The grey dash-lines denote the T, S dipath. The black lines (solid and dash) denote
the augmenting edges. The black solid-lines denote the augmenting edges chosen by the algorithm.

3.2 An algorithm for the case of no T, S dipath

Recall the reducing algorithm from Section 2.3, and the conditions (1), (2), and (3) from Proposition 10.
We apply that algorithm to the initial digraph G0 and we take Z = S. We take the output Y ⊆ Z to be
S̃ ⊆ S. Then conditions (1), (2), and (3) apply to S̃ and S. (Thus (1) for each s ∈ S there is an s′ ∈ S̃ such
that G0 has an s, s′ dipath; (2) G0 has no dipath between two vertices of S̃, and (3) if G0 has a dipath from
s′ ∈ S̃ to s ∈ S, then both s, s′ are in the same strongly-connected component of G0.) After that, for each
vertex si ∈ S̃, we apply Frank’s “rooted out-subgraph” algorithm to the original digraph, taking the root to
be si, and we compute an augmenting edge set F out(si) of minimum cost such that (V,E0 ∪ F out(si)) is
(si, T) connected.

Proposition 12. Suppose that the digraph G has no T, S dipath. Then the above algorithm finds an optimal
solution to the (S, T) connectivity problem. The algorithm runs in time O(|S̃|m(n+m)) = O(nm2).

Proof. Let Ĝ denote the digraph returned by the algorithm, that is, Ĝ = (V,E0
⋃
si∈S̃ F

out(si)). First,

we show that Ĝ is (S, T) connected. Consider any vertex s ∈ S. Then the set S̃ found by the reducing
algorithm has a vertex s′ such that G0 has a dipath from s to s′, by (1) in Proposition 10. Moreover, each
vertex in S̃ has been chosen as the root vertex for an application of Frank’s algorithm, hence, G0 together
with the augmenting edge set added via Frank’s algorithm contains an s′, t′ dipath, for all t′ ∈ T . Thus, Ĝ
has an s, t′ dipath, for all t′ ∈ T .

Next, we show that the cost of Ĝ is ≤ opt. Consider an optimal set of augmenting edges E∗, and an
arbitrary vertex s ∈ S̃. G∗ = G0 + E∗ must have an s, t′ dipath from s to each t′ ∈ T . Let E∗(s) denote
the subset of the augmenting edges in E∗ that are used by these dipaths; the tail vertex of each of these
augmenting edges must be reachable from s. Then, by Proposition 10, the tail vertices of these augmenting
edges are in the same strongly-connected component as s (by (3) in the proposition); moreover, for any other
vertex s′ ∈ S̃, there is no dipath from s′ to any vertex in the strongly-connected component of s (by (2) in
the proposition). Thus the sets {E∗(s) : s ∈ S̃} form a partition of E∗, i.e., each augmenting edge is in at
most one of the sets E∗(s). Finally, note that E∗(s) forms a feasible solution for our application of Frank’s
“rooted out-subgraph” algorithm with root s, hence, the cost of the augmenting edges for this application is
≤ c(E∗(s)). Summing over the cost of the augmenting edges for all of the applications of Frank’s “rooted

11

out-subgraph” algorithm with roots in S̃, we see that the total cost is ≤
∑

s∈S̃ c(E
∗(s)) ≤ opt. Observe

that this analysis relies on our assumption that the input digraph G has no T, S dipath; since there are no
T, S dipaths, the reducing algorithm returns the same output Y for input Z = S on both digraphs G and
G0; in other words, the addition of augmenting edges has no effect on the output of the reducing algorithm.

The bound on the running time follows from the fact that the reducing algorithm runs in linear time per
vertex of S̃, and each application of Frank’s algorithm runs in time O(m(n+m)).

4 A 3-approximation algorithm for standard 2-(S, T) connectivity

We say that a digraph is 2-(S, T) connected if it contains two edge-disjoint s, t dipaths for every vertex
s ∈ S and every vertex t ∈ T . In this section, we give a 3-approximation algorithm for the standard version
of the minimum-cost 2-(S, T) connected digraph problem, or, in brief, the standard 2-(S, T) connectivity
problem. Recall that the standard version has E ⊆ S×T , that is, each augmenting edge has its tail in S and
its head in T .

Many of the steps of the algorithm and analysis occur in “symmetric pairs,” for example, we may apply
some procedure to a vertex in S, and then we may apply a similar procedure to a vertex in T . We describe
one of these procedure in detail, but not the second one.

4.1 Preliminaries for the approximation algorithm

Let P be a dipath of G. For vertices vi, vj of P , we denote by P (vi, vj) the subpath of P that starts with vi
and ends with vj . Similarly, for edges ei, ej of P , we denote by P (ei, ej) the subpath of P that starts with
ei and ends with ej .

Recall that a T, S dipath is a dipath whose start-vertex is in T and whose end-vertex is in S. Let ν denote
the maximum number of edge-disjoint T, S dipaths of G. By Fact 6, ν is the same for G and for the initial
digraph G0, Usually, we will consider G0 whenever we discuss T, S dipaths. Our algorithm has three cases
depending on whether ν is zero, one, or more than one. The case of ν = 1 appears to be substantially more
difficult than the other two cases.

The algorithm starts with the (edge set of the) initial digraph G0 = (V,E0), and adds augmenting edges
in several steps. We denote the current digraph by Ĝ and the current set of augmenting edges by Ê. Thus,
Ĝ = (V,E0 ∪ Ê), and initially, Ĝ = G0, Ê = ∅.

4.2 No T, S dipaths

First, suppose that ν = 0, i.e., G (and G0) have no T, S dipaths. We focus on the initial digraph G0.
The key subroutine for our algorithm is an extension of Frank’s algorithm for the min-cost “rooted

out-subgraph” problem. Frank gave polynomial-time algorithms and min-max theorems for the special
case of the k-(S, T) connectivity problem where S consists of a single vertex and every augmenting edge
has its head in T , see Theorem 9, and [13, 14]. Thus, given a root vertex r and assuming E ⊆ V × T ,
Frank’s algorithm computes a minimum-cost set of augmenting edges such that the resulting digraph is
k-(r, T) connected.

Recall the reducing algorithm from Section 2.3, and the conditions (1), (2), and (3) from Proposition 10.
We apply that algorithm to G0 and we take Z = S. We take the output Y ⊆ Z to be S̃ ⊆ S. Then
conditions (1), (2), and (3) apply to S̃ and S. After that, for each vertex si ∈ S̃, we apply Frank’s “rooted

12

2-outconnected-subgraph” algorithm to the original digraph, taking the root to be si, and we compute an
augmenting edge set F out(si) of minimum cost such that (V,E0 ∪ F out(si)) is 2-(si, T) connected.

Similarly, we apply the reducing algorithm (in Section 2.3) to the initial digraph G0, to find a subset
T̃ of T such that conditions (1), (2) and (3) of Proposition 10 hold with T̃ = Y and T = Z. (Formally
speaking, we apply the algorithm to the digraph obtained from G0 by replacing each edge (v, w) by the
reverse edge (w, v). Thus (1) for each t ∈ T there is a t′ ∈ T̃ such that G0 has a t′, t dipath; (2) G0 has
no dipath between two vertices of T̃ , and (3) if G0 has a dipath from t ∈ T to t′ ∈ T̃ , then both t, t′ are in
the same strongly-connected component of G0.) Then, for each vertex tj ∈ T̃ , we apply Frank’s “rooted
2-inconnected-subgraph” algorithm to the original digraph, taking the root to be tj , and we compute an
augmenting edge set F in(tj) of minimum cost such that (V,E0 ∪ F in(tj)) is 2-(S, tj) connected.

All these augmenting edge sets are added to the current digraph; thus we have Ê =
⋃
si∈S̃ F

out(si)⋃
tj∈T̃ F

in(tj).

Lemma 13. The current digraph Ĝ is 2-(S, T) connected.

Proof. To see that Ĝ is 2-(S, T) connected, consider any cut (U, V − U) withU∩S 6= ∅ and (V − U)∩T 6=
∅. If any vertex si of S̃ is in U , then the cut has ≥ 2 edges (since Ĝ is 2-(si, T) connected, ∀si ∈ S̃).
Similarly, if any vertex tj of T̃ is in V − U , then the cut has ≥ 2 edges. In the remaining case, we have
T̃ ⊆ U and S̃ ⊆ V − U . Let s be a vertex of U ∩ S and let t be a vertex of (V − U) ∩ T ; both s, t exist
by our choice of U . Moreover, by Proposition 10, there is a dipath Ps from s to some vertex s′ ∈ S̃ (by
(1) in the proposition). Similarly, by Proposition 10, there is a dipath Pt from some vertex t′ ∈ T̃ to t. The
dipaths Ps and Pt have no vertex (or edge) in common; otherwise, their union would contain a T, S dipath.
It follows that the cut (U, V − U) has at least two edges, one from Ps and one from Pt. This completes the
proof.

The next lemma shows that the cost of the solution digraph Ĝ is≤ opt. The proof is similar to the proof
of Proposition 12.

Lemma 14. The cost of the current digraph Ĝ is ≤ 2opt.

