
On the Approximability of the Traveling Salesman
Problem with Line Neighborhoods
Antonios Antoniadis !

University of Twente, The Netherlands

Sándor Kisfaludi-Bak !

Max Planck Institute for Informatics, Saarbrücken, Germany

Bundit Laekhanukit !

Shanghai University of Finance and Economics, Shanghai, China

Daniel Vaz !

Operations Research Group, TU Munich, Germany

Abstract
We study the variant of the Euclidean Traveling Salesman problem where instead of a set of points,
we are given a set of lines as input, and the goal is to find the shortest tour that visits each line.
The best known upper and lower bounds for the problem in Rd, with d ≥ 3, are NP-hardness and an
O(log3 n)-approximation algorithm which is based on a reduction to the group Steiner tree problem.

We show that TSP with lines in Rd is APX-hard for any d ≥ 3. More generally, this implies that
TSP with k-dimensional flats does not admit a PTAS for any 1 ≤ k ≤ d − 2 unless P = NP, which
gives a complete classification regarding the existance of polynomial-time approximation schemes for
these problems, as there are known PTASes for k = 0 (i.e., points) and k = d − 1 (hyperplanes). We
are able to give a stronger inapproximability factor for d = O(log n) by showing that TSP with lines
does not admit a (2 − ε)-approximation in d dimensions under the Unique Games Conjecture. On
the positive side, we leverage recent results on restricted variants of the group Steiner tree problem
in order to give an O(log2 n)-approximation algorithm for the problem, albeit with a running time
of nO(log log n).

2012 ACM Subject Classification Theory of computation → Computational geometry; Theory of
computation → Approximation algorithms analysis

Keywords and phrases Traveling Salesman with neighborhoods, Group Steiner Tree, Geometric
approximation algorithms

Funding Antonios Antoniadis: Work done in part while the author was at Saarland University and
Max Planck Institute for Informatics and supported by DFG grant AN 1262/1-1.
Daniel Vaz: This work has been supported by the Alexander von Humboldt Foundation with funds
from the German Federal Ministry of Education and Research (BMBF). Work done in part while
the author was at Saarland University and Max Planck Institute for Informatics.

1 Introduction

In the Euclidean Traveling Salesman problem, one is given n points in d-dimensional Euclidean
space (denoted by Rd), and the goal is to find the shortest tour visiting all the points. The
problem is NP-hard for d ≥ 2 [41], but it has a celebrated polynomial time approximation
scheme (PTAS), i.e., a polynomial-time algorithm that produces a tour of length at most 1+ε

times the optimum for any fixed ε > 0, due to Arora [3] and (independently) by Mitchell [38].
The running time was later improved by Rao and Smith [42].

In the past decades, a considerable amount of work has concentrated on finding approxim-
ations for variants and generalizations of the Euclidean Traveling Salesman Problem, e.g., by
changing the underlying space [4, 33, 16, 6], or the objects being visited [15, 7, 11, 20, 39, 40,
28]. In the latter case which is known as the Traveling Salesman Problem with Neighborhoods

mailto:a.antoniadis@utwente.nl
mailto:sandor.kisfaludi-bak@mpi-inf.mpg.de
mailto:bundit@sufe.edu.cn
mailto:daniel.vaz@tum.de

2 On the Approximability of TSP with Line Neighborhoods

(TSPN), the input consists of n neighborhoods, and the goal is to find the shortest tour that
visits each neighborhood. More formally, we are given the sets S1, . . . , Sn ⊂ Rd, and we wish
to compute the shortest closed curve τ such that for each i ∈ {1, . . . , n} we have Si ∩ τ ≠ ∅.
(Observe that the optimum curve τ consists of at most n segments.)

In contrast to regular TSP, TSPN is already APX-hard in the Euclidean plane [15], i.e.,
it has no PTAS unless P = NP. Worse still, even the basic case in which each neighborhood
is an arbitrary finite set of points in the Euclidean plane (the so called Group TSP) admits
no polynomial-time O(1)-approximation (unless P = NP) [43]. Even in the case in which
each neighborhood consists of exactly two points [18] the problem remains APX-hard.

This inherent hardness of TSPN gives rise to studying variants of the problem in which
the neighborhoods are restricted in some ways. In a seminal paper, Arkin and Hassin [2]
looked into the problem for various cases of bounded neighborhoods, including translates of
convex regions and parallel unit segments, and gave constant-factor approximation algorithms
for them. The best known approximation algorithm for a more general case of bounded
neighborhoods in the plane is due to Mata and Mitchell [35] and attains an O(log n)

approximation factor. However, there exist special cases of such bounded neighborhoods in
the plane that do allow for O(1)-approximation algorithms. These include neighborhoods
which are disjoint, fat, or have comparable sizes [15, 7, 11, 20, 39, 40].

The complementary case of TSPN in which neighborhoods are unbounded regions (which
is also the focus of this paper) is, in general, less well understood. Consider neighborhoods
that are affine subspaces (flats) of dimension k < d in Rd. On the positive side, and despite
the APX-hardness of the general TSPN problem already in R2, the version with flats (in
this case lines) as neighborhoods can be solved exactly in O(n4 log n)-time via a reduction
to the shortest watchman route problem [29, 17]. Furthermore, Dumitrescu [19] provides
a 1.28-approximation algorithm that runs in linear time. In R3, the problem of line and
plane neighborhoods was first raised by Dumitrescu and Mitchell [20]. For the line case, they
already point out that the problem is NP-hard as a direct consequence of the NP-hardness of
Euclidean TSP in the plane [41]. Although this leaves the possibility for a PTAS open, the
best known approximation algorithm to date for TSPN with line neighborhoods in R3 was
given by Dumitrescu and Tóth [21] and achieves an O(log3 n)-approximation. For the case of
(d− 1)-dimensional flats in Rd (which also includes planes in R3), they give a linear-time (for
any constant dimension d and any constant ε > 0) (1 + ε)2d−1/

√
d-approximation. This result

was subsequently improved by Antoniadis et al. [1] to an EPTAS that also runs in linear
time for fixed d and ε. Whether this variant is NP-hard or not remains an interesting open
problem. As for the case of line neighborhoods in Rd for d ≥ 3, a PTAS for k-dimensional
flats for 1 ≤ k ≤ d − 2 also remained out of reach.

We show that unless P = NP, there is no PTAS for lines in R3. As a direct consequence,
we can rule out the existence of a PTAS in all remaining open cases of TSPN with flats:
there is no PTAS for k-dimensional flat neighborhoods for any 1 ≤ k ≤ d − 2, unless P = NP.

Let us call the Euclidean TSP problem in Rd with k-dimensional flat neighborhoods
(k, d)-TSPN. Although ruling out a PTAS for (1, 3)-TSPN is an important step towards
settling the approximability of the problem, the inapproximability factor obtained is very
close to 1. It would be desirable to obtain a stronger inapproximability factor, especially
given how far we are from any constant-approximation algorithm for the problem. A natural
way to obtain such a stronger inapproximability result is to consider the problem in higher
dimensional spaces. For example, regarding the classic Euclidean TSP, it is known that
the problem becomes APX-hard for d = log n [44]. This result directly implies that TSPN
with line neighborhoods in R1+log n is APX-hard, but this is barely satisfactory, since it

A. Antoniadis, S. Kisfaludi-Bak, B. Laekhanukit, D. Vaz 3

again only gives a small inapproximability factor. However, by using a different reduction
from the vertex cover problem, we are able to show that the problem has no polynomial
(2−ε)-approximation in RO(log n) for any fixed ε > 0 under the Unique Games Conjecture [30].

On the algorithmic side, very little is known about (k, d)-TSPN. For d = 3, the best
known polynomial time approximation for (1, 3)-TSPN is the aforementioned O(log3 n)-
approximation algorithm due to Dumitrescu and Tóth [21]. Their approach is to discretize
the problem by selecting a polynomial number of “relevant” points on each line. It is shown
that restricting the solution to visiting lines at these points only increases the tour length
by a constant factor. The resulting instance can now be seen as an instance of group-TSP,
where the relevant points of each line form a group. By feeding this into the O(log3 n)-
approximation algorithm for general group Steiner tree [25, 24] (it is easy to go from the tree
solution to a tour by doubling each edge), they obtain the same asymptotic approximation
factor for TSPN with line neighborhoods. This is somewhat unsatisfactory, since it ignores
that the group Steiner tree instances constructed by the reduction are (i) Euclidean and (ii)
all the points of a group are collinear. In other words, although the constructed group Steiner
tree instances are highly restricted, there is no known technique to exploit this restriction.

However, the reduction from TSPN with line neighborhoods to the group Steiner tree
problem implies that, if we allow quasi-polynomial running time, then TSPN with line
neighborhoods admits an approximation ratio of O(log2 n/ log log n) in O(nlog2 n)-time due
to the result of Chekuri and Pál [13]. We would like to point out that this approximation
ratio is tight for the class of quasi-polynomial time algorithms due to the recent work of
Grandoni, Laekhanukit and Li [26], which holds under the Projection Game Conjecture and
NP /⊆ ⋃ϵ>0 BPTIME(2nϵ

). Their hardness result is built on the seminal work of Halperin
and Krauthgamer [27], who prove that group Steiner tree admits no log2−ϵ n-approximation
for any fixed ϵ > 0, unless NP ⊆ ZTIME(npolylog(n)).

For the class of polynomial-time approximation algorithms, the group Steiner tree problem
admits an approximation ratio of O(log2 n) on some special cases, e.g., trees [25] and bounded
treewidth graphs [10, 9]. It is still open whether the group Steiner tree problem in general
graphs admits a polynomial-time O(log2 n)-approximation algorithm; the best running time
to obtain an O(log2 n)-approximation is nO(log n) [13].

The connection between TSPN and group Steiner tree also holds in the reverse direction:
Given an instance of group Steiner tree, one may embed the input metric into a Euclidean
space with distortion O(log n) [8] and cast it as TSPN with “set neighborhoods”.

While we cannot improve the approximation factor in polynomial time, we can do so in
quasi-polynomial time: we give an O(log2 n)-approximation in nO(log log n) time. We obtain
this result by using Arora’s PTAS for TSP [3], together with the framework of Chalermsook
et al. [10, 9], to transform the TSPN problem into a variant of group Steiner tree when the
input graph is a tree, and then employing an O(log2 n)-approximation algorithm.

1.1 Our Contribution
Our first contribution is to show that unlike the problem with hyperplane neighborhoods,
the problem with line neighborhoods is APX-hard.

▶ Theorem 1. The TSPN problem for lines in R3 is APX-hard. More specifically, it has no
polynomial time (1 + 1

230000)-approximation unless P = NP.