Proof. The key point is that the total cost of the edges in
⋃
s∈S̃ F

out(s) is ≤ opt; similarly, the total cost of
the edges in

⋃
t∈T̃ F

in(t) is ≤ opt.
Consider the first claim. Consider an optimal set of augmenting edges E∗, and an arbitrary vertex

s ∈ S̃; let E∗(s) denote the subset of the augmenting edges in E∗ that are used by the two edge-disjoint
s, t′ dipaths from s to each t′ ∈ T . Arguing as in the proof of Proposition 12, it can be seen that the sets
{E∗(s) : s ∈ S̃} form a partition of E∗. Moreover, E∗(s) forms a feasible solution for our application of
Frank’s “rooted 2-outconnected-subgraph” algorithm with root s, hence, the cost of the augmenting edges
for this application is≤ c(E∗(s)). Summing over the cost of the augmenting edges for all of the applications
of Frank’s algorithm with roots in S̃, we see that the total cost is ≤

∑
s∈S̃ c(E

∗(s)) ≤ opt.

4.3 Two edge-disjoint T, S dipaths

Suppose that G has two edge-disjoint T, S dipaths. We consider G0, since the maximum number of edge-
disjoint T, S dipaths is the same in G and in G0. We find two edge-disjoint T, S dipaths in G0, call them P1

and P2; this can be done via an application of a maximum s, t flow algorithm to find an integral flow, with
T as the set of sources and S as the set of sinks. Let t1, s1 be the start-vertex and end-vertex of P1, and let
t2, s2 be the start-vertex and end-vertex of P2.

13

Then, for i = 1, 2, we apply Frank’s “rooted 2-outconnected-subgraph” algorithm to the original di-
graph, taking the root to be si, and we compute an augmenting edge set F out(si) of minimum cost such that
(V,E0 ∪ F out(si)) is 2-(si, T) connected. Clearly, the cost of each of these augmenting edge sets is ≤ opt.

Finally, we apply Frank’s “rooted 2-inconnected-subgraph” algorithm to compute an augmenting edge
set F in(s1, s2) of minimum cost such that the digraph (V,E0 ∪ F in(s1, s2)) has 2 edge-disjoint dipaths
from each vertex s ∈ S to the set {s1, s2}; that is, for each s ∈ S, the digraph (V,E0 ∪ F in(s1, s2)) has
an s, s1 dipath and an s, s2 dipath such that these two dipaths are edge disjoint. Formally speaking, we con-
struct an auxiliary digraph by adding a new vertex s∗∗ and the new edges (s1, s

∗∗), (s2, s
∗∗), and then we

apply Frank’s “rooted 2-inconnected-subgraph” algorithm to compute an augmenting edge set F in(s1, s2)
of minimum cost such that the digraph (V ∪{s∗∗}, E0∪{(s1, s∗∗), (s2, s∗∗)}∪F in(s1, s2)) is 2-(S, s∗∗) con-
nected.

It can be seen that the cost of F in(s1, s2) is ≤ opt; to see this, consider an optimal set of augmenting
edges E∗, and any vertex s ∈ S; clearly, (V,E0 ∪ E∗) contains two edge-disjoint s, t1 dipaths, two edge-
disjoint s, t2 dipaths, and two edge-disjoint {t1, t2}, {s1, s2} dipaths, hence, (V,E0 ∪ E∗) contains two
edge-disjoint s, {s1, s2} dipaths.

We add all these augmenting edge sets to the current digraph, i.e., we let Ê = E0
⋃
F out(s1)

⋃
F out(s2)⋃

F in(s1, s2).

Lemma 15. The current digraph Ĝ = G0 + Ê is 2-(S, T) connected, and the cost of Ê is ≤ 3opt.

Proof. Clearly, c(Ê) ≤ 3opt, since each of the three sets of augmenting edges added to Ê has cost ≤ opt.
To see that Ĝ is 2-(S, T) connected, consider any cut (U, V − U) with U∩S 6= ∅ and (V − U)∩T 6= ∅.

If s1 or s2 is in U , then the cut has ≥ 2 edges (since Ĝ is 2-(si, T) connected for i = 1, 2). Otherwise, U
contains some vertex s ∈ S − {s1, s2}, and V − U contains both s1 and s2; then the cut has ≥ 2 edges
(since Ĝ contains two edge-disjoint s, {s1, s2} dipaths, for all s ∈ S). This completes the proof.

4.4 One (but not two) edge-disjoint T, S dipaths

Recall that the maximum number of edge-disjoint T, S dipaths is the same in G and in G0. Suppose that G0

has a T, S dipath, but it does not have two edge-disjoint T, S dipaths; thus ν = 1. Then there exists a (T, S)
cut of G0 of size one. (Such a cut can be found by applying the max-flow min-cut theorem and algorithm,
with T as the set of sources and S as the set of sinks.) We define a cut edge (of G0, or equivalently of G) to
be an edge whose deletion results in a digraph that has no T, S dipaths. (Observe that an edge e is a cut edge
w.r.t. G0 iff e is a cut edge w.r.t. G.)

We start by finding a T, S dipath of G0 with the minimum number of edges, call it P̂ . We denote the
start-vertex and end-vertex of P̂ by t̂ and ŝ, respectively. Clearly, every cut edge is contained in P̂ . Let
e1, e2, . . . , e` denote all the cut edges, listed according to their order of occurrence in P̂ .

Lemma 16. Let P be any T, S dipath. Then all of the cut edges are in P , and their order of occurrence is
the same in P and P̂ , namely, e1, e2, . . . , e`.

Proof. Clearly, each of the cut edges is in P . For the second part, we argue by contradiction. Let j be the
smallest index (possibly, j = 1) such that ej does not occur as the jth cut edge of P . Then, P − ej contains
a dipath starting with ej−1 (starting with some t ∈ T , if j = 1) and ending with eq, q ≥ j + 1; then the
union of this dipath with P̂ contains a T, S dipath of Ĝ− ej .

14

We use t∗ to denote the tail vertex of e1 and s∗ to denote the head vertex of e`. (In general, t∗ 6∈ T and
s∗ 6∈ S, but it turns out that t∗ and s∗ have some of the properties of the vertices in T and S, respectively.)
The next lemma states that the deletion of a non-cut edge from G0 cannot disconnect t∗ from s∗.

Lemma 17. Let f be an edge of P̂ (e1, e`) that is not a cut edge. Then G0 − f has a dipath from t∗ to s∗.

Proof. Since f is not a cut edge, G0 − f has a T, S dipath P ′. Moreover, P ′ contains all of the cut edges,
and their order of occurrence on P ′ is e1, e2, . . . , e`. Thus P ′(e1, e`) is the required dipath of G0 − f from
t∗ to s∗.

We construct the digraph Ĝ by starting with G0, and then applying preprocessing steps to obtain a
digraph that is (S, T) connected such that the deletion of any one non cut edge preserves the (S, T) connec-
tivity; in other words, if the removal of a single edge from Ĝ results in a digraph that is not (S, T) connected,
then the removed edge must be a cut edge.

The preprocessing steps first apply Frank’s “rooted 2-inconnected-subgraph” algorithm with root t∗, to
compute an augmenting edge set F in(t∗) of minimum cost such that (V,E0 ∪ F in(t∗)) is 2-(S, t∗) con-
nected. Then, we apply Frank’s “rooted 2-outconnected-subgraph” algorithm with root s∗, to compute an
augmenting edge set F out(s∗) of minimum cost such that (V,E0 ∪F out(s∗)) is 2-(s∗, T) connected. Let Ĝ
be the digraph G0+F

in(t∗)+F out(s∗); note that the initial digraph is a subgraph of Ĝ.

Lemma 18. The digraph Ĝ = G0+F
in(t∗)+F out(s∗) has cost≤ 2opt, and moreover, it is both 2-(S, t∗) con-

nected and 2-(s∗, T) connected.

Proof. We claim that the digraphG∗ = G0+E
∗ given by an optimal solutionE∗ to the 2-(S, T) connectivity

problem satisfies the requirements of both 2-(S, t∗) connectivity and 2-(s∗, T) connectivity. Consider the
first requirement. Informally speaking, G∗ is 2-(S, T) connected and G0 has two edge disjoint dipaths from
T to t∗, hence, G∗ is 2-(S, t∗) connected; a rigorous proof is given below. Similarly, it can be proved
that G∗ is 2-(s∗, T) connected. Moreover, it can be seen that the condition required by Frank’s “rooted
2-inconnected-subgraph” algorithm applies, that is, every edge of positive cost has its tail at a vertex with
positive connectivity requirement because every augmenting edge has its tail vertex in S. Therefore, Frank’s
algorithm finds an optimal solution to the “rooted 2-inconnected-subgraph” problem, and moreover, this
solution has cost ≤ c(E∗) = opt. Hence, F in(t∗) has cost ≤ opt. Similarly, F out(s∗) has cost ≤ opt.
Thus, the total cost of Ĝ is ≤ 2opt.

We prove that G∗ is 2-(S, t∗) connected by a contradiction argument. Suppose that the connectivity
requirement does not hold for G∗. Then there is a cut (U, V − U) of size < 2 such that U ∩ S is nonempty
and t∗ ∈ V − U . Since G∗ is 2-(S, T) connected, we have T ⊆ U . Moreover, G∗ has a T, t∗ dipath (i.e.,
a dipath from a vertex of T to t∗) because G∗ has the T, S dipath P̂ which contains t∗. Hence, the cut
(U, V − U) has one edge of the T, t∗ dipath; let this edge be f . Then the digraphG∗−f has no T, t∗ dipath.
Hence, G0 − f has no T, S dipath (if such a dipath existed, then it would contain the cut edge e1 and its tail
vertex t∗, thus it would contain a subpath from T to t∗). Thus f is a cut edge, say f = ej , j = 1 . . . , `. This
gives a contradiction because G0 − ej contains the T, t∗ dipath P̂ (t̂, t∗) for each j = 1, . . . , `.

Suppose that the resulting digraph is not 2-(S, T) connected. Then, there exists an edge whose removal
results in a digraph that is not (S, T) connected. The next lemma shows that any such edge must be a
cut edge.

Lemma 19. Consider the current digraph Ĝ = G0+F
in(t∗)+F out(s∗). Suppose that f is an edge such

that Ĝ− f is not (S, T) connected. Then f is a cut edge.

15

Proof. Observe that Ĝ − f has a dipath from every vertex of S to t∗ (due to F in(t∗)), and it has a dipath
from s∗ to every vertex of T (due to F out(s∗)). If there is a t∗, s∗ dipath in Ĝ − f , then Ĝ − f would be
(S, T) connected and we would get a contradiction. Lemma 17 shows that G0−f has a t∗, s∗ dipath, unless
f is a cut edge. This completes the proof.

4.5 Last step for ν = 1: “Eliminating” all cut edges

The last part of the algorithm “eliminates” the cut edges; we examine the cut edges e1, e2, . . . , e` and find a
set of augmenting edges F ′; we will prove that the digraph obtained by adding F ′ to Ĝ is 2-(S, T) connected
and it has cost ≤ 3opt.

To see the key idea, consider the special case of one cut edge, that is, ` = 1. We apply the algorithm for
(S, T) connectivity to Ĝ−e1 to find a set of augmenting edges F1 such that Ĝ−e1+F1 is (S, T) connected.
Observe that Ĝ− e1 has no T, S dipaths, hence, in this special case, our algorithm finds a set of augmenting
edges F1 of minimum cost. We claim that Ĝ + F1 is 2-(S, T) connected. To prove this, suppose that there
exists an edge e whose deletion results in a digraph that is not (S, T) connected. By Lemma 19, e is a
cut edge of Ĝ; thus e = e1. Then we get a contradiction since Ĝ− e1 + F1 is (S, T) connected;

In general, for ` ≥ 2, we handle all of the cut edges in one step, by “reducing” the problem (of finding a
set of augmenting edges F ′ such that Ĝ + F ′ − ei is (S, T) connected, for each i ∈ {1, . . . , `}) to a single
(S, T) connectivity problem on an auxiliary digraph G′. The auxiliary digraph G′ is obtained from Ĝ by

(i) deleting all the cut edges e1, . . . , e`, and

(ii) adding an auxiliary edge (v, w) of zero cost for each pair v ∈ S, w ∈ T such that Ĝ has two
edge-disjoint v, w dipaths.

As above, we apply the algorithm for (S, T) connectivity to G′ to find a set of augmenting edges F ′ such
that G′ +F ′ is (S, T) connected. Let A′ denote the set of auxiliary edges of G′ (edges present in G′ but not
in Ĝ). The correctness of this method follows from the following lemma.

Lemma 20. Consider the auxiliary digraph G′ and a set of augmenting edges F ′. Then

(i) G′ + F ′ is (S, T) connected implies Ĝ+ F ′ is 2-(S, T) connected, and

(ii) G0 + F ′ is 2-(S, T) connected implies G′ + F ′ is (S, T) connected.

Proof. Consider the easy part (i) first. Suppose that G′ + F ′ is (S, T) connected, but Ĝ + F ′ is not
2-(S, T) connected. Then, by Lemma 19, there exists a cut edge e ∈ {e1, . . . , e`} such that Ĝ + F ′ − e
is not (S, T) connected. Consider any pair s ∈ S, t ∈ T . The augmented auxiliary digraph G′ + F ′ has
an s, t dipath P ′, and P ′ contains none of the edges in {e1, . . . , e`}, but P ′ may contain one or more of
the auxiliary edges; now, observe that for each auxiliary edge (v, w) ∈ A′, Ĝ has at least two edge-disjoint
v, w dipaths, hence, Ĝ − e has a v, w dipath Pv,w; thus, the union of P ′ − A′ and

⋃
(v,w)∈A′ Pv,w contains

an s, t dipath of Ĝ− e. We get the desired contradiction since Ĝ+ F ′ − e is (S, T) connected.
Now, consider the other part. Suppose thatG0+F ′ is 2-(S, T) connected, butG′+F ′ is not (S, T) con-

nected.
Then there exists a pair s ∈ S, t ∈ T such that

(a) G0 + F ′ has two edge-disjoint s, t dipaths, but

(b) G′ + F ′ has no s, t dipath, and

16

(c) Ĝ does not have two edge-disjoint s, t dipaths (otherwise, G′ would have the auxiliary edge (s, t)).

We derive a contradiction by showing that Ĝ has two edge-disjoint s, t dipaths if statements (a) and (b) hold.
Let P1 and P2 denote two edge-disjoint s, t dipaths of G0 + F ′. One of these dipaths (possibly, both of

them) has an augmenting edge, otherwise, both dipaths would be contained inG0 and thus in Ĝ. Observe that
every dipath of G0 +F ′ that avoids all cut edges is contained in G′+F ′. Since P1 and P2 are not contained
in G′ + F ′, each of these dipaths must contain a cut edge. Moreover, neither P1 nor P2 has two or more
augmenting edges; to see this, suppose that P1 contains an augmenting edge (s1, t1) followed by another
augmenting edge (s2, t2); then, by Lemma 16, all the cut edges e1, . . . , e` would occur in P1(t1, s2) between
the two augmenting edges; but then P2 (being edge disjoint from P1) would not contain any cut edges.

Consider two cases:

(1) one of P1, P2, say P1, contains augmenting edges, but the other one, P2, contains no augmenting
edges;

(2) P1, P2 both contain augmenting edges.

The next claim states simple but useful properties of G.

Claim 21. Consider the digraphG and any dipath P that has an augmenting edge α and a cut edge e. Then
either
(1) the first cut edge following α (in P) is e1, or
(2) the last cut edge preceding α (in P) is e`.

Proof. Either α precedes some cut edge, or it follows all cut edges. Suppose the first cut edge following α
(in P) is ei (i ≥ 2); then the union of P (α, ei) and P̂ − e1 contains a T, S dipath, a contradiction to the
definition of e1. Similarly, if the last cut edge preceding α (in P) is ei (i < `), then we get a contradiction
to the definition of e`. The claim follows.

By way of contradiction, assume that Ĝ does not have two edge-disjoint s, t dipaths. Then there exists
an edge e such that Ĝ− e has no s, t dipath.

First, consider case (1): P1 has augmenting edges, but P2 has none. If e 6∈ P2, then we are done because
P2 = P2 − e is an s, t dipath of Ĝ. Now, suppose e ∈ P2. Consider P1, and let α be its unique augmenting
edge. By Claim 21, either e1 ∈ P1 or e` ∈ P1. First, suppose that e1 is the first cut edge in P1 following
α; thus, the tail t∗ of e1 is in P1. Observe that e 6∈ P1(t

∗, t) because P1, P2 are edge disjoint and e ∈ P2.
Moreover, the unique augmenting edge of P1 precedes t∗, hence, P1(t

∗, t) contains no augmenting edges.
Finally, observe that Ĝ − e has a dipath P ′′ from s to t∗ because Ĝ is 2-(S, t∗) connected (by Lemma 18),
hence, deleting any edge results in a digraph that is 1-(S, t∗) connected, and thus has an s, t∗ dipath. (We
state this observation as a claim below, for further use.) It follows that Ĝ − e contains the union of P ′′ and
P1(t

∗, t), which contains an s, t dipath.

Claim 22. Let s and t be as above, and let e be any edge of Ĝ.
(1) Ĝ− e has a dipath P ′′ from s to t∗, where t∗ denotes the tail of e1.
(2) Ĝ− e has a dipath P ′′′ from s∗ to t, where s∗ denotes the head of e`.

Now, suppose that e` is the last cut edge in P1 preceding α. Then, a similar argument shows that
e 6∈ P1(s, s

∗), and P1(s, s
∗) contains no augmenting edges. Thus, applying Claim 22 (and its notation),

Ĝ− e contains the union of P1(s, s
∗) and P ′′′, which contains an s, t dipath.

Thus, in Case (1), we get the desired contradiction: Ĝ has two edge-disjoint s, t dipaths.

17

e
2

e
3

e
1

 S

 Tt

s

(a) T, S dipath P̂ of G0.

P
1

 S

 Tt

ss

t

augmenting
edge

e
2

e
3

e
1

(b) S, T dipath P1 of G0 + F ′.

Figure 4: The figures illustrate the notation in Lemma 20. The first figure illustrates the T, S dipath P̂ and
its cutedges. The second figure illustrates one of the possible S, T dipaths P1 of G0 + F ′.

Finally, consider Case (2): both P1, P2 contain augmenting edges and cut edges. Let e be an edge such
that Ĝ− e has no s, t dipath. By Claim 21, either e1 ∈ P1 or e` ∈ P1, and the same holds for P2; moreover,
neither P1 nor P2 contains two or more augmenting edges. We may fix the indices of P1 and P2 such that
e1 ∈ P1 and e` ∈ P2. Then note that the dipaths P1(e1, t) and P2(s, e`) are edge disjoint, and one of them
avoids e. As above, we apply Claim 22 (and its notation). If P1(e1, t) avoids e, then the union of P ′′ and
P1(e1, t) is contained in Ĝ − e, and it contains an s, t dipath; otherwise, the union of P ′′′ and P2(s, e`) is
contained in Ĝ− e, and it contains an s, t dipath. Thus, in Case (2), we get the desired contradiction: Ĝ has
two edge-disjoint s, t dipaths.