The reduction is from the vertex cover problem on tripartite graphs. The idea is to
represent the graph edges with lines, where two lines intersect if and only if they correspond to
incident edges. The main challenge is to keep the pairwise distance between non-intersecting

4 On the Approximability of TSP with Line Neighborhoods

lines large enough. We solve this by carefully placing the intersection points on non-adjacent
edges of a cube. For technical reasons, we do not work directly with this placement, but
rather on a “flattened” version of this point set. Additionally, we want to restrict the optimal
tour so that it visits each line near one of its intersection points with other lines. This is
achieved by forcing the optimal tour to follow a certain closed curve using special point
gadgets (each consists of polynomially many lines), and to visit the lines representing the
edges only at (or close to) intersection points. Visiting an intersection point corresponds to
including the corresponding vertex in the vertex cover of the graph. As a direct consequence
of Theorem 1, we obtain the following.

▶ Corollary 2. The Euclidean TSP problem with k-dimensional flat neighborhoods in Rd is
APX-hard for all 1 ≤ k ≤ d − 2.

To prove Corollary 2, suppose we are given a set L of lines in R3. We can first change each
line ℓ ∈ L into the flat ℓ ×Rk−1, resulting in k-dimensional flats in Rk+2. Since k ≤ d − 2, we
have that Rk+2 is a subspace of Rd, so this is a valid construction for (k, d)-TSPN. Moreover,
any tour in R3 visiting the lines is also a valid tour of the k-flats, and a valid tour of the
k-flats can be projected into a valid tour of L in R3 of less or equal length.

Our second contribution is to show a larger inapproximability factor in higher dimensions
under the Unique Games Conjecture:

▶ Theorem 3. For any ε > 0, there exists a constant c such that there is no (2 − ε)-
approximation algorithm for TSPN with line neighborhoods in Rc⋅log n, unless the Unique
Games Conjecture is false. Moreover, for any ε > 0, there is a constant c such that it is
NP-hard to give a (

√
2 − ε)-approximation for TSPN with line neighborhoods in Rc⋅log n.

This reduction is from the general vertex cover problem. Again we represent the edges of
the graph with lines and the vertices correspond to intersection points. This time however the
intersection points are almost equidistant: they are obtained via the Johnson-Lindenstrauss
lemma applied on an n-simplex. This allows the tour to visit the intersection points in any
order. To obtain a direct correspondence with vertex cover, we need to ensure that lines are
visited near intersection points. To this end, we blow up the underlying graph by replacing
each edge by a complete bipartite graph. Thus, we get the following corollary of Theorem 3.

▶ Corollary 4. For any ε > 0 there is a number c = c(ε) such that the Euclidean TSP problem
with k-dimensional flat neighborhoods in Rd has no polynomial (2− ε)-approximation for any
k ∈ {1, . . . , d − c log n}, unless the Unique Games Conjecture is false.

On the positive side, our third contribution is to develop an O(log2 n)-approximation
algorithm with slightly superpolynomial running time.

▶ Theorem 5. There is a deterministic O(log2 n)-approximation algorithm for TSPN with
line neighborhoods in Rd that runs in time nO(log log n) for any fixed dimension d.

The algorithm is based on adapting the dynamic program by Arora [3], and reformulating
TSPN into the problem of finding a solution in the dynamic programming space that visits
all the line neighborhoods. We then build upon the techniques of Chalermsook et al. [10, 9],
and show that this task can be reduced to a variant of the group Steiner tree problem
that admits an O(log2 n)-approximation in slightly superpolynomial running time. The
O(log log n)-factor in the exponent of the running time is a consequence of the running time
of Arora’s algorithm, and it is possible that we can improve it to polynomial time if an
appropriate EPTAS for TSP with running time O(f(ε, d)n log n) is discovered.

All missing proofs can be found in the appendix, as well as a short conclusion in Section 5.

A. Antoniadis, S. Kisfaludi-Bak, B. Laekhanukit, D. Vaz 5

Q

P

∈ P

Q

detours

Figure 1 Left: Overview of a basic construction with a cube. Right: The optimal tour must visit
all points of Q, and it makes detours to some points pv.

2 Inapproximability in 3 dimensions

The goal of this section is to prove Theorem 1. The overall setup of our construction
is inspired by a reduction in Elbassioni et al. [22] for the planar problem with segment
neighborhoods. Our reduction is from vertex cover on 3-partite graphs (i.e., on graphs
G where the vertices can be partitioned into three independent sets V1, V2 and V3). It is
NP-hard to decide whether a given instance has a vertex cover of size n/2 or if all vertex
covers have size at least 34

33
n
2 [14].

In our construction, each vertex v of G is assigned to some point pv on some edge of a
unit cube; the classes V1, V2, V3 are mapped to pairwise non-adjacent and non-parallel (i.e.,
skew) cube edges. For each edge uv ∈ E(G), we add the line pupv; see Fig. 1.

Consider now a closed curve γ of length 10 which is disjoint form the cube, but follows
some edges of the cube at a distance c/n for some constant c. Let Q be a set of points along
γ such that any two consecutive points have distance c/(10n).

We define a special point gadget—which consists of a large collection of lines—at each
point q ∈ Q. This ensures that any TSP tour that has length at most 20 will touch an
infinitesimally small ball around each vertex of Q. Consequently, any not too long TSP tour
will have to “trace” γ. The points in P which are placed near the cube edges are arranged so
that one can visit each point pv with a short detour from γ of length c/n. Given a vertex
cover of size k in G one can create a TSP tour of length at most 10+kc/n, namely by folowing
γ and making the short detour at pv if and only if v is in the vertex cover. Conversely, by
a careful arrangement of the lines and point gadgets, we can ensure that a tour of length
10 + kc/n implies the existence of a vertex cover of size at most 1.011k.

For technical reasons, we need to transform the constructed cube to a very flat paral-
lelepiped; it is convenient to define the point set Q and the point gadgets only after this
flattening transformation takes place. We are now ready to define our construction.

2.1 The construction
Let G = (V, E) be a tripartite graph on n vertices with partition classes V1, V2, V3. We add
dummy vertices (without any incident edges) to G so that each class has n vertices; the
vertices of Va (a = 1, 2, 3) are denoted by va

1 , . . . , va
n. Notice that the addition of dummy

vertices does not change the set of vertex covers of G. Let C denote the unit cube [0, 1]3, and
let e1, e2, e3 be the unit segments (0, 0, 1)T (1, 0, 1)T , (1, 0, 0)T (1, 1, 0)T and (0, 1, 0)T (0, 1, 1)T
respectively. We assign each vertex va

i to a point on the middle third of ei. The assignment

6 On the Approximability of TSP with Line Neighborhoods

is denoted by p, and defined as:

p(va
i) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

(n+i
3n

, 0, 1)T if a = 1
(1, n+i

3n
, 0)T if a = 2

(0, 1, n+i
3n
)T if a = 3.

We denote by P = p(V (G)) the set of points created this way. For each edge uv ∈ E(G),
let ℓ(uv) be the line through p(u) and p(v), and let L be the set of lines created this way:
L = {ℓ(uv) ∣ uv ∈ E(G)}. The following technical lemma plays a key role in the contruction.

▶ Lemma 6. If ℓ, ℓ′ ∈ L correspond to non-incident edges, then they are disjoint and the
distance between them is at least 1

20n
.

Flattening. We must to ensure that the points of Q near a cube edge are similarly distant
from the lines in L incident to the cube edge (see also Claim 9). We achieve this by
transforming the above construction so that the angle of each line ℓ with the plane x+y+z = 0
is at most some small constant. Practically, we transform the point set P and the line set L
with the linear transformation x↦ Ax, where A = I − 0.3J and J is the all-ones matrix.

Essentially, the transformation pushes everything closer to the plane H ∶ x + y + z = 0:
for a given point p and its perpendicular projection q on H, the point Ap is the point
on the segment pq for which dist(q, Ap) = 1

10 dist(q, p). Note that if pq is any segment of
length λ, then its length after the transformation is at least λ/10 and at most λ. When the
transformation is applied to an edge ea of the cube C, then the resulting segment has length
σ =
√

0.72 + 0.32 + 0.32 ≃ 0.8185. Consequently, Ap(va
i) and Ap(va

i+1) has distance σ/(3n).
Let P̄ and L̄ be the resulting point set and line set. Using Lemma 6 and the above

arguments we get the following corollary.

▶ Corollary 7. The minimum distance between points of P̄ is σ
3n

, and the minimum distance
between lines of L̄ corresponding to non-incident edges of G is at least 1

200n
.

Defining the point gadgets, and wrapping up the construction. For a point set X, let
X̄ denote its image under the flattening transformation A. Let F a

1 and F a
2 be the planes of

the faces of [0, 1]3 incident to ea. The following claim shows that F̄ a
1 and F̄ a

2 are two planes
through ēa whose angle is small.

▷ Claim 8. For a = 1, 2, 3 we have ∢(F̄ a
1 , F̄ a

2) <
1
4 .

Let Ha be the angle bisector plane of F̄ a
1 and F̄ a

2 which does not intersect the image of
C, see Figure 2(i). Within Ha, we place a set of points Qa, which we define next.

Let δ = 1
4000n

, and let δ∗ be the height of the isoceles triangle Tδ with base δ and two
sides of length 10δ, that is δ∗ =

√
99.75δ. Consider a half-plane in Ha whose boundary is

parallel to ēa and is at distance δ∗ from it. Within this half-plane, let Qa be a set of at most
4000n points with the following properties: (i) for each p(va

i) there are two points q, q′ ∈ Qa

such that p(va
i), q and q′ form an isoceles triangle of side lengths 10δ, 10δ, δ and (ii) there is

a unique shortest TSP path of Qa, whose edges are of length exactly δ; see Figure 2(ii).
Let Q be a point set with the following properties:

Q1 ∪Q2 ∪Q3 ⊆ Q

For any pair of distinct points q, q′ ∈ Q, dist(q, q′) ≥ δ.
Each segment of the minimum TSP tour T (Q) of Q has length δ, and cost(T (Q)) = 10.
The minimum distance of points of Q from L̄ is attained only in Q1 ∪Q2 ∪Q3

A. Antoniadis, S. Kisfaludi-Bak, B. Laekhanukit, D. Vaz 7

ēa

Ha F̄ a1

F̄ a2

C̄
L̄

δ∗

q ∈ Q

p(vai) p(vai+1) p(vai+2)

δ∗

σ
3n

10δ

δ
δ

Ha

(ēa)⊥

ēa
ē1

ē2ē3

Q

Q3

Q1

Q2

(i)

(ii) (iii)

Q2

Y

Figure 2 (i) Cross-section given by a plane perpendicular to ēa. (The segment ēa appears as a
point, and the plane Ha as a line in this picture.) All lines of L̄ intersect such a plane in the gray
area. (ii) Defining Qa within the plane Ha, so that all points have distance at least δ∗ from ēa. (iii)
Defining Q so that it has all the required properties. The cylinder Y is perpendicular to the plane
x + y + z = 0, a plane to which all points of the construction are close to. The “triangle” defined by
the skew lines ēa wraps around the cylinder Y.