This completes the proof of the lemma.

The next result summarizes the contributions of this subsection by proving the correctness and the ap-
proximation guarantee for the above algorithm.

Lemma 23. The digraph returned by the algorithm is 2-(S, T) connected, and it has cost ≤ 3opt.

Proof. The digraph returned by the algorithm has the edge set E0
⋃
F out(s∗)

⋃
F in(t∗)

⋃
F ′. Each of the

sets of augmenting edges has cost ≤ opt, hence Ĝ has cost ≤ 3opt.
To see the correctness, first note that Ĝ, which has the edge set E0

⋃
F out(s∗)

⋃
F in(t∗), is both

2-(S, t∗) connected and 2-(s∗, T) connected (see Lemma 18). Also, observe that G0 + E∗ is 2-(S, T) con-
nected, hence, by Lemma 20, G′ + E∗ is (S, T) connected. Thus, the algorithm succeeds in finding a
set of augmenting edges F ′ such that G′ + F ′ is (S, T) connected, and hence (by Lemma 20), Ĝ + F ′ is
2-(S, T) connected. Moreover, c(F ′) ≤ c(E∗) = opt.

4.6 Combining the cases of 2-(S, T) connectivity

This subsection summarizes our approximation algorithm and analysis for the min-cost 2-(S, T) connectiv-
ity problem, see Theorem 3 in Section 1.3.

Proof of Theorem 3. The correctness of the output follows from the correctness proofs of the three main
cases in the algorithm.

18

The cost analysis follows easily from the cost analysis of the three main cases in the algorithm. In the
case of no T, S dipaths, the cost of Ĝ is ≤ 2 opt. In the case of one T, S dipath, but not two edge-disjoint
T, S dipaths, the cost of Ĝ is ≤ 3 opt. In the case of two edge-disjoint T, S dipaths, the cost of Ĝ is
≤ 3 opt.

5 AnO(log k · log n) approximation algorithm for standard k-(S, T) connec-
tivity

5.1 Introduction to k-(S, T) connectivity

This section focuses on the standard version of the k-(S, T) connectivity problem: we are given an integer
k ≥ 0, a directed graph G = (V,E0 ∪ E), two subsets S, T of V , and positive costs on the edges in E;
moreover, each edge in E has its tail in S and its head in T . A digraph is called k-(S, T) connected if it has
k edge-disjoint dipaths between every vertex s ∈ S and every vertex t ∈ T . The goal is to find a subset of
edges Ê ⊆ E of minimum cost such that the subgraph (V,E0 ∪ Ê) is k-(S, T) connected.

Although the k-(S, T) connectivity problem pertains to edge-connectivity, it can be seen that the k-
VCSS problem is a special case of this problem by applying the reduction in Proposition 7 (but keeping
only one copy of each edge of the form (v−, v+)). In particular, the k-VCSS digraph has k openly-disjoint
dipaths between every pair of vertices v, w iff the digraph resulting from the reduction has k edge-disjoint
dipaths between every vertex v+ ∈ S and every vertex w− ∈ T .

The main result of this section is Theorem 4, stated in Section 1.3; it is proved by generalizing the
algorithm and analysis for the k-VCSS problem in [9], which in turn is based on ideas and results from
[16, 22, 29, 24]. At a high level, our algorithm and analysis are almost the same as the halo-set method
of [9]. But there are differences. The application of the halo-set method in [9] relies on the property of
“disjointness of cores,” whereas our application circumvents this property.

5.2 An approximation algorithm for the k-(S, T) connectivity problem

First, we show that the LP-scaling technique [18] applies in our setting. Based on that, we focus on the key
subproblem of increasing (S, T) connectivity by one.

Consider the following LPs: The first one, denoted LP(k), is a well-known LP relaxation for the
k-(S, T) connectivity problem, where E0 denotes the edge set of the initial digraph, see [12, 15]. The
second one, denoted LPinc(`), is a well-known LP relaxation for the problem of increasing (S, T) connec-
tivity by one by adding edges from E − E` to a digraph (V,E`) that is `-(S, T) connected; we may view
(V,E`) as the “initial digraph.”

LP for k-(S, T) connectivity

LP(k)

z∗k = min

∑
e∈E−E0

c(e) · xe

s.t. x(δoutE−E0
(U)) + doutE0

(U) ≥ k, ∀U ⊆ V, U ∩ S 6= ∅, U ∩ T 6= T

0 ≤ xe ≤ 1, ∀e ∈ E − E0

LP for increasing (S, T) connectivity from ` to `+ 1

19

LPinc(`)

zinc = min

∑
e∈E−E`

c(e) · xe

s.t. x(δoutE−E`(U)) ≥ 1, ∀U ⊆ V, U ∩ S 6= ∅, U ∩ T 6= T, doutE`
(U) = `

0 ≤ xe ≤ 1, ∀e ∈ E − E`

Proposition 24. Suppose there is an approximation algorithm for the problem of increasing the (S, T) con-
nectivity of a digraph by one that achieves an approximation guarantee of β(n) with respect to the LP
relaxation LPinc(`). Then there is an O(β(n) log k)-approximation algorithm for the k-(S, T) connectivity
problem.

We omit our proof, which follows from the well-known LP-scaling technique; a proof is given in [25].
In the rest of this section, we present our approximation algorithm for increasing the (S, T) connectivity

by one. We assume that the initial digraph is `-(S, T) connected. This assumption is valid because previous
iterations of the algorithm have increased the (S, T) connectivity from zero to `.

5.3 Preliminaries on `-(S, T) connected digraphs

This subsection develops some basic results on `-(S, T) connected digraphs, where ` is a nonnegative inte-
ger.

A deficient set is a set of vertices U ⊆ V such that U ∩ S 6= ∅, U ∩ T 6= T , and dout(U) < `+ 1. Thus
there exists a pair of vertices s ∈ S and t ∈ T such that U “separates” s and t, so any feasible solution of
the (`+ 1)-(S, T) connectivity problem has ≥ ` + 1 edges in the cut (U, V − U), but the current digraph
has ≤ ` edges in the cut. Observe that every deficient set U has dout(U) = `, since we assume that the
initial digraph is `-(S, T) connected. The next lemma is basic and it follows from submodularity and the
assumption on the initial digraph; see [25] for a proof.

Lemma 25 (Uncrossing Lemma). Let U and W be two deficient sets such that (U ∩ W) ∩ S 6= ∅ and
(U ∪W) ∩ T 6= T . Then both U ∩W and U ∪W are deficient sets.

We call an inclusionwise minimal deficient set a core, and denote it by C, or Ci, etc. The halo family of
a core C, denoted Halo(C), is the family of deficient sets containing C but containing no other cores, that
is,

Halo(C) = {U : U is a deficient set , C ⊆ U,U contains no other cores}.

The halo set of C, denoted H(C), is the union of all members of the halo family of C, that is, H(C) =⋃
{W : W ∈ Halo(C)}.

We say that an edge e = (v, w) covers a deficient set U if e has its tail in U and its head in V − U .
Similarly, we say that a set of edges F covers Halo(C) if every member of Halo(C) is covered by some
edge in F .

For a deficient set U , we define the body to be U ∩ S, and we define the shadow to be T − U . The next
lemma is a key tool for our algorithm and its analysis.

Lemma 26 (Disjointness Property). Let C and D be two distinct cores. Let U be a deficient set in Halo(C),
and let W be a deficient set in Halo(D). Then either

• (S ∩ U) and (S ∩W) are disjoint, or

• (T − U) and (T −W) are disjoint.

20

Proof. Suppose that (S ∩U) and (S ∩W) intersect; otherwise, the lemma holds. For the sake of contradic-
tion, suppose that (T − U) and (T −W) intersect. Then we have

(S ∩ U) ∩ (S ∩W) = (U ∩W) ∩ S 6= ∅
(T − U) ∩ (T −W) = T − (U ∪W) 6= ∅.

Then by Lemma 25, U ∩W is a deficient set, and thus it contains a core. We have a contradiction because
C is the unique core contained in U , D is the unique core contained in W , and C,D are distinct.

5.4 Computing cores

This subsection describes an efficient algorithm for computing all of the cores. Recall our assumption that
the current digraph is `-(S, T) connected.

For each pair of vertices s ∈ S, t ∈ T , we apply an efficient max s, t-flow min s, t-cut algorithm to
find a smallest set of vertices Cs,t that induces a minimum s, t-cut. It can be seen that if the value of the
maximum flow is less than `+1 (the required (S, T) connectivity), then Cs,t is the unique minimal deficient
set that includes s and excludes t, thus Cs,t is a candidate core; otherwise, there exists no deficient set (and
no core) that includes s and excludes t; clearly, Cs,t is not a core if it properly contains another set Cs′,t′ ,
where s′ ∈ S, t′ ∈ T , but otherwise, Cs,t is a core. Finally, we construct a family C by choosing every subset
Cs,t that does not properly contain another set Cs′,t′ , where s′ ∈ S, t′ ∈ T . The family C is the family of
all the cores. Moreover, the construction immediately implies an upper bound of |S| · |T | on the number of
cores, and there exist examples showing that this bound is tight. A proof of the next result is given in [25].

Proposition 27. For every pair of vertices s ∈ S, t ∈ T , if the above algorithm finds a set Cs,t then the set
is the unique minimal deficient set that includes s and excludes t. Moreover, the algorithm finds all of the
cores by computing C. The number of cores is at most |S| · |T |.