Q is disjoint form the cylinder Y of axis (0, 0, 0)T (1, 1, 1)T and radius σ/2.

Such a set Q is easy to find, for example by following the lines ēa and connecting them
far from the origin. See Fig. 2(iii) for an illustration.

We need the following claim on the distance of Q from the lines in L̄. Intuitively, it shows
that the points in Q are far from the lines in L̄, and thus a certain detour is necessary to
visit a line in L̄. Note that the bound would not be strong enough without the flattening.

▷ Claim 9. For any q ∈ Q and ℓ ∈ L̄ we have dist(q, ℓ) > 9.9δ.

▶ Lemma 10 (Point gadget). Given a positive integer n and a point q ∈ R3, there is a set
L of O(n6) lines through q such that any TSPN tour of L which is disjoint from the ball
B(q, 1

n3) has length at least 20.

Our construction is the union of the line set L̄ together with a point gadget placed at
each point q ∈ Q; let L∗ denote the resulting line set.

2.2 The Reduction
▶ Lemma 11. If G has a vertex cover of size k, then there is a tour in L∗ of length 10+19δk.
If L∗ has a tour of length 10 + 19δk, then G has a vertex cover of size 1.011k.

The proof of the first part of the lemma is straightforward. To prove the second claim,
we use the fact that the tour must touch the small balls B(q, 1

n3) for each point q ∈ Q by
Lemma 10. We can then consider a portion of the tour between two consecutive ball visits,
i.e., a polygonal curve g that starts near some point q ∈ Q and ends near some other point
q′ ∈ Q, and visits some of the lines in L̄ along the way. In Lemma 21 we show that g cannot
touch lines from all three classes, in other words there is a segment ēi such that all lines
visited by g have an endpoint on ēi. The proof of Lemma 21 relies on the property that Q

8 On the Approximability of TSP with Line Neighborhoods

avoids the cylinder Y with axis (0, 0, 0)T , (1, 1, 1)T and radius σ/2. Intuitively, if g would
touch lines from all three classes, then it would have to go around the cylinder partially,
which would be too costly. We can then define a vertex cover based on the tour portions g:
for each line ℓ visited by g, the line ℓ has a point on ēi that corresponds to some vertex v of
the graph. These vertices v form a set W which is clearly a vertex cover; the goal is then to
prove that ∣W ∣ ≤ 1.011k. The proof hinges on the fact that if a tour portion g contributes
s unique vertices to W , then it must jump between non-incident lines of L̄ at least (s − 1)
times, which incurs a cost of at least 20(s− 1)δ by Corollary 7. In case of s = 1, the tour still
needs to visit some line in L̄, which incurs a cost of at least 19.8δ by Claim 9. Putting these
observations together (and that the minimum cost tour of the balls B(q, 1/n3) has length
very close to 10) yields the desired bound on ∣W ∣.

Proof of Theorem 1. Suppose that there is a polynomial time algorithm that approximates
TSPN with lines in R3 within a factor of 1 + 1

230000 . Let G be a given 3-partite graph. If
G has a vertex cover of size n/2, then the above construction would have a tour of length
10 + 19δ n

2 = 10.002375. On the other hand, if all vertex covers of G have size at least 34
33

n
2 ,

then all tours of the construction have length at least 10 + 19δ 34
33

n
2⋅1.011 > 10.00242. As

10.00242/10.002375 > 1 + 1
230000 , we could use the hypothetical approximation algorithm to

distinguish between these two cases in polynomial time, which would imply P = NP. ◀

3 No (2 − ϵ)-approximation Algorithm

In this section we prove Theorem 3. In particular, we will show that when the objects are
lines, TSPN is at least as hard to approximate as the Vertex Cover problem which is known
to be hard to approximate to within a factor of 2 − ε, for any constant ε > 0, under the
Unique Games Conjecture (and inapproximable within a factor of 1.42 unless P = NP [31]).

▶ Theorem 12 ([32]). Unless the Unique Games Conjecture is false, for any constant ε > 0,
there is no polynomial-time algorithm that, given a graph G = (V, E) and an integer k,
distinguishes between the cases (i) G has a vertex cover of size at most k or (ii) G has no
vertex cover of size less than (2 − ε)k.

The main idea behind the reduction is to represent a graph G in Euclidean space such that:

Each vertex v ∈ V (G) corresponds to a point pv ∈ Rd,
Each edge e = uv ∈ E(G) corresponds to a line going through the points pu and pv,
An optimal tour visits each line sufficiently close to the points pv, and therefore the vertex
set corresponding to the points in the vicinity of the tour is a vertex cover.

However, in order to enforce that an optimal tour passes through (or not too far from)
the points pv, we will have to further build upon this idea. In particular, for each vertex v,
instead of constructing only one point pv, we will construct a set Pv of polynomially many
points corresponding to v. If there is an edge e = uw ∈ E(G), then we connect each point
corresponding to u with each point corresponding to w. More precisely, for each edge uv

and for every pair of points (pu, pw) with pu ∈ Pu and pw ∈ Pw, we add a line going through
pu and pw. Notice that the number of edges increases quadratically in the number of vertex
copies. Therefore, tours that visit lines away from the vertices are disproportionally affected,
which forces an optimal tour to visit lines at (or close to) the points in Pv.

Another key aspect of our construction is that we position the points of P ∶= ⋃v∈V (G) Pv

in Rd so that the distance between any pair of distinct points is (roughly) the same. This
helps us to have a more direct correspondence between the cost of the optimal tour and the
size of an optimal vertex cover. The reduction is desribed formally in the next subsection.

A. Antoniadis, S. Kisfaludi-Bak, B. Laekhanukit, D. Vaz 9

3.1 Reduction: Vertex Cover to TSP with Line Neighborhoods
Take an instance of the Vertex Cover problem on a graph G = (V, E) with n vertices and
m edges. We first take a lexicographic product of the graph G with an independent set of
size α = n2. Informally speaking, we construct a graph G′ by making α copies of each vertex
v ∈ V (G), and denote the corresponding vertex set by Qv. Then, for each edge vw ∈ E(G),
we add edges between every pair of vertices vi ∈ Qv and wj ∈ Qw, thus forming a complete
bipartite graph on Qv and Qw. More formally, the graph G′ is defined as:

V (G′) = {vi
∶ v ∈ V (G) ∧ i ∈ [α]} and E(G′) = {viwj

∶ vw ∈ E(G) ∧ v ≠ w ∧ i, j ∈ [α]}.

Next, we use the graph G′ to construct an instance I(G′) of the TSPN with line neigh-
borhoods problem in d = O(δ−2 ln n′) dimensions for any small enough δ > 0 and with
n′ = ∣V (G′)∣ = α ⋅ n. We map each vertex v of G′ to a point pv in Rd such that for any two
points pv and pu with v ≠ u, v, u ∈ V (G′) the distance dist(pv, pu) between them satisfies the
following property: 1 ≤ dist(pv, pu) ≤ 1 + δ.

The fact that this is possible and can be done in polynomial time follows by Theorem 3.1
by Engebretsen, Indyk and O’Donnell [23]. In particular, we can employ the theorem in
order to deterministically map a unit side length simplex from Rn′−1 to Rd such that the
desired property holds for all pairs of points.

We denote the resulting point set by P . Next, we create a collection of lines L in an
instance of TSPN, by adding to L a line ℓvw passing through points pv and pw if vw ∈ E(G′).

We devote the rest of this section to prove completeness and soundness of our reduction.

Completeness. Suppose the graph G has a vertex cover of size ≤ k. Then we claim that
there is a tour T of cost at most αk(1 + δ) that touches each line at least once. To see this,
let S = {v1, . . . , vk} denote the vertex cover of G. By construction, S′ = {vi

j ∶ i ∈ [α]∧ j ∈ [k]}

is a vertex cover of G′. By the construction of L and by the fact that S′ is a vertex cover of
G′, it follows that any tour that visits points pv1

1
, pv2

1
, . . . pvα

k
(in any order) is a feasible tour,

i.e., it touches all lines in L. So, in total such a tour visits a total of at most αk points, and
the distance between any pair of these points is by construction at most 1 + δ. Thus, there is
a solution to TSPN with cost at most αk(1 + δ).

Soundness. We show that if there is a tour of cost x (where x ≤ αn(1 + δ)), then there is a
vertex cover in G of size at most x

α(1−2∆)λ , where ∆ is a small positive number and λ ∈ [0, 1]
is very close to 1.

The intuition behind ∆ is that it describes the maximum distance that the tour is allowed
to have to a given point, assuming that the vertex corresponding to that point contributes to
the vertex cover. For each point pvi ∈ P (note that vi ∈ V (G′)), let B(vi) be a d-dimensional
ball of radius ∆ centered at pvi . Note that ∆ is small enough so the only lines from L
intersecting a ball B(vi) are the ones that go through pvi . Given a tour T , we say that a
ball B(vi) is non-empty if T ∩B(vi) ≠ ∅; otherwise, we say that B(vi) is empty. We say
that a line ℓuw is covered by a ball if at least one of the balls B(u) and B(w) is non-empty.
Otherwise ℓuw is not covered by a ball. We first show that any point p ∈ ℓuw that is outside
the two balls corresponding to u and w will not be “too close” to any other line:

▶ Lemma 13. For any point p ∈ ℓuw such that p /∈ B(u) and p /∈ B(w) and for any ℓ ∈ L∖{ℓuw}

we have dist(p, ℓ) ≥∆/2.

We are now ready to prove that any optimal tour T must cover almost all lines by balls:

10 On the Approximability of TSP with Line Neighborhoods

▶ Lemma 14. Let T be a tour of cost at most x with x ≤ αn(1 + δ) for the instance I(G′).
Then the number of lines of I(G′) that are not covered by balls is at most 2x

∆ .

Let λ = 1− ε2 and set α = n2. We can construct a vertex cover of G based on a tour T the
following way: if a set Qv has at least λα non-empty balls, then we add v to the vertex cover.

▶ Lemma 15. The set S = {v ∶ ∣∪i∈[a]{v
i ∶ B(vi) is non-empty}∣ ≥ λα} is a vertex cover of G

of size ∣S∣ < x
α(1−2∆)λ .