5.5 Covering a halo family via Frank’s algorithm

A key subroutine of our algorithm uses an algorithm due to Frank [13] to cover the halo family of a core.
Consider a core C, and the halo family of C. To cover the halo family, we first add so-called padding

edges that cover all deficient sets that are not in the chosen halo family. In particular, for each core D 6= C,
we choose an arbitrary vertex uD ∈ D∩S and add new edges from uD to each vertex v ∈ (T−D); thus, the
set of new edges for the core D is {(uD, w) : w ∈ (T −D)}; we call these edges the padding edges. After
adding all the padding edges, we choose an arbitrary root vertex rC ∈ C ∩ S and run Frank’s algorithm on
the resulting digraph, with rC as the root vertex and T as the set of terminals; the set of augmenting edges
E stays the same, and the initial digraph has all the edges of the original initial digraph G0 as well as all of
the padding edges. We claim that the set of augmenting edges F (C) computed by this algorithm covers the
halo family of our chosen core C. A proof of the next result is given in [25].

Proposition 28. Let C be the chosen core. Then the set of augmenting edges F (C) found by Frank’s
algorithm covers the halo family of C.

Here, we discuss another way of covering a halo family via Frank’s algorithm. A family of sets F is
called a T -intersecting family if, for any pair of sets U,W ∈ F , if U ∩W ∩ T 6= ∅, then both U ∩W and
U ∪W are also in F . Given a set of augmenting edges that all have heads in a set T , Frank’s algorithm
finds a minimum-cost set of augmenting edges that covers a T -intersecting family. For a core C, the family

21

F = {V −U : U ∈ Halo(C)} forms a T -intersecting family; this follows from Lemma 29. Hence, Frank’s
algorithm can be applied to find a subset F (C) of augmenting edges of minimum cost that covers F , and
thus covers Halo(C).

Lemma 29. Let C be a core. Then the family F = {V −U : U ∈ Halo(C)} forms a T -intersecting family.

Proof. Consider a pair of deficient sets U,W ∈ Halo(C). Suppose that the complements intersect in T ,
that is, V − U and V −W intersect in T . Then, (U ∪W) ∩ T 6= T . Clearly, every pair of deficient sets
U,W ∈ Halo(C) intersect in S. Thus, by Lemma 25 (uncrossing), both U∪W and U∩W are deficient sets.
Moreover, it can be seen that U ∪W and U ∩W are in Halo(C), if both sets are deficient sets; therefore,
V − (U ∪W) and V − (U ∩W) are in F . Hence, if sets V − U and V −W from our family F intersect
in T , then both (V − U) ∩ (V −W) and (V − U) ∪ (V −W) are in F .

In the proof of Lemma 32 (see below), we need the property that Frank’s algorithm does not cover any
other core when it is used to cover the halo family of a core C; we prove this in the next result.

Lemma 30. Let C be a core, and let F (C) be an (inclusionwise) minimal set of augmenting edges that
covers Halo(C). Let D 6= C be another core. Then no edge in F (C) covers D.

Proof. By way of contradiction, suppose that D is covered by some edge e ∈ F (C), where e = (v, q). By
the minimality of F (C), e covers at least one deficient set U ∈ Halo(C). Since the edge e = (v, q) covers
both U andD, its tail v is in (S∩U)∩(S∩D) and its head q is in (T −U)∩(T −D). This is a contradiction
by Lemma 25 (uncrossing) since U ∩D is a deficient set that is properly contained in D.

5.6 Approximation algorithms for increasing (S, T) connectivity

We increase the (S, T) connectivity by iteratively adding edges of low cost to decrease the number of cores
until no cores are left; if there are no cores, then observe that the (S, T) connectivity of the digraph has
increased by one.

We present two different algorithms that yield the same approximation guarantee up to constant factors.
The first algorithm follows a sequential greedy strategy, and it achieves an approximation guarantee of
H|S|·|T | = O(ln |S| · |T |), where H` denotes the `th harmonic number. The second algorithm has a better
running time, and it achieves an approximation guarantee of O(log2 |S|). The sequential greedy strategy
of the first algorithm has been used earlier for the k-VCSS problem by [9], and the parallel strategy of the
second algorithm has been used earlier for the k-VCSS problem by [26]. Both algorithms rely on Frank’s
algorithm; in general, the set of augmenting edges computed by Frank’s algorithm is not added to the current
digraph; instead, we compute the cost of this edge set, and if it satisfies other criteria, then we add this edge
set to the current digraph.

Proposition 31. There is an O(log n)-approximation algorithm for increasing (S, T) connectivity from ` to
`+ 1.

The main result of this section, Theorem 4, follows from the above result and Proposition 24.

5.7 Approximation Algorithm 1

Our first algorithm decreases the number of cores by one in each iteration. Consider any iteration: For each
core C, we apply Frank’s algorithm to compute a set of edges F (C) that covers the halo family of C; but,

22

at this point, we do not add any edges to the current digraph. We then choose a core C∗ such that c(F (C∗))
is minimum, that is, c(F (C∗)) = min{c(F (C)) : C is a core}, and we add F (C∗) to the current digraph.
Lemma 32 below shows that the number of cores decreases by one in the resulting digraph. We repeat these
iterations until no core is left in the current digraph.

In general, when we add some augmenting edges, we cover some of the old cores, but the augmented
digraph may have several new cores that are intersecting, e.g., there may exist j ≥ 2 new cores that intersect
each other but whose union contains less that j old cores; see Figure 5. (Such complications do not arise in
the algorithm of [9] for the k-VCSS problem since the cores are disjoint in [9].)

 S

 T T

 S
s1 s2 s1 s2

t1 t2
t3 t4 t1 t2 t3 t4

Figure 5: The figure shows an example where the number of cores increases after adding augmenting edges;
these edges are indicated by black lines. The problem is to increase (S, T)-connectivity by one, where
the initial digraph is 1-(S, T)-connected; the edges of the initial digraph are indicated by grey lines. The
example in the left figure has two cores, {s1} and {s2}. The example in the right figure is obtained by adding
the augmenting edges (s1, t2) and (s2, t2); it has six cores: {s1, t1, t2, t3}, {s1, t1, t2, t4}, {s1, t2, t3, t4},
{s2, t1, t2, t3}, {s2, t1, t2, t4}, and {s2, t2, t3, t4}.

Lemma 32. If we cover the halo family of a core C (by adding the edge set F (C) computed by Frank’s
algorithm), then the number of cores decreases by at least one.

Proof. We refer to the cores in the “old digraph” (V,E0 ∪ E′) as the old cores, and the cores in the “new
digraph” (V,E0 ∪ E′ ∪ F (C)) as the new cores.

It can be seen that the lemma follows from two key facts: (1) every one of the deficient sets in Halo(C)
is covered by the set of augmenting edges F (C); (2) every one of the old cores other than C is preserved,
that is, except for C, all of the old cores are new cores. Fact (1) holds by definition; we will prove fact (2)
below.

Consider fact (2) and its proof. When Frank’s algorithm is applied to any core C, then it finds an
(inclusionwise) minimal set of augmenting edges F (C) that covers Halo(C); the minimality holds because
the algorithm finds a set of augmenting edges of minimum cost. It then follows from Lemma 30 that for any
core D 6= C, D is not covered by any edge in F (C). Thus every old core D 6= C stays as a deficient set of
the new digraph, and moreover, it must be a new core.

23

5.8 Cost analysis by decomposing an optimal fractional solution

For the rest of this section, we revise our definitions of opt and E∗, for the sake of notational convenience.
We use opt to denote the optimal value of LPinc(`), which is the LP relaxation for increasing (S, T) con-
nectivity from ` to ` + 1, and we use E∗ to denote the support of some fixed optimal solution of this LP
(thus, letting x denote an optimal solution of LPinc(`), we have E∗ = {e ∈ E : xe > 0}).

Let C1, C2, . . . , Ct denote all of the cores. For each core Ci, 1 ≤ i ≤ t, letE∗(Ci) denote an (inclusion-
wise) minimal subset of E∗ such that Halo(Ci) is covered by x restricted to E∗(Ci).

Lemma 33 (Decomposition Lemma). E∗(Ci) and E∗(Cj) are disjoint for all 1 ≤ i 6= j ≤ t. Furthermore,∑t
i=1

∑
e∈E∗(Ci) c(e)x(e) ≤ opt.

Proof. We prove the first statement by a contradiction argument. Suppose that the statement does not hold.
Then there exist i, j with 1 ≤ i < j ≤ t, such that E∗(Ci) ∩ E∗(Cj) contains an augmenting edge e. Then
by the minimality of E∗(Ci) and E∗(Cj), e must cover some deficient set U ∈ Halo(Ci) as well as some
deficient set W ∈ Halo(Cj). This contradicts Lemma 26 (the disjointness property). Hence, E∗(Ci) and
E∗(Cj) are disjoint for all i 6= j.

The second statement is an immediate consequence of the first statement.

Lemma 34. Let t be the number of cores. Let C1, . . . , Ct be all of the cores, and let F (Ci) be an edge set
of minimum cost that covers Halo(Ci), ∀i = 1, . . . , t. Then

∑t
i=1 c(F (Ci)) ≤ opt.

Proof. Consider any core C. Recall that F (C) denotes the set of augmenting edges found by Frank’s
algorithm, and E∗(C) denotes an (inclusion-wise) minimal subset of E∗ such that Halo(C) is covered by
x restricted to E∗(C). Then we have c(F (C)) ≤

∑
e∈E∗(C) c(e)x(e). This follows from Frank’s results on

the LP relaxation for the min-cost k-(r, T) connected digraph problem. Frank proves that the LP relaxation
is integral, see Theorem 9, and also see Theorems 4.4 and 5.9 of [14].

We apply this to all the cores C1, C2, . . . , Ct. Thus, we have c(F (Ci)) ≤
∑

e∈E∗(Ci) c(e)x(e), for i =

1, 2, . . . , t. Moreover, we have
∑t

i=1

∑
e∈E∗(Ci) c(e)x(e) ≤ opt, by Lemma 33. Hence,

∑t
i=1 c(F (Ci)) ≤∑t

i=1

∑
e∈E∗(Ci) c(e)x(e) ≤ opt.

Lemma 35. The total cost incurred by the algorithm is O(log n)opt.

Proof. Let t0 denote the number of cores at the start of the algorithm; we have t0 ≤ |S| · |T | ≤ n2, by
Proposition 27. Each iteration decreases the number of cores by one, by Lemma 32. Moreover, we claim that
the cost of the set of augmenting edges added by an iteration is≤ opt/t, where t denotes the number of cores
at the start of the iteration. To see this, consider a core C∗ such that the edge set F (C∗) has minimum cost,
i.e., c(F (C∗)) ≤ c(F (C)), ∀ cores C. Then c(F (C∗)) = minti=1{c(F (Ci))} ≤ 1

t

∑t
i=1{c(F (Ci))} ≤

1
t opt, where the last inequality follows from Lemma 34.

Therefore, the total cost of the edges added by the algorithm is ≤ opt
(

1
t0

+ 1
t0−1 + . . .+ 1

)
=

opt Ht0 = O(ln t0) opt = O(log n) opt, where H` denotes the `th harmonic number.

Approximation Algorithm 1 together with its analysis gives a proof of Proposition 31.

Remark 36. Approximation Algorithm 1 can be implemented to run in time O(n6m + n5m · f(m,n)),
where f(m,n) denotes the time for computing a maximum s, t flow.

24

5.9 Approximation Algorithm 2

The second approximation algorithm executes O(log n) rounds, where each round adds a set of augmenting
edges with the hypothetical goal of decreasing the number of cores by a factor of two. At the start of each
round, we compute the set C of all cores for the current digraph; then, for each core C ∈ C, we compute
the set of edges F (C) that covers Halo(C), via Frank’s algorithm; then, we add all these edge sets to the
current digraph, that is, we add the edge set

⋃
{F (C) | C ∈ C}; this completes one round. We repeatedly

apply such rounds until there is no core left.

Lemma 37. No deficient set contains two cores whose bodies are intersecting.

Proof. By Lemma 26 (the disjointness property), any two distinct cores C and D whose bodies are inter-
secting must have disjoint shadows. Hence, C ⊇ T −D, and D ⊇ T − C, thus C ∪D contains T . Thus,
any set of vertices containing C ∪D cannot be a deficient set, because it contain T .

Lemma 38. In each iteration, the maximum number of body-disjoint cores decreases by a factor of two.

Proof. Let ν and ν ′ denote the maximum number of body-disjoint cores at the beginning and at the end of
the iteration, respectively. We refer to cores at the beginning of the iteration as old cores, and those at the
end of the iteration as new cores. In each iteration, the algorithm covers every deficient set that is contained
in some halo family. Thus, the current digraph has no deficient set that contains exactly one old core. In
other words, any new core contains at least two old cores. By Lemma 37, a new core cannot contain two old
cores whose bodies are intersecting because each new core is a deficient set in the old digraph. Hence, ν ′

body-disjoint new cores must contain at least 2ν ′ body-disjoint old cores. Thus, 2ν ′ ≤ ν which proves the
lemma.

Lemma 39. The algorithm terminates within O(log n) rounds, and it runs in polynomial time. Moreover,
the total cost incurred by the algorithm is at most O(log n)opt.

Proof. The maximum number of body-disjoint cores is O(|S|) = O(n), and the maximum number of
body-disjoint cores decreases by half in each round, hence the number of rounds is O(log n).

The cost of the edges added in each round is at most opt. To see this, let C1, C2, . . . , Ct be all of
the cores. Recall that, for i = 1, 2, . . . , t, F (Ci) is a set of edges of minimum cost that covers Halo(Ci),
hence, by Lemma 34, we have

∑t
i=1 c(F (Ci)) ≤ opt. Thus the total cost incurred in O(log n) rounds is

O(log n)opt.

Approximation Algorithm 2 together with its analysis gives another proof of Proposition 31.

Remark 40. Approximation Algorithm 2 can be implemented to run in time O((n4m + n3m · f(m,n)) ·
log n), where f(m,n) denotes the time for computing a maximum s, t flow.

6 An approximation algorithm for relaxed 1-(S, T) connectivity

In this section, we present an approximation algorithm for the relaxed (S, T) connectivity problem, and
prove part (1) of Theorem 5 in Section 1.3. The problem reduces to the special case where there is no
T, S dipath. Hence, we focus on this special case. Our approximation algorithm and its analysis are based
on a key structural result that decomposes any feasible solution into a set of junction trees that are disjoint on
the vertices of T . Our algorithm achieves an approximation guarantee of α(n) + 1, where α(n) denotes the

25

best available approximation guarantee for the directed Steiner tree problem. Our approximation guarantee
is tight up to an additive term of one, since Proposition 1 shows that the relaxed (S, T) connectivity problem
is at least as hard as the directed Steiner tree problem.

There is a simple, linear-time reduction from the relaxed (S, T) connectivity problem to its special case
where there is no T, S dipath. For each vertex s ∈ S, we add a new vertex s+ and a new edge (s+, s) to G0

(the initial digraph); the vertex s and its other incident edges stay the same. Then we replace each vertex s
in S by the associated vertex s+, to get Snew = {s+ : s ∈ S}. It is easily seen that a set of edges Ê ⊆ E is
a solution to the new instance iff it is a solution to the original instance. Observe that the new instance has
no T, Snew dipath, because each of the vertices s+ in Snew has indegree zero.

6.1 Relaxed (S, T) connectivity: An approximation algorithm for the case of no T, S dipath

In this section, we assume that there is no T, S dipath in G. We start with a key structural result on decom-
posing a feasible solution. We need the notion of junction trees. Let r be a vertex. Recall that an in-tree J in

rooted at r is an edge-minimal digraph that has a v, r dipath for every vertex v ∈ V (J in), and similarly, we
have the notion of an out-tree Jout rooted at r. A junction tree J rooted at r is the union of an in-tree J in

and an out-tree Jout, both rooted at the same vertex r; the in-tree and the out-tree may have common edges;
see [7, 4].

6.1.1 Decomposing a feasible solution

We give a structural result that applies to any feasible solution of the relaxed (S, T) connectivity problem.
We prove our approximation guarantee by applying this result to an optimal solution, hence, we consider an
optimal solution G∗ = (V,E0 ∪ E∗) to the relaxed (S, T) connectivity problem. But, we remark that the
results in this subsection (Lemmas 41 and 42) apply for any feasible solution.

We construct junction trees J1, J2, . . . , J` ⊆ G∗ with the following properties (see Lemma 42 and its
proof, given below):

• For i = 1, 2, . . . , `, Ji contains S, and Ji has an s, t dipath for all s ∈ S and all t ∈ V (Ji) ∩ T .

• For i 6= j, Ji and Jj have no common vertices of T and thus no common augmenting edges.

•
⋃`
i=1 Ji contains T ; in particular,

⋃`
i=1 Ji is (S, T) connected.

Intuitively, given an optimal set of augmenting edgesE∗, we want to partition it into subsetsE∗1 , . . . , E
∗
`

such that each subset E∗i together with E0 forms a junction tree Ji connecting S and V (Ji) ∩ T .
We start our construction by contracting all maximal strongly-connected components of G∗. Observe

that no vertices of S and T are in the same strongly-connected component because G has no T, S dipath;
moreover, any two maximal strongly-connected components have no common vertices; otherwise, the two
would have been merged. We abuse the notation and continue using the same symbols for the contracted
digraph. At this point, the contracted digraph G∗ is acyclic. Hence, there exists a vertex t∗ ∈ T such that
there exists no t, t∗ dipath for any other vertex t ∈ T . We call such a vertex t∗ a top-vertex.

The construction runs in several iterations on the contracted digraph. In each iteration i, we construct
a junction tree Ji whose in-tree contains S and the out-tree contains some vertices of T . We take the root
of the junction tree to be a top-vertex ti of the current digraph. The out-tree of Ji consists of dipaths from
ti to all vertices of T reachable from ti in the current digraph. Then, we remove the vertices of T that are

26

assigned to Ji from the current digraph. We repeat this process until each vertex of T is assigned to some
junction tree.

In more detail, we start with the contracted digraph G∗0 = G∗ and the terminal set T0 = T . At the
iteration i, for i = 1, 2, . . . , `, we consider the digraph G∗i−1 and the terminal set Ti−1. We choose a top-
vertex ti as the root of the junction tree Ji, and Ji consists of an in-tree J ini and an out-tree Jouti , that is,
Ji = J ini ∪ Jouti . Both J ini and Jouti are subgraphs of G∗i−1. The in-tree J ini is obtained by taking an
in-directed Steiner tree of G∗i−1 rooted at ti with terminal set S. The out-tree Jouti is obtained by taking
the union of ti, t dipaths for all vertices t ∈ Ti−1 reachable from ti in G∗i−1. Once we have the junction
tree Ji, we update the digraph G∗i−1 and the terminal set Ti−1 by removing all vertices of T assigned to Ji.
Thus, we have G∗i = G∗i−1 − V (Ji) ∩ T and Ti = Ti−1 − V (Ji) ∩ T . We continue to the next iteration and
repeat the process until all vertices of T are assigned to junction trees. The stopping condition is T` = ∅, or
equivalently, T is contained in

⋃`
i=1 Ji.