Proof of Theorem 3. Suppose that there is an algorithm that can distinguish in polynomial
time, for any 0 < ε′ and any x ∈ R+, whether there is a tour of length at most x or all tours
have length at least (2− ε′)x. Take some instance of vertex cover, where the goal is to decide
if there is a vertex cover of size at most k or all vertex covers of the graph have size at least
(2 − ε)k, where ε ∈ (0, 0.1]. By the above polynomial construction, it would be sufficient to
distinguish the cases where I(G′) has a tour of size at most kα(1 − 2∆)λ (implying a vertex
cover of size at most k), or all tours have length at least (2 − ε)kα(1 + δ) (implying that all
vertex covers have size at least (2 − ε)k). If we set δ =∆ = ε2, then we get that the ratio of
these tours is:

(2 − ε)kα(1 + δ)

kα(1 − 2∆)λ
=
(2 − ε)(1 + ε2)

(1 − 2ε2)(1 − ε2)
< 2,

so the hypothetical algorithm on I(G′) distinguishes these cases, which is a contradiction. ◀

We note that our reduction implies that TSPN with Line Neighborhoods is Vertex Cover
hard, and therefore also inapproximable within a factor of

√
2 − ε unless P = NP [31].

4 A Superpolynomial-Time Approximation Algorithm

In this section, we will show a quasi-polynomial time algorithm to approximate TSPN for
lines to a factor of O(log2 n). In fact, our approach is more general: we show how to
O(log N log n)-approximate TSPN for discrete neighborhoods of total size N , in running
time NO(log log N) for any fixed d. In this problem, we are given n neighborhoods Pi ⊂ Rd,
which are discrete sets of points. We denote by P = ⋃i∈[n] Pi the union of all neighborhoods,
and by N = ∣P ∣ its size. Using the approach of Dumitrescu and Tóth [21], we can convert
any instance of TSPN with line neighborhoods into an instance of discrete TSPN on a set of
N = O(n4) points and n neighborhoods. This transformation has a running time of O(N),
and incurs the loss of a constant factor in the approximation. From now on, we focus on
TSPN for discrete neighborhoods.

Our main result is an O(log N log n)-approximation algorithm for that runs in time
NO(log log N) for constant d. Our algorithm combines the dynamic program by Arora [3]
with the framework of Chalermsook et al. [10, 9]. As Dumitrescu and Tóth show [21],
TSPN is related to the group Steiner tree problem, and can be reduced to this problem to
obtain an O(log3 n)-approximation. We show that, using the structure of the Euclidean
space, which is exploited in the algorithm presented by Arora for TSP, we can use the
techniques of Chalermsook et al. to approximate discrete instances of TSPN and group
Steiner tree in Rd. Notice that, even on tree metrics, the group Steiner tree problem is
Ω(log2 n/ log log n)-hard to approximate [27, 26] under the projection games conjecture. As
every tree metric can be embedded into some Euclidean space with distortion O(

√
log log n)

[34, 36, 37], the group Steiner tree problem in Euclidean space is also hard to approximate
to within Ω(log2 n/(log log n)3/2) under the same assumption.

A. Antoniadis, S. Kisfaludi-Bak, B. Laekhanukit, D. Vaz 11

▶ Theorem 16. There is a randomized O(log N log n)-approximation algorithm for TSPN
with discrete neighborhoods in Rd that runs in time NO(log log N) for constant d.

The theorem above, together with the result of Dumitrescu and Tóth [21] imply Theorem 5,
along with the derandomization techniques of Arora [3] and Charikar et al. [12].

We start by recalling the main steps of the PTAS for TSP by Arora, as our result builds
upon the dynamic program used there. While describing the algorithm, we state some
modifications that are necessary for our purpose. Then, we show how to use the framework
of Chalermsook et al. [10, 9] to find a feasible solution using the dynamic program.

Among all the PTASes for Euclidean TSP, we choose to base our algorithm on the work
of Arora, as it results in the lowest running time for our algorithm. Unfortunately, the results
of Rao and Smith [42], and Bartal and Gottlieb [5] cannot be adapted for our purposes, since
their algorithms use spanners to reduce the total weight of the graph to be a constant factor
away from the optimum. It is unclear whether this technique can be used for discrete TSPN,
as the spanner contains the entire set P of points, and a minimum-cost tree spanning P may
be much larger than the optimum solution. In other words, the total weight of a spanner
may be more than a constant-factor away from the cost of an optimal solution.

4.1 Arora’s Algorithm
In this section, we briefly summarize the algorithm of Arora [3] (a more detailed description
can be found in Appendix C.1). This algorithm approximates TSP to a factor of 1 + 1/c; for
our purpose, it is sufficient to consider c = 1. Arora’s algorithm has three main steps:

1. Perturbation, which makes all coordinates are integral and bounded by O(n);
2. Construction of a shifted quadtree;
3. Dynamic program, which finds the approximate solution for TSP.

The dynamic program is based on the (m, r)-multipath problem (see Definition 23), which
given a cell of the quadtree and a set of pairs of portals on the boundary of the cell, has as
its objective to find a minimum-cost set of paths, each connecting a pair of portals, and such
that all of the points in the cell are visited. We refer to the multiset of portals and their
pairing as the state of an (m, r)-multipath problem.

Two main changes are required to use the algorithm by Arora to approximate TSPN.
First, we must guess a point v0 in an optimum solution, as well as a value R = O(OPT)
(see Appendix C.1.1). Second, we must allow the solutions to the (m, r)-multipath problem
to not visit every point in the cell. We achieve this by adding a visit bit to the state of
the (m, r)-multipath problem on leaves: if the visit bit is True, the solution must visit the
(unique) point in the cell; otherwise, it is only forced to connect each pair of portals (see
Appendix C.1.3. Using these modifications, we can prove the result of Theorem 16.

4.2 Approximating TSPN using the framework by Chalermsook et al.
After perturbation and construction of the shifted quadtree, we use the dynamic program
above to define a dynamic programming graph. The intuition is that a solution to the problem
can be represented as a tree in this graph, where the vertices in the tree correspond to all of
the (m, r)-multipath problems that assemble into the solution.

We now describe the nodes and edges of this graph, denoted by H.

Nodes: There are two types of nodes, which we refer to as subproblem nodes and
combination nodes. The graph contains one subproblem node for every entry of the

12 On the Approximability of TSP with Line Neighborhoods

modified dynamic programming table in Section 4.1, that is, one node for each instance
of the (m, r)-multipath problem for every cell and set of portals and their pairings.
Combination nodes correspond to the possibilities of recursion for a given subproblem:
for a given (m, r)-multipath problem (for a non-leaf cell), there is a combination node for
every possible way for the p paths to cross the boundary between children cells.
Root: The root of H corresponds to (m, r)-multipath on the root cell with no portals.
Edges: There are (directed) edges connecting the node for each (m, r)-multipath prob-
lem to the corresponding combination nodes, and then the combination nodes to the
corresponding nodes for the subproblems in the children cells.
Costs: Edges incident to leaf nodes have cost equal to the corresponding entry in the
dynamic programming table; all other edges have cost 0.

Using this definition, we can represent any (m, r)-light salesman path as a tree T in H.
For each cell, the solution restricted to that cell consists of a union of disjoint paths, which
induce a set of portals and their pairing, and hence an instance of the (m, r)-multipath
problem. We include the corresponding subproblem node in T . For each non-leaf cell, there
is a combination node which represents the way in which the paths cross boundaries between
children cells. We add that combination node to T , as well as all of the edges containing it.

The trees obtained by this process have a very specific structure: the root node is always
included, as well as exactly one subproblem node for each cell and one combination node for
each non-leaf cell. Adding the edges between these nodes, we see that each node other than
the root has in-degree 1, each subproblem node has exactly one outgoing edge (if it is not a
leaf), and each combination node has full out-degree, as all of its children nodes are also in
the solution. All of these properties are implicitly formulated in the work of Chalermsook et
al. [10, 9]; we formalize them below.

▶ Definition 17 (Solution tree).
Let H be a DAG with root r, and its nodes be partitioned into combination nodes Hc, and

subproblem nodes Hp. We say an out-arborescence T ⊆H rooted at r is a solution tree if:

1. Every combination node tc ∈ T ∩Hc has full out-degree (i.e., all children are also in T),
2. Every non-leaf subproblem node t ∈ T ∩Hp (including the root r) has out-degree 1 in T .

As we mentioned above, we can associate a solution tree to any (m, r)-light salesman
path. The converse is also true: for each solution tree, there is a corresponding (m, r)-light
salesman path. The final requirement for a solution to be feasible is that each neighborhood
must be covered, meaning that the tour must intersect every neighborhood.

Consider a tour corresponding to a solution tree in T . If a leaf subproblem node in the
solution tree corresponds to an (m, r)-multipath problem with the visit bit set to True, then
the (unique) point in the cell is visited. In fact, the set of points visited by this tour is exactly
the set of points contained in the leaf cells for subproblem nodes with the corresponding visit
bit set to True. In other words, including a given leaf subproblem node in the solution tree
implies that certain neighborhoods are covered by the solution.

We can solve TSPN by formulating it as finding a solution tree that covers every neigh-
borhood. Let Si be the set of all subproblem nodes whose visit bit is True, and whose cell
contains a point in Pi. Our goal is to find the minimum-cost solution tree that contains at
least one node of each set Si. This problem resembles GST, and is defined in the work of
Chalermsook et al. [10, 9]. We redefine the problem using our own notation.

▶ Definition 18 (Solution Tree Group Steiner Tree (STGST)).

A. Antoniadis, S. Kisfaludi-Bak, B. Laekhanukit, D. Vaz 13

Let H be a DAG with edge-costs cost ∶ E(H)→ R and root r, as well as groups Si ⊆ V (H),
for i ∈ [h], and a partition of the nodes into combination and subproblem nodes (Hc and Hp

respectively). The objective of this problem is to find a minimum-cost solution tree T that
contains at least one vertex of every group Si.

Their work shows that we can approximate this problem on DAGs, in the following sense.

▶ Theorem 19 ([10, 9]). Let H be a DAG with edge-costs cost ∶ E(H) → R and root r, as
well as groups Si ⊆ V (H), for i ∈ [h], and a partition of the nodes into Hc and Hp. There is
an algorithm that outputs a solution tree X ⊆H sampled from a distribution D such that:

1. EX∼D[cost(X)] ≤ cost(OPT), where cost(OPT) denotes the cost of the optimal solution
2. For any group Si, the probability that the group is covered (for some constant α > 1) is

PrX∼D[∣Si ∩X ∣ > 0] ≥ 1
α height(H)

The running time of this algorithm is ∆(H)O(height(H)), where ∆(H), height(H) are the
maximum out-degree and height of H, respectively.

Using this result, all we need to prove Theorem 16 is to show that we can formulate
TSPN as an instance of STGST, and then to show how to obtain an O(log2 n)-approximation
from Theorem 19. We show the details of these steps in Appendix C.2.