At termination, we uncontract the strongly-connected components of G∗. Suppose that the root ti of
a junction tree Ji in the contracted digraph corresponds to a nontrivial strongly-connected component Ci;
then, when we uncontract the digraph, we take the root ti to be any vertex of T in Ci. It can be seen that this
preserves the three properties of junction trees listed above. We remark that the in-tree and the out-tree may
have common vertices of T in the uncontracted digraph, hence, we may have c(Ji) < c(J ini) + c(Jouti).

Clearly, the junction trees J1, J2, . . . , J` of the uncontracted digraph have no common vertices of T , and
so they have no common augmenting edges. This implies that

∑`
i=1 c(Ji) = c(E∗) = opt.

The next two results prove that these junction trees satisfy the required properties.

Lemma 41. At the iteration i, i = 1, 2, . . . , `, the digraph G∗i−1 is (S, Ti−1) connected.

Proof. The proof hinges on a key property of a junction tree Ji: every node of V (Ji) ∩ T is reachable from
the root ti.

We proceed by induction on i for i = 1, 2, . . . , `.

Base case i = 1: The base case is trivial because the starting digraph G∗0 = G∗ is obtained from a feasible
solution.

Inductive step i > 1: Assume that the induction hypothesis holds for some i ≥ 1. We will prove that the
digraphG∗i is (S, Ti) connected. Suppose not. Then there exists a pair of vertices s ∈ S and t ∈ Ti such that
G∗i has no s, t dipath. By the induction hypothesis, G∗i−1 is (S, Ti−1) connected and so has an s, t dipath P .
Then P must contain some vertex of V (Ji)∩T , otherwise, P is also contained in G∗i = G∗i−1−V (Ji)∩T .
Then G∗i−1 has a dipath from ti to t, because Ji has dipaths from ti to each vertex of V (Ji) ∩ T , and so the
union of Ji and P contains a ti, t dipath. By the construction of Ji, the vertex t must be included in Ji and
thus must have been removed from G∗i , a contradiction. Therefore, G∗i is (S, Ti) connected.

Lemma 42. The following properties holds for J1, J2, . . . , J`.

(i) For i = 1, 2, . . . , `, Ji contains S, and Ji has an s, t dipath for all s ∈ S and all t ∈ V (Ji) ∩ T .
Moreover, if the original digraph G is acyclic on T , then J ini has exactly one vertex of T , namely, the
root ti.

(ii) For i 6= j, Ji and Jj have no common vertices of T and thus no common augmenting edges.

(iii)
⋃`
i=1 Ji contains T ; in particular,

⋃`
i=1 Ji is (S, T) connected.

27

Proof. (i) The first property follows from Lemma 41. Consider any i = 1, 2, . . . , `. Since G∗i−1 is
(S, Ti−1) connected, it must contain an in-directed Steiner tree J ini rooted at ti with terminal set S. More-
over, Jouti has a ti, t dipath, for every vertex t ∈ V (Jouti) ∩ T .

Now, focus on the contracted digraph obtained by contracting all maximal strongly-connected compo-
nents of G∗. We claim that ti is the unique vertex of T in J ini , that is, V (J ini) ∩ T = {ti}. Note that J ini is
an in-directed Steiner tree in G∗i−1 rooted at ti. Hence, if J ini contains some other vertex t′ ∈ T , then it has
a t′, ti dipath and so does G∗i−1. This is a contradiction since ti is a top-vertex of G∗i−1, that is, G∗i−1 has no
dipath from (Ti−1 − {ti}) to ti.

In general, the original (uncontracted) digraph G∗ may have two or more vertices of T in J ini . In the
special case where the digraph G is acyclic on T , observe that every strongly-connected component has at
most one vertex of T . Hence, in this special case, the above property of the contracted digraph is preserved
even after we uncontract the strongly-connected components, that is, ti is the unique vertex of T in J ini .
(ii) The second property holds because we remove all vertices of V (Ji) ∩ T from the digraph G∗i−1 before
proceeding to the next iteration, for i = 1, 2, . . . , `. Moreover, no two junction trees have a common
augmenting edge, because each vertex of T is in exactly one junction tree, and all augmenting edges have
heads in T .
(iii) The last property holds because we stop the construction when T` = ∅. Hence, by property (i), we have
that

⋃`
i=1 Ji is (S, T) connected.

6.1.2 An approximation algorithm

Our algorithm constructs an auxiliary digraph, then computes a rooted out-branching M of minimum-cost
in it, and then maps M back to the original digraph G to get a solution to the relaxed (S, T) connectivity
problem. The auxiliary digraph is constructed as follows. For each vertex t ∈ T , we compute an in-directed
Steiner tree Ft rooted at t with terminal set S of approximately minimum cost. Then we remove all incident
edges from S, contract S to a single vertex ŝ, and add an edge (ŝ, t) of cost c(Ft) for each t ∈ T ; finally, we
remove all optional vertices v ∈ V − (S ∪T) that are not reachable from T ; this completes the construction
of the auxiliary digraph. Then we compute a min-cost out-branchingM with root ŝ for the auxiliary digraph;
observe that all vertices are reachable from ŝ, by construction. Finally, we replace each edge (ŝ, t) of M
by the corresponding directed Steiner tree Ft to get a solution digraph Ĝ. We analyze the cost of Ĝ by
comparing it to the cost of an optimal solution G∗ = G0 ∪ E∗. Figure 6 illustrates the working of our
algorithm.

The next result gives the correctness and cost analysis for the algorithm.

Proposition 43. The above algorithm finds a feasible solution of cost ≤ (α(n) + 1)opt for the relaxed
(S, T) connectivity problem.

Proof. The correctness of our solution follows from the fact that M is an out-branching rooted at ŝ. In more
detail, consider any vertex t ∈ T . Observe that every ŝ, t dipath in M is of the form ŝ → t∗ → . . . → t,
where (ŝ, t∗) is an auxiliary edge while the other edges belong to the digraph G. Since we replace (ŝ, t∗) by
the in-directed Steiner tree Ft∗ in the final step, the resulting digraph Ĝ must have an s, t∗ dipath for every
s ∈ S. Hence, we have an s, t dipath of the form s → . . . → t∗ → . . . → t, for each vertex s ∈ S. Thus,
the resulting digraph Ĝ is (S, T) connected.

Now, consider the cost analysis. We abbreviate α(n) to α within this proof. We have c(Ê) ≤ c(M).
Our key claim is that c(M) ≤ (α+ 1)opt. To prove this, we start with the digraph G∗ = (V,E0∪E∗) of an
optimal solutionE∗ and construct a spanning subgraphM∗ ofGaux such thatM∗ contains an out-branching

28

Figure 6: The figure illustrates the working of our approximation algorithm for the relaxed (S, T) connec-
tivity problem on an example that has no T, S dipath. The left figure shows the original digraph. The right
figure shows the auxiliary digraph. The set of vertices S is contracted into a single vertex ŝ. The black
vertices are vertices of S and T . The grey vertices are optional vertices. The grey lines denote edges of the
initial digraph. The black lines denote augmenting edges. The dash-lines denote auxiliary edges obtained
by replacing an in-directed Steiner tree Ft rooted at a vertex t ∈ T by an edge (ŝ, t) with cost c(Ft) for each
vertex t ∈ T .

of Gaux rooted at ŝ and c(M∗) ≤ (α + 1)opt; clearly, this will prove the claim. We apply Lemma 42 to
G∗ to obtain junction trees J1, . . . , J` that satisfy properties (i)–(iii) of the lemma. Recall that ti denotes
the root of the in-directed Steiner tree J ini of Ji, for i = 1, . . . , `. For each of the junction trees Ji, where
i = 1, . . . , `, we add the auxiliary edge (ŝ, ti) to M∗; observe that c(ŝ, ti) ≤ α c(J ini) because J ini is an
in-directed Steiner tree of G rooted at ti with terminal set S and c(ŝ, ti) ≤ α c∗ti , where c∗ti denotes the
minimum cost of an in-directed Steiner tree of G rooted at ti with the same terminal set as J ini .

Next, for i = 1, . . . , `, we add to M∗ all the edges of Jouti . Observe that Jouti is a subgraph of Gaux

because each edge in Jouti is reachable from ti, hence, both end-vertices of the edge are in T ∪ Q. Since
the junction trees J1, . . . , J` satisfy properties (i)–(iii) (of Lemma 42), it follows that M∗ contains T , and
moreover, M∗ has an ŝ, t dipath for each vertex t ∈ T .

Finally, we add to M∗ the edges of a minimum-cost dipath from T to v, for each optional vertex v ∈ Q;
each of these edges has cost zero since the head is in Q. This completes the construction of M∗. Clearly,
M∗ contains an out-branching of Gaux rooted at ŝ. We have

c(M∗) ≤
∑̀
i=1

(α c(J ini) + c(Jouti)) ≤
∑̀
i=1

(α c(Ji) + c(Ji)) ≤ (α+ 1)
∑̀
i=1

c(Ji) ≤ (α+ 1)opt.

This implies that our algorithm achieves an approximation guarantee of (α(n) + 1) as required. We remark
that the additive term of +1 arises because c(Ji) may be strictly less than c(J ini) + c(Jouti), since J ini and
Jouti may have common vertices of T .

6.2 The relaxed (S, T) connectivity problem on a digraph that is acyclic on T

In this section, we focus on the special case of the relaxed (S, T) connectivity problem where the digraph
G is acyclic on T . First, we show that this problem is at least as hard for approximation as the set covering
problem. Then, we refine the algorithm of Section 6.1 to improve the approximation guarantee toO(log |S|)
when the digraph is acyclic on T . We use the abbreviation SCP for the set covering problem.

29

For the hardness result, consider an instance ISC of SCP with ground-set U = {u1, . . . , up} and subsets
S1, . . . , Sq ⊆ U . We can represent ISC by a bipartite graph B whose vertex partition consists of U and
W = {S1, . . . , Sq}; B has an edge between ui ∈ U and Sj ∈ W iff ui ∈ Sj in the instance ISC . To obtain
an instance of relaxed (S, T) connectivity, we orient the edges of B from U to W , and then we add one
new vertex t and the edges (Sj , t) with cost c(Sj) for each subset Sj of the instance ISC ; we give a cost
of zero to all other edges, and we fix T = {t}, S = U ; note that each edge of positive cost has its head
in T . This completes the construction. It can be seen that a feasible solution Ê for the instance of relaxed
(S, T) connectivity corresponds to a feasible solution of the instance ISC of the same cost, by choosing a
subset Sj of ISC iff an edge (Sj , t) is in Ê.

Consider the refined approximation algorithm for relaxed (S, T) connectivity. For any vertex t̂ ∈ T ,
when we compute an in-directed Steiner tree with root t̂ and terminal set S, then we only consider solution
subgraphs such that all augmenting edges have heads at t̂; in other words, we ignore solution subgraphs that
contain s, t̂ dipaths that use≥ 2 augmenting edges for some s ∈ S. There may exist vertices t̂ ∈ T such that
there exist no in-directed Steiner trees rooted at t̂ satisfying the above conditions; then, we give an infinite
cost to the corresponding auxiliary edges (ŝ, t̂) in the auxiliary digraph constructed by the algorithm. To see
the correctness of this construction, consider an optimal solution G∗ = G0 + E∗ and any top vertex t̂ in
the “decomposition” given by Lemma 42. The in-directed Steiner tree J in

t̂
(of the decomposition) with root

t̂ and terminal set S contains no other vertices of T , by property (i) of Lemma 42, hence, J in
t̂

contains no
augmenting edge with head in T − {t̂}.

We can compute an approximately min-cost directed Steiner tree of this special form by solving the
following instance ÎSC of SCP. We take the ground-set in the instance ÎSC to be the set S (in the instance of
relaxed (S, T) connectivity); moreover, for each edge ej with head at t̂ (in the instance of relaxed (S, T) con-
nectivity), we have a subset Sj ⊆ S in the instance ÎSC , where Sj = {s ∈ S : G0 + ej has an s, t̂ dipath}.

A greedy algorithm for SCP gives an approximation guarantee of O(log |S|) for each of these instances
of SCP (one for each vertex in T). Hence, by Proposition 43, the algorithm for relaxed (S, T) connectivity
achieves an approximation guarantee of O(log |S|). This proves Theorem 5 in Section 1.3.

Acknowledgments. We thank our colleagues for useful comments. In particular, we thank Chaitanya
Swamy and Jochen Könemann who were readers for the second author’s thesis which contains many of the
results of this paper.

References

[1] S.Arora and C.Lund, Hardness of Approximations. In Approximation algorithms for NP-hard prob-
lems, Ed. D.S.Hochbaum, PWS publishing co., Boston, 1996.

[2] S.Arora and M.Sudan, Improved Low-Degree Testing and its Applications. In STOC, pages 485–495,
1997.

[3] M.Charikar, C.Chekuri, T.-Y.Cheung, Z.Dai, A.Goel, S.Guha, and M.Li, Approximation algorithms
for directed Steiner problems. In SODA, pages 192–200, 1998.

[4] C.Chekuri, G.Even, A.Gupta, and D.Segev, Set connectivity problems in undirected graphs and the
directed Steiner network problem. ACM Transactions on Algorithms, 7(2), 2011. Preliminary version
in Proc. 19th ACM-SIAM SODA, 532–541, 2008.

30

[5] J.Cheriyan, Combinatorial optimization on k-connected graphs. In Proc. ICRTGC – ICM satellite
conference, Aug. 2010.

[6] J.Chuzhoy and S.Khanna, AnO(k3 log n)-approximation algorithm for vertex connectivity survivable
network design. In FOCS, pages 437–441. IEEE, 2009.

[7] G.Even, G.Kortsarz, and W.Slany, On network design problems: fixed cost flows and the covering
Steiner problem. ACM Transactions on Algorithms, 1(1):74–101, 2005.

[8] J.Edmonds, Optimum branchings. Journal of Research of National Bureau of Standards, 71B(4):233–
240, 1967.

[9] J.Fakcharoenphol and B.Laekhanukit, An O(log2 k)-approximation algorithm for the k-vertex con-
nected spanning subgraph problem. In R.E. Ladner and C. Dwork, editors, STOC, pages 153–158.
ACM, 2008.

[10] U.Feige, A threshold of lnn for approximating set cover. J. ACM, 45(4):634–652, 1998.

[11] L.Fleischer, K.Jain, and D.P.Williamson, An iterative rounding 2-approximation algorithm for the
element connectivity problem. Journal of Computer and System Sciences, 72 (5), pp. 838–867, 2006.
Preliminary version in Proc. 42nd IEEE FOCS, pp.339-347, 2001.

[12] A.Frank, Connectivity augmentation problems in network design, in Mathematical Programming:
State of the Art 1994, (Eds.J.R.Birge and K.G.Murty), pp.34–63, The University of Michigan, Ann
Arbor, MI, 1994.

[13] A.Frank, Increasing the rooted-connectivity of a digraph by one. Mathematical Programming,
84(3):565–576, 1999. Connectivity augmentation of networks: structures and algorithms (Budapest,
1994).

[14] A.Frank, Rooted k-connections in digraphs. Discrete Applied Mathematics, 157(6):1242–1254, 2009.

[15] A.Frank and T. Jordán, Minimal edge-coverings of pairs of sets. J. Comb. Theory, Ser. B, 65(1):73–110,
1995.

[16] A.Frank and E.Tardos, An application of submodular flows, Linear Algebra and its Applications,
114/115:329–348, 1989.329-348.

[17] G.Frederickson and J.JáJá, Approximation algorithms for several graph augmentation problems, SIAM
J. Computing, 10(2):270–283, 1981.

[18] M.X. Goemans, A.V. Goldberg, S.A. Plotkin, D.B. Shmoys, E. Tardos, and D.P. Williamson, Improved
approximation algorithms for network design problems. In SODA, pages 223–232, 1994.

[19] E. Halperin and R. Krauthgamer, Polylogarithmic inapproximability. In STOC, pages 585–594, 2003.

[20] C.S. Helvig, G. Robins, and A. Zelikovsky, An improved approximation scheme for the group Steiner
problem. Networks, 37(1):8–20, 2001.

[21] S.Khuller, Approximation algorithms for finding highly connected subgraphs. In Approximation algo-
rithms for NP-hard problems, Ed. D.S.Hochbaum, PWS publishing co., Boston, 1996.

31

[22] S.Khuller and B.Raghavachari, Improved approximation algorithms for uniform connectivity prob-
lems. Journal of Algorithms 21, 434–450, 1996.

[23] G.Kortsarz and Z.Nutov, Approximating node-connectivity problems via set covers. Algorithmica,
37(2):75–92, 2003.

[24] G.Kortsarz and Z.Nutov, Approximating k-node connected subgraphs via critical graphs. SIAM J.
Comput., 35(1):247–257, 2005.

[25] B.Laekhanukit, Approximation algorithms for (S, T)-connectivity problems. M.Math. Thesis, Uni-
versity of Waterloo, 2010.

[26] Z.Nutov, An almost O(log k)-approximation for k-connected subgraphs. In Claire Mathieu, editor,
SODA, pages 912–921. SIAM, 2009.

[27] Z.Nutov, Approximating minimum cost connectivity problems via uncrossable bifamilies and spider-
cover decompositions. In FOCS, pages 417–426. IEEE, 2009.

[28] Z.Nutov, Approximating minimum-cost edge-covers of crossing biset-families.
http://www.openu.ac.il/home/nutov/publications.html Manuscript, submitted for journal publi-
cation, May 2010. Preliminary version in [26].

[29] R. Ravi and D.P. Williamson, An approximation algorithm for minimum-cost vertex-connectivity
problems. Algorithmica, 18(1):21–43, 1997. Preliminary version in Proc. 6th ACM-SIAM SODA,
332–341, 1995. Erratum. Algorithmica, 34:98–107, 2002.

[30] R.Raz and M.Safra, A Sub-Constant Error-Probability Low-Degree Test, and a Sub-Constant Error-
Probability PCP Characterization of NP. In STOC, pages 475–484, 1997.

[31] A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency. Algorithms and Combinatorics,
Vol. 24. Springer, Berlin, 2003.

[32] V.V.Vazirani, Approximation Algorithms. Springer, Berlin, 2001.

[33] L.A. Végh and A.A. Benczúr, Primal-dual approach for directed vertex connectivity augmentation and
generalizations. ACM Transactions on Algorithms, 4(2), 2008.

[34] D.P.Williamson and D.B.Shmoys, The Design of Approximation Algorithms. Cambridge University
Press, 2010.

32