5 Conclusion

We have shown that TSPN with line neighborhoods is APX-hard, so a PTAS for this problem
is unlikely. This implies the same hardness for k-dimensional flats in Rd for 1 ≤ k ≤ d−2, which
together with the known PTAS results for k = 0 and k = d − 1 gives a complete classification
of these problems. We have also proved a stronger inapproximability factor for d = O(log n):
there is no (

√
2− ε)-approximation assuming P ≠ NP and no (2− ϵ)-approximation assuming

the UGC. On the positive side, we gave an O(log2 n)-approximation algorithm in slightly
superpolynomial time.

There is still a large gap between the lower bounds and the algorithms for TSPN with
line neighborhoods. Perhaps the most important question related to TSPN is to find a
constant-approximation for line neighborhoods in R3, or to prove that it does not exist.
Furthermore, for general point sets in higher dimensions there is an inapproximability of
Ω(log2 n/(log log n)3/2) under the Projection Games Conjecture. Whether that holds for
flats or lines is an open problem.

References
1 Antonios Antoniadis, Krzysztof Fleszar, Ruben Hoeksma, and Kevin Schewior. A PTAS for

Euclidean TSP with hyperplane neighborhoods. In SODA’19, pages 1089–1105. SIAM, 2019.
doi:10.1137/1.9781611975482.67.

2 Esther M. Arkin and Refael Hassin. Approximation algorithms for the geometric covering
salesman problem. Discret. Appl. Math., 55(3):197–218, 1994.

3 Sanjeev Arora. Polynomial time approximation schemes for Euclidean traveling salesman and
other geometric problems. J. ACM, 45(5):753–782, 1998. doi:10.1145/290179.290180.

4 Sanjeev Arora, Michelangelo Grigni, David R. Karger, Philip N. Klein, and Andrzej Woloszyn.
A polynomial-time approximation scheme for weighted planar graph TSP. In SODA’98, pages
33–41. ACM/SIAM, 1998. URL: http://dl.acm.org/citation.cfm?id=314613.314632.

https://doi.org/10.1137/1.9781611975482.67
https://doi.org/10.1145/290179.290180
http://dl.acm.org/citation.cfm?id=314613.314632

14 On the Approximability of TSP with Line Neighborhoods

5 Yair Bartal and Lee-Ad Gottlieb. A linear time approximation scheme for Euclidean TSP. In
FOCS’13, pages 698–706. IEEE Computer Society, 2013. doi:10.1109/FOCS.2013.80.

6 Yair Bartal, Lee-Ad Gottlieb, and Robert Krauthgamer. The traveling salesman problem:
Low-dimensionality implies a polynomial time approximation scheme. SIAM J. Comput.,
45(4):1563–1581, 2016. doi:10.1137/130913328.

7 Hans L. Bodlaender, Corinne Feremans, Alexander Grigoriev, Eelko Penninkx, René Sitters,
and Thomas Wolle. On the minimum corridor connection problem and other generalized
geometric problems. Comput. Geom., 42(9):939–951, 2009. doi:10.1016/j.comgeo.2009.05.
001.

8 Jean Bourgain. On lipschitz embedding of finite metric spaces in hilbert space. Israel Journal
of Mathematics, 52(1-2):46–52, 1985.

9 Parinya Chalermsook, Syamantak Das, Guy Even, Bundit Laekhanukit, and Daniel Vaz.
Survivable network design for group connectivity in low-treewidth graphs. In APPROX-
RANDOM’18, volume 116 of LIPIcs, pages 8:1–8:19. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2018. doi:10.4230/LIPIcs.APPROX-RANDOM.2018.8.

10 Parinya Chalermsook, Syamantak Das, Bundit Laekhanukit, and Daniel Vaz. Beyond metric
embedding: Approximating group Steiner trees on bounded treewidth graphs. In SODA’17,
pages 737–751. SIAM, 2017. doi:10.1137/1.9781611974782.47.

11 T.-H. Hubert Chan and Shaofeng H.-C. Jiang. Reducing curse of dimensionality: Improved
PTAS for TSP (with neighborhoods) in doubling metrics. ACM Trans. Algorithms, 14(1):9:1–
9:18, 2018. doi:10.1145/3158232.

12 Moses Charikar, Chandra Chekuri, Ashish Goel, and Sudipto Guha. Rounding via trees:
Deterministic approximation algorithms for group Steiner trees and k-median. In Jef-
frey Scott Vitter, editor, Proceedings of the Thirtieth Annual ACM Symposium on the
Theory of Computing, Dallas, Texas, USA, May 23-26, 1998, pages 114–123. ACM, 1998.
doi:10.1145/276698.276719.

13 Chandra Chekuri and Martin Pál. A recursive greedy algorithm for walks in directed graphs.
In FOCS’05, pages 245–253. IEEE Computer Society, 2005. doi:10.1109/SFCS.2005.9.

14 Andrea E. F. Clementi, Pierluigi Crescenzi, and Gianluca Rossi. On the complexity of
approximating colored-graph problems. In COCOON’99, volume 1627 of Lecture Notes in
Computer Science, pages 281–290. Springer, 1999. doi:10.1007/3-540-48686-0_28.

15 Mark de Berg, Joachim Gudmundsson, Matthew J. Katz, Christos Levcopoulos, Mark H.
Overmars, and A. Frank van der Stappen. TSP with neighborhoods of varying size. J.
Algorithms, 57(1):22–36, 2005. doi:10.1016/j.jalgor.2005.01.010.

16 Erik D. Demaine, MohammadTaghi Hajiaghayi, and Ken-ichi Kawarabayashi. Contraction
decomposition in h-minor-free graphs and algorithmic applications. In STOC’11, pages 441–450,
2011. doi:10.1145/1993636.1993696.

17 Moshe Dror, Alon Efrat, Anna Lubiw, and Joseph S. B. Mitchell. Touring a sequence of
polygons. In STOC’03, pages 473–482. ACM, 2003. doi:10.1145/780542.780612.

18 Moshe Dror and James B. Orlin. Combinatorial optimization with explicit delineation of
the ground set by a collection of subsets. SIAM J. Discret. Math., 21(4):1019–1034, 2008.
doi:10.1137/050636589.

19 Adrian Dumitrescu. The traveling salesman problem for lines and rays in the plane. Discrete
Math., Alg. and Appl., 4(4):44:1–44:12, 2012.

20 Adrian Dumitrescu and Joseph S. B. Mitchell. Approximation algorithms for TSP with
neighborhoods in the plane. J. Algorithms, 48(1):135–159, 2003. doi:10.1016/S0196-6774(03)
00047-6.

21 Adrian Dumitrescu and Csaba D. Tóth. The traveling salesman problem for lines, balls, and
planes. ACM Trans. Algorithms, 12(3):43:1–43:29, 2016. doi:10.1145/2850418.

22 Khaled M. Elbassioni, Aleksei V. Fishkin, and René Sitters. Approximation algorithms for
the Euclidean traveling salesman problem with discrete and continuous neighborhoods. Int. J.
Comput. Geometry Appl., 19(2):173–193, 2009. doi:10.1142/S0218195909002897.

https://doi.org/10.1109/FOCS.2013.80
https://doi.org/10.1137/130913328
https://doi.org/10.1016/j.comgeo.2009.05.001
https://doi.org/10.1016/j.comgeo.2009.05.001
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.8
https://doi.org/10.1137/1.9781611974782.47
https://doi.org/10.1145/3158232
https://doi.org/10.1145/276698.276719
https://doi.org/10.1109/SFCS.2005.9
https://doi.org/10.1007/3-540-48686-0_28
https://doi.org/10.1016/j.jalgor.2005.01.010
https://doi.org/10.1145/1993636.1993696
https://doi.org/10.1145/780542.780612
https://doi.org/10.1137/050636589
https://doi.org/10.1016/S0196-6774(03)00047-6
https://doi.org/10.1016/S0196-6774(03)00047-6
https://doi.org/10.1145/2850418
https://doi.org/10.1142/S0218195909002897

A. Antoniadis, S. Kisfaludi-Bak, B. Laekhanukit, D. Vaz 15

23 Lars Engebretsen, Piotr Indyk, and Ryan O’Donnell. Derandomized dimensionality reduction
with applications. In SODA’02, pages 705–712. SIAM, 2002. URL: http://dl.acm.org/
citation.cfm?id=545381.545476.

24 Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. Approximating metrics by tree metrics.
SIGACT News, 35(2):60–70, 2004. doi:10.1145/992287.992300.

25 Naveen Garg, Goran Konjevod, and R. Ravi. A polylogarithmic approximation algorithm for the
group Steiner tree problem. J. Algorithms, 37(1):66–84, 2000. doi:10.1006/jagm.2000.1096.

26 Fabrizio Grandoni, Bundit Laekhanukit, and Shi Li. O(log2 k / log log k)-approximation
algorithm for directed Steiner tree: a tight quasi-polynomial-time algorithm. In STOC’19,
pages 253–264. ACM, 2019. doi:10.1145/3313276.3316349.

27 Eran Halperin and Robert Krauthgamer. Polylogarithmic inapproximability. In STOC’03,
pages 585–594. ACM, 2003. doi:10.1145/780542.780628.

28 Su Jia and Joseph SB Mitchell. Geometric tours to visit and view polygons subject to time
lower bounds. 2019.

29 Håkan Jonsson. The traveling salesman problem for lines in the plane. Inf. Process. Lett.,
82(3):137–142, 2002. doi:10.1016/S0020-0190(01)00259-9.

30 Subhash Khot. On the power of unique 2-prover 1-round games. In STOC’02, pages 767–775.
ACM, 2002. doi:10.1145/509907.510017.

31 Subhash Khot, Dor Minzer, and Muli Safra. Pseudorandom sets in grassmann graph have
near-perfect expansion. In FOCS’18, pages 592–601. IEEE Computer Society, 2018. doi:
10.1109/FOCS.2018.00062.

32 Subhash Khot and Oded Regev. Vertex cover might be hard to approximate to within 2-epsilon.
J. Comput. Syst. Sci., 74(3):335–349, 2008. doi:10.1016/j.jcss.2007.06.019.

33 Robert Krauthgamer and James R. Lee. Algorithms on negatively curved spaces. In FOCS’06,
pages 119–132. IEEE Computer Society, 2006. doi:10.1109/FOCS.2006.9.

34 Nathan Linial, Avner Magen, and Michael E Saks. Low distortion Euclidean embeddings of
trees. Israel Journal of Mathematics, 106(1):339–348, 1998.

35 Cristian S. Mata and Joseph S. B. Mitchell. A new algorithm for computing shortest paths in
weighted planar subdivisions (extended abstract). In SoCG’97, pages 264–273. ACM, 1997.
doi:10.1145/262839.262983.

36 Jiří Matoušek. On embedding trees into uniformly convex banach spaces. Israel Journal of
Mathematics, 114(1):221–237, 1999.

37 Jiri Matoušsek. Lectures on discrete geometry, volume 212. Springer Science & Business Media,
2013.

38 Joseph S. B. Mitchell. Guillotine subdivisions approximate polygonal subdivisions: A simple
polynomial-time approximation scheme for geometric TSP, k-MST, and related problems.
SIAM J. Comput., 28(4):1298–1309, 1999. doi:10.1137/S0097539796309764.

39 Joseph S. B. Mitchell. A PTAS for TSP with neighborhoods among fat regions in the plane. In
SODA’07, pages 11–18. SIAM, 2007. URL: http://dl.acm.org/citation.cfm?id=1283383.
1283385.

40 Joseph S. B. Mitchell. A constant-factor approximation algorithm for TSP with pairwise-
disjoint connected neighborhoods in the plane. In SoCG’10, pages 183–191. ACM, 2010.
doi:10.1145/1810959.1810992.

41 Christos H. Papadimitriou. The Euclidean traveling salesman problem is NP-complete. Theor.
Comput. Sci., 4(3):237–244, 1977. doi:10.1016/0304-3975(77)90012-3.

42 Satish Rao and Warren D. Smith. Approximating geometrical graphs via "spanners" and
"banyans". In STOC’98, pages 540–550, 1998. doi:10.1145/276698.276868.

43 Shmuel Safra and Oded Schwartz. On the complexity of approximating TSP with neigh-
borhoods and related problems. Comput. Complex., 14(4):281–307, 2006. doi:10.1007/
s00037-005-0200-3.

44 Luca Trevisan. When hamming meets Euclid: The approximability of geometric TSP and
Steiner tree. SIAM J. Comput., 30(2):475–485, 2000. doi:10.1137/S0097539799352735.

http://dl.acm.org/citation.cfm?id=545381.545476
http://dl.acm.org/citation.cfm?id=545381.545476
https://doi.org/10.1145/992287.992300
https://doi.org/10.1006/jagm.2000.1096
https://doi.org/10.1145/3313276.3316349
https://doi.org/10.1145/780542.780628
https://doi.org/10.1016/S0020-0190(01)00259-9
https://doi.org/10.1145/509907.510017
https://doi.org/10.1109/FOCS.2018.00062
https://doi.org/10.1109/FOCS.2018.00062
https://doi.org/10.1016/j.jcss.2007.06.019
https://doi.org/10.1109/FOCS.2006.9
https://doi.org/10.1145/262839.262983
https://doi.org/10.1137/S0097539796309764
http://dl.acm.org/citation.cfm?id=1283383.1283385
http://dl.acm.org/citation.cfm?id=1283383.1283385
https://doi.org/10.1145/1810959.1810992
https://doi.org/10.1016/0304-3975(77)90012-3
https://doi.org/10.1145/276698.276868
https://doi.org/10.1007/s00037-005-0200-3
https://doi.org/10.1007/s00037-005-0200-3
https://doi.org/10.1137/S0097539799352735

16 On the Approximability of TSP with Line Neighborhoods

e2

e1

e3

e2

e1p

q

p′

q′

x

y
z

v

w

vw

δ1

δ2

`′

` `
`′

e3

Figure 3 Bounding the distance of the skew lines ℓ, ℓ′ ∈ L.

A Detailed Proofs from Section 2

Lemma 6 (Restatement). If ℓ, ℓ′ ∈ L correspond to non-incident edges, then they are
disjoint and the distance between them is at least 1

20n
.

Proof. Assume without loss of generality that ℓ and ℓ′ intersect e1 at the points p, p′

respectively, and moreover assume that ℓ also intersects e2 at q. The line ℓ′ intersects
either e2 or e3 at some point q′, see Figure 3. For a vector x ∈ R3, let x1, x2 and x3 be
its coordinates. The line ℓ has the vector equation ℓ = {p + ξ(q − p) ∣ ξ ∈ R}, and similarly
ℓ′ = {p′ + ξ(q′ − p′) ∣ ξ ∈ R}. Their distance is therefore

dist(ℓ, ℓ′) = ∣⟨p′ − p,
(q − p) × (q′ − p′)

∣(q − p) × (q′ − p′)∣
⟩∣.

Let v = q − p and let w = q′ − p′. Since p′ − p is parallel to e1 and the x-axis, this is

dist(ℓ, ℓ′) = ∣p′1 − p1∣
∣(v ×w)1∣

∣v ×w∣
=

∣(p′1 − p1)(v2w3 − v3w2)∣
√
(v2w3 − v3w2)2 + (v3w1 − v1w3)2 + (v1w2 − v2w1)2

.

Note that p′1 − p′2 ≥
1

3n
, the values v1 and v2 are both in the interval [1/3, 2/3], and v3 = −1.

We now consider the cases where ℓ′ intersects e2 and e3 separately. If ℓ′ intersects e3, then
w2 = 1, and w1 and w3 are inside the interval [−2/3,−1/3]. We can use these facts to bound
each term:

dist(ℓ, ℓ′) ≥
1

3n
(−2/3 + 1)

√
(−1/9 + 1)2 + (2/3 + 4/9)2 + (2/3 + 4/9)2

=
1

2
√

66n
>

1
20n

.

If ℓ′ intersects e2, then w1 and w2 are both in the interval [1/3, 2/3], and w3 = −1. As we
now have q1 = q′1 = 1, it follows that p′1 − p1 = (p

′
1 − q′1) − (p1 − q1) = v1 −w1. Let δi = vi −wi.

Then the above formula becomes:

dist(ℓ, ℓ′) =
∣δ1δ2∣

√
δ2

1 + δ2
2 + (v1w2 − v2w1)2

.

The term ∣v1w2 − v2w1∣ can be bounded the following way:

∣v1w2−v2w1∣ =
∣(v1 −w1)(v2 +w2) − (v1 +w1)(v2 −w2)∣

2
=
∣δ1(v2 +w2) − δ2(v1 +w1)∣

2
≤ ∣δ1∣+∣δ2∣.

A. Antoniadis, S. Kisfaludi-Bak, B. Laekhanukit, D. Vaz 17

q1
n3

Γ

40n3

1
2n3

Figure 4 Defining the lines of a point gadget for a point q using a grid Γ.

We can substitute this to get a lower bound on the distance:

dist(ℓ, ℓ′) ≥
∣δ1δ2∣

√
δ2

1 + δ2
2 + (∣δ1∣ + ∣δ2∣)2

>
∣δ1δ2∣

√
2(∣δ1∣ + ∣δ2∣)2

=
1
√

2
∣δ1δ2∣

∣δ1∣ + ∣δ2∣

=
1

2
√

2
2

1
∣δ1∣ +

1
∣δ2∣
≥

1
2
√

2
min(∣δ1∣, ∣δ2∣) ≥

1
6
√

2n
>

1
10n

,

where we have used that both ∣δ1∣ and ∣δ2∣ is at least 1
3n

, and the fact that the harmonic
mean of two numbers is at least as large as the smaller number. ◀

Claim 8 (Restatement). For a = 1, 2, 3 we have ∢(F̄ a
1 , F̄ a

2) <
1
4 .

Proof. It is sufficient to prove the claim for a = 1 because of symmetry. First, we compute the
normal of F̄ 1

1 , which is the plane through the points A(0, 0, 1)T , A(1, 0, 1)T , and A(0, 0, 0)T .
Therefore, it goes through p1 = (−0.3,−0.3, 0.7)T , p2 = (0.4,−0.6, 0.4)T and the origin; its
normal is therefore n1 =

p1×p2
∣p1×p2∣ =

1√
0.34(0.3, 0.4, 0.3)T . Similarly, F̄ 1

2 is the plane through
p1, p2 and A(1, 1, 1)T = (0.1, 0.1, 0.1). The calculation yields that the normal is n2 =

1√
0.34(0.3, 0.3, 0.4)T . The angle of the planes is therefore

cos−1
(⟨n1, n2⟩) = cos−1

(0.33/0.34) < 1
4

. ◀

Claim 9 (Restatement). For any q ∈ Q and ℓ ∈ L̄ we have dist(q, ℓ) > 9.9δ.

Proof. As the distance between points of Q and lines in L̄ is minimized only at points of
Qa, we may assume without loss of generality that q ∈ Q1. If ℓ connects ē2 and ē3, then its
distance from q is much more than 9δ, so assume that ℓ connects a point of ē1 to ē2. (The
case when ℓ goes from ē1 to ē3 is similar.) Notice that all such lines are separated from q by
the union of the planes F̄ a

1 and F̄ a
2 , so d(q, ℓ) ≥min(d(q, F̄ 1

1), d(q, F̄ 1
2)). By the definition of

Q1, we have that

d(q, F̄ 1
1) = d(q, F̄ 1

2) = dist(q, ē1
) cos(∢(F̄ a

1 , F̄ a
2)/2).

Since ∢(F̄ a
1 , F̄ a

2) < 1/4 by Claim 8, and dist(q, ē1) =
√
(10δ2) − (δ/2)2 > 9.98δ, therefore

d(q, ℓ) > cos(1/8) ⋅ 9.98δ > 9.9δ ◀

Lemma 10 (Restatement). Given a positive integer n and a point q ∈ R3, there is a set
L of O(n6) lines through q such that any TSPN tour of L which is disjoint from the ball
B(q, 1

n3) has length at least 20.

18 On the Approximability of TSP with Line Neighborhoods

Proof. Let Γ be a 40n3 × 40n3 plane grid where each cell has side length 1
80n6 . The grid fits

in a square of side length 1
2n3 . Let q be the origin, and place the grid Γ in the plane z = 1

2n3 ,
within the axis-parallel square with diagonal vertices (− 1

4n3 ,− 1
4n3 , 1

2n3)
T and (1

4n3 , 1
4n3 , 1

2n3)
T .

See Figure 4. Notice that the grid is contained in the ball B(q, 1
n3).

Let L be the set of lines through q that contain a grid point. This is a set of O(n6) lines.
Consider now a shortest TSPN tour of L that is disjoint from B(q, 1

n3). The sets ℓ∖B(q, 1
n3)

for each ℓ ∈ L have pairwise distance at least 1
80n6 , so the tour must have length at least

40n3 ⋅ 40n3 ⋅ 1
80n6 = 20. ◀

Lemma 11 (Restatement). If G has a vertex cover of size k, then there is a tour in L∗
of length 10 + 19δk. If L∗ has a tour of length 10 + 19δk, then G has a vertex cover of size
1.011k.

Proof. To prove the first claim, let W be a a vertex cover of G of size k. We can create a
tour T by first adding all edges of γ, and for each vertex w ∈W , we add a detour: if q, q′

are the nearest points of Q to w, then we remove the segment qq′ of length δ and add the
segments qw and wq′ of length 10δ each to the tour. For each vertex w ∈W , this results in
a length increase of 19δ, so the resulting tour T has length 10 + 19δk as required. We can
verify that T touches every line of L∗. It goes through each q ∈ Q, thus it goes through all
lines in point gadgets. For each line ℓ ∈ L̄ the corresponding graph edge uv is covered by the
vertex cover, so either u ∈W or v ∈W . Therefore ℓ is touched either at Ap(u) or Ap(v).

To prove the second claim, let T be a tour of length 10 + 19δk. Since δ = 1/(4000n) and
k ≤ n, we have that the length of T is less than 20. Since T touches each line, it is also a
valid tour for any subset of lines. In particular, for each q ∈ Q it is a tour of length less than
20 of the point gadget of q. Consequently, T intersects each ball B(q, 1/n3)(q ∈ Q). Note
that by the properties of Q, these balls are disjoint and have pairwise distance more than
2/n3 if n is large enough. Let Bq denote the ball B(q, 1/n3).

Without loss of generality, we can assume that T is a 3-dimensional (skew) polygon whose
vertices are on the lines of L∗. Consider the vertices of T in order, and remove all vertices
of the sequence that are only incident to lines of point gadgets, but lie outside the balls
Bq(q ∈ Q). Furthermore, remove entries that fall inside ⋃q∈Q Bq until we get a sequence
where there is a unique vertex hi from each Bq. Let h = (h1, . . . , hm) be the sequence of
vertices we get this way.1 As a result, for each ℓ ∈ L̄ there exists a point hi ∈ ℓ, and for each
q ∈ Q, there is some unique entry hj ∈ Bq. Fix an orientation of T , and let T (hi, hj) denote
the subpath of T from hi to hj . The balls Bq partition T into ∣Q∣ subsequences, so h can
be regarded as the concatenation of sequences g1, g2, . . . , g∣Q∣ where for each j ∈ {1, . . . , ∣Q∣}

we have gj = (gj
0, gj

1, . . . , gj
t(j)), gj

0 ∈ ⋃q∈Q Bq, and for each i ∈ {1, . . . , t(j)} it holds that
gj

i /∈ ⋃q∈Q Bq.

▷ Claim 20. cost(T (gj
0, gj+1

0)) ≥ δ − 2/n3.

Proof. Let q, q′ be points of Q such that gj
0 ∈ Bq = B(q, 1/n3) and gj+1

0 ∈ Bq′ = B(q′, 1/n3). By
the definition of Q, we have dist(q, q′) ≥ δ. Consequently, cost(T (gj

0, gj+1
0)) ≥ dist(gj

0, gj+1
0) ≥

δ − 2/n3. ◀

Consider now a sequence gj , and let uj
1, vj

1, uj
2, vj

2, . . . , uj
t(j), vj

t(j) ∈ P̄ be a sequence of
points such that the point gj

i is on the line ℓ(uj
i , vj

i).

1 The sequence h should be understood as a cyclic sequence, where indices are defined modulo m. In
particular hm+1 = h1.

A. Antoniadis, S. Kisfaludi-Bak, B. Laekhanukit, D. Vaz 19

π(Y)
o

π(T ′) π(`1)
π(`2)

π(`3)

π(ē1)

π(ē2)

π(ē3)

π(ē1)

π(ē2)

π(ē3)

R2

R3

R4

R5 R6

R7

R8

R9

R10

R11R12

R1

(ii)(i)

Figure 5 (i) Projection into the plane H ∶ x + y + z = 0. (ii) Twelve cones, eight of which covers
the line π(ℓ1).

▶ Lemma 21. There do not exist lines ℓ1, ℓ2, ℓ3 ∈ {ℓ(u1v1), . . . ℓ(uj
t(j), vj

t(j))} such that ℓ1

connects ē1 with ē2, line ℓ2 connects ē2 with ē3, and ℓ3 connects ē3 with ē1.

Proof. First, we show that T is disjoint from the cylinder Y with axis (0, 0, 0)T (1, 1, 1)T
and radius σ/2. The cylinder Y has distance more than σ/3 from the points of Q, so a tour
gj touching the cylinder has length at least 2σ/3. By Claim 20, we get

cost(T) =
∣Q∣

∑
j=1

cost(T (gj
0, gj+1

0)) ≥ (∣Q∣−1)(δ−2/n3
)+2σ/3 = 10+2σ/3− δ−O(1/n2

) > 10.5,

which is a contradiction as cost(T) < 10 + 20nδ < 10.5.
Suppose for the sake of contradiction that ℓ1, ℓ2, ℓ3 are lines touched by T between

touching Bq and Bq′ . In particular, the portion of the tour between Bq and Bq′ contains a
path T ′ that is disjoint from Y, and goes from ℓ1 to ℓ3, but touches ℓ2 on the way. Let us
project the lines and the tour into the plane H ∶ x+ y + z = 0 perpendicularly, and denote the
projection with π(.). We have cost(π(T ′)) ≤ cost(T ′), and since Y is perpendicular to H,
the path π(T ′) is disjoint from the disk π(Y), which is a disk of radius σ/2 in H centered at
the origin. Notice that π(ēa) form the three non-adjacent sides of a regular hexagon in H

centered at the origin, see Figure 5(i).
Let R1, . . . , R12 be the twelve cones centered at the origin whose boundary contain a

midpoint and an endpoint of a hexagon side in cyclic order. We can define the indices so that
π(ēa) ⊂ R4a ∪R4a+1, see Figure 5(ii). For any choice of ℓ1 we have that π(ℓ1) intersects both
π(ē1) and π(ē2), therefore it is covered by the eight regions R3 ∪R4 ∪ ⋅ ⋅ ⋅ ∪R10. In general
π(ℓj) is covered by R4j−1 ∪R4j ∪ ⋅ ⋅ ⋅ ∪R4j+6. We claim that π(T ′) intersects at least two non-
adjacent regions among Ri∖π(Y) (i = 1, . . . , 12). Indeed, if π(T ′) ⊂ Ri∪Ri+1∖π(Y) for some
i ∈ {1, . . . , 12}, then π(T ′) is disjoint from at least one of R4j−1 ∪R4j ∪ ⋅ ⋅ ⋅ ∪R4j+6 (j = 1, 2, 3),
so it cannot touch π(ℓj). Consequently, T ′ does not touch ℓj , which contradicts the definition
of T ′. Therefore π(T ′) intersects at least two non-adjacent regions.

The distance of two non-adjacent regions Ri ∖ π(Y) and Rj ∖ π(Y) is at least σ/4, which
implies that cost(T ′) > σ/4. Similarly to the calculation seen above for the cylinder, we get
cost(T) > 10 + σ/4 − o(1), which is a contradiction. ◀

20 On the Approximability of TSP with Line Neighborhoods

By Lemma 21, we may assume without loss of generality that uj
1, . . . , uj

t(j) ∈ ē1. Note
that whenever uj

i vj
i and uj

i+1vj
i+1 correspond to non-incident edges, (equivalently, when

uj
i ≠ uj

i+1) then we have that dist(ℓ(uj
i , vj

i), ℓ(uj
i+1, vj

i+1)) > 1/(200n) by Corollary 7, therefore
cost(T (gj

i , gj
i+1)) > 1/(200n) = 20δ. If there are s unique points in the sequence u1, . . . , ut,

then cost(T (gj
1, gj

t(j))) > 20(s − 1)δ. We add each uj
i into a set W . We execute the same

procedure on each sequence gj . We claim that the resulting set W is a vertex cover of size at
most 1.011k.

The set W is a vertex cover as each line ℓ̄(vw) is visited by T , therefore v or w appears in
the sequence uj

1, . . . , uj
t(j) for some subinterval gj of h and therefore v or w gets added to W .

It remains to prove the bound on the size of W . We give a lower bound on cost(T (gj
0, gj+1

0)).
If the sequence gj has a single entry (that is, t(j) = 0), then cost(T (gj

0, gj+1
0) ≥ δ − 2/n3 by

Claim 20. Otherwise, by Claim 9 we have that T (gj
0, gj

1) and T (gj
t(j), gj+1

0) both has cost at
least 9.9δ, and if there are sj unique vertices contributed from uj to W , then by the arguments
above cost(T (gj

1, gj
t(j))) > 20(sj − 1)δ. Therefore cost(T (gj

0, gj+1
0)) > 20(sj − 1)δ + 2 ⋅ 9.9δ ≥

18.8sjδ + δ. Putting the case sj = 0 and sj > 0 together, we get that cost(T (gj
0, gj+1

0)) >

18.8sjδ+δ−2/n3. Consequently, cost(T) > ∑
∣Q∣
j=1(18.8sjδ+δ−2/n3) ≥ 10+ ∣W ∣ ⋅18.8δ−O(1/n2).

Since cost(T) = 10+ 19δk, we have that ∣W ∣ ≤ 19+O(1
δn2)

18.8 k = 19+O(1/n)
18.8 k, so for n large enough

we have ∣W ∣ < 1.011k. ◀

B Detailed Proofs from Section 3

Lemma 13 (Restatement). For any point p ∈ ℓuw such that p /∈ B(u) and p /∈ B(w) and
for any ℓ ∈ L ∖ {ℓuw} we have dist(p, ℓ) ≥∆/2.

Proof. We distinguish two cases: (i) when ℓ is incident to ℓuw and (ii) when ℓ is not incident
to ℓuw.

For the first case, assume without loss of generality that ℓ = ℓuz. Then, the distance
between p and ℓ is given by

∣up∣ ⋅ sin(∢(ℓ, ℓuw)).

Since ∣up∣ ≥∆, it suffices to show that sin(∢(ℓ, ℓuw)) ≥ 1/2⇔ ∢(ℓ, ℓuw) ≥ π/6.
Consider the “almost equilateral” triangle uwz. By applying the law of cosines, we have

∣wz∣2 = ∣uw∣2 + ∣uz∣2 − 2∣uw∣∣uz∣ cos∢(ℓ, ℓuw)

⇒ cos∢(ℓ, ℓuw) ≤
2(1 + δ)2 − 1

2
.

We note that for δ ≤
√

(
√

3 + 1)/2 − 1 we have

sin (∢(ℓ, ℓuw)) = sin(arccos((1 + δ)2 −
1
2
)) ≥ sin(arccos(

√
3

2
)) =

1
2

For the second case, assume that ℓ = ℓzv. We note that zv and uw are non-incident edges
of an “almost regular” tetrahedron (formed by the points {z, v, u, w}). Since the distance of
non-incident edges of a regular tetrahedron of edge-length 1 is 1/

√
2 and the edge lengths in

our tetrahedron are in the range [1, 1+δ], there exists a small enough δ (which is independent
of ϵ) such that dist(p, ℓ) ≥ 1/2 >∆/2.

◀

A. Antoniadis, S. Kisfaludi-Bak, B. Laekhanukit, D. Vaz 21

Lemma 14 (Restatement). Let T be a tour of cost at most x with x ≤ αn(1 + δ) for the
instance I(G′). Then the number of lines of I(G′) that are not covered by balls is at most
2x
∆ .

Proof. Note it is without loss of generality to assume that T consists of line segments with
endpoints on lines of I(G′). By Lemma 13 any line ℓuiwj ∈ Luw that is visited at a point p

with p /∈ B(ui) and p /∈ B(wj), must have two adjacent segments on T of length at least ∆/2
each. Since the total tour cost of T is at most x there can be at most x

∆/2 =
2x
∆ lines that are

visited by T outside a ball. ◀

Lemma 15 (Restatement). The set S = {v ∶ ∣∪i∈[a]{v
i ∶ B(vi) is non-empty}∣ ≥ λα} is a

vertex cover of G of size ∣S∣ < x
α(1−2∆)λ .

Proof. We first argue that S is a vertex cover of G. Assume for the sake of contradiction
that some edge uv ∈ E(G) is not covered by S. Then it must be the case that there are at
least α(1 − λ) empty balls among the balls corresponding to both u and v. But any line
defined by two such empty balls corresponding to u and v is not covered by a ball. In total
there are more than (1 − λ)2α2 = Ω(n4) many such lines. This is a contradiction, since by
Lemma 14 there can be at most 2nαk(1+δ)

∆ = O(n3) such lines in total over the whole instance.
Let S be the vertex cover of G we have obtained. Since the dsitance of any two balls is

at least 1 − 2∆, and we have visited at least αλ balls among Qv for each v ∈ S, the total cost
of the tour is at least

x > ∣S∣αλ(1 − 2∆),

therefore we have that ∣S∣ < x
αλ(1−2∆) . ◀

C Details of Section 4

C.1 Arora’s Algorithm
Arora’s algorithm consists of three main steps:

1. Perturbation, which changes the instance so that all coordinates are integral and bounded
by O(n);

2. Construction of a shifted quadtree;
3. Dynamic program, which finds the approximate solution for TSP.

We describe all of these steps, including any minor alterations needed for them to work
in our setting.

C.1.1 Perturbation
Arora shows how to perturb the solution such that:

1. All nodes have integer coordinates;
2. Every (non-zero) distance between two points is at least 8 units;
3. The maximum distance between two points is O(n).

Given a bounding box on the instance of size L0, Arora achieves this perturbation by
snapping points to an appropriately fine grid. To use this step for our problem, we need
to specify a value of L0 such that OPT ≤ L0 ≤ O(OPT). To this effect, we guess the value

22 On the Approximability of TSP with Line Neighborhoods

of OPT rounded up to a power of 2, as well as a vertex v0 that is included in an optimum
solution. We implement this guessing step by iterating over all of the possible values, and
computing a feasible solution for each possibility. The best feasible solution we obtain will
be at least as good as the solution for the correct guess (in expectation).

The guessing step is done as follows. We start by guessing a vertex v0 that is contained in
an optimum solution. Then, we compute the minimum radius R0 such that at least one point
from each neighborhood is contained in the ball B of radius R0 centered at v0. Such a ball
can be computed simply by iterating over all neighborhoods and finding the neighborhood’s
nearest point to v0. If the optimum solution contains v0, then its cost is at least R0, as it
must visit the farthest neighborhood, at distance R0. On the other hand, OPT ≤ 2R0n, since
the ball B contains at least one point from each neighborhood, and the distance between any
two points in B is at most 2R0. Hence, there is a tour of cost at most 2R0n. Knowing that
R0 ≤ OPT ≤ 2R0n (assuming v0 is in an optimum solution), we can simply run the algorithm
for every v0 and for any R ∈ [R0, 4R0n] that is a power of 2.

Given a vertex v0 and a guess R for the value of the optimum solution, we set L0 = R/2
(so that if R/2 ≤ OPT ≤ R, L0 ≤ OPT). Finally, we remove all of the vertices u ∈ P that are
at a distance more than R from v0, that is, dist(v0, u) > R. A solution containing both v0
and u would cost more than R ≥ OPT, implying that for correct choices of R and v0, such
vertices can be safely removed. We now have a bounding box of side length 4L0 containing
all the points in the instance, and hence the perturbation step in Arora’s algorithm ensures
the stated properties.

C.1.2 Construction of a shifted quadtree
Let L = O(n) be the size of the bounding box. The algorithm computes a random shift
a′ = (a′1, a′2, . . . , a′d), with a′i ∈ {0, . . . , L − 1}, i ∈ [d]. Then, it constructs a quadtree where
the dissection points are shifted according to a′. The resulting quadtree has height O(log n),
and O(n log n) cells. For our purpose, no changes are needed to this process.

C.1.3 Dynamic Program
Arora’s algorithm uses dynamic programming to find a salesman path, which may visit
additional points along the boundary of the cells of the quadtree. The following definition
formalizes this concept.

▶ Definition 22. Let m, r be positive integers. An m-regular set of portals for a shifted
dissection is a set of points on the facets of the cells in it. Each cell has a portal at each
of its vertices and m other portals on each facet, placed in a d − 1-dimensional square grid
whose vertices are identical to the vertices of the facet.

A salesman path is a path in Rd that visits all the input points, and some subset of
portals. It may visit a portal more than once.

The salesman path is (m, r)-light with respect to the shifted dissection if it crosses each
facet of each cell in the dissection at most r times and always at a portal.

The goal of the dynamic program is to find a minimum cost (m, r)-light salesman path,
for the instance. For our purpose, a 2-approximation of TSP is sufficient, and hence we set
m = O(

√
d log n)d−1 and r = O(

√
d)d−1. By restricting the solution to cross the cell boundaries

only through portals, we can see that any solution to the problem, restricted to a single cell,
consists of a set of paths that together cover all of the points inside the cell. Since we want
to find an (m, r)-light solution, this further implies that at most r portals per facet of the

A. Antoniadis, S. Kisfaludi-Bak, B. Laekhanukit, D. Vaz 23

cell are used. This motivates the definition of the (m, r)-multipath problem, which is the
problem solved by the dynamic program for each cell:

▶ Definition 23 ((m, r)-multipath problem [3]). An instance of this problem is specified by
the following inputs:

1. A nonempty cell in the quadtree.
2. A multiset of r portals on each of the 2d facets of this cell such that the sum of the sizes

of these multisets is an even number 2p ≤ 2dr.
3. A pairing (a1, a2), (a3, a4), . . . (a2p−1, a2p) between the 2p portals specified in Item 2.

The goal in the (m, r)-multipath problem is to find a minimum cost collection of p paths in
the cell that is (m, r)-light. The i-th path connects a2i−1 to a2i, and the p paths together visit
all the points in the cell.

The dynamic programming table consists of all of these instances of (m, r)-multipath
problem, for each cell and pairing of portals (considered here to include the multiset of
portals in Item 2. We refer to the multiset of portals and their pairing as the state of an
(m, r)-multipath problem.

The values of the table can be computed recursively. The entries corresponding to leaves
of the quadtree can be easily determined: given the portal set of size 2p and the pairing,
we simply need to find the shortest paths between the paired portals, and add the (single)
point in the cell to one of these paths. For all other entries, the algorithm enumerates all
possible ways that the p paths can cross the boundary between children cells. For each of
these arrangements, the cost of the solution can be obtained by summing the costs of the
respective instances for the children cells. Once all of the entries have been computed, the
minimum cost (m, r)-light salesman path can be found by looking at the (m, r)-multipath
problem for the root cell of the quadtree with no portals used.

The dynamic programming table contains a total of O(n(log n)O(d)
(d−1)/2

) entries, and
the value at each cell can be computed in time (log n)O(d)

(d−1)/2
. Therefore, the running time

of this algorithm is O(n(log n)O(d)
(d−1)/2

).
Our algorithm uses a very similar dynamic program, with only a small change needed at

the leaves. In the TSP problem, all of the points must be visited, which implies that any
feasible solution to the (m, r)-multipath problem must visit all the points contained in that
cell. However, the same is not true of the TSPN problem: as long as one point from each
neighborhood is visited in the whole path, the solution is feasible, which means that not all
neighborhoods are visited in every cell that intersects them. To that effect, we add an extra
input to the (m, r)-multipath problem for leaf cells, which we call visit bit. If the visit bit
is set to True, then the (single) point in the cell must be visited; if it is set to False, then
the solution only needs to connect the portals as specified in the input (meaning that the
optimum solution will be a union of shortest paths between paired portals).

C.2 Approximating TSPN using the framework by Chalermsook et al.
To prove Theorem 16, we need to show how to formulate TSPN as an instance of STGST,
and then show how to use Theorem 19 to obtain an O(log2 n)-approximation. In this section,
we provide details to both of these steps.

C.2.1 Formulating discrete TSPN as an instance of STGST
We will formally describe the construction of a DAG H based on the dynamic program for
TSP. We assume that the perturbation and random shift steps implemented by Arora have

24 On the Approximability of TSP with Line Neighborhoods

been performed, with the alterations described in Section 4.1.
We now consider the dynamic program as presented by Arora, and construct our DAG

H as follows. The vertex set is partitioned into subproblem nodes Hp and combination nodes
Hc.

For every (m, r)-multipath subproblem considered by Arora, we create a subproblem node.
Formally, for every cell C in the quadtree, and every state A or (A, b) (where b represents
the visit bit if C is a leaf cell), we create a node t[C, A] (resp. t[C, A, b]) in Hp.
For every non-leaf cell C with children C1, . . . , Ck and states X for C and Xi for Ci,
we add a combination node tc[C, X,{Xi}i∈[k]] if the states are consistent, that is, if
the combination of the portal pairings for each of the cells Ci forms the portal pairing
represented by X in C.
For each combination node t′ = tc[C, X,{Xi}i∈[k]], we add edges from t[C, X] to t′ and
from t′ to t[Ci, Xi] for each i ∈ [k].
The edges entering leaf nodes t[C, A, b] have cost equal to the minimum cost of a solution
to the (m, r)-multipath problem in C with portal pairings specified by A, and which
visits the point in C if b = True.
All other edges have cost 0.

The root of H is the node t[C, X], where C is the root cell of the quadtree (the bounding
box of the instance), and X represents an empty set of portals.

▶ Lemma 24. Let v0 ∈ P be a point and R0 be a radius guessed in Appendix C.1.1.
For every (m, r)-light tour F in the resulting quadtree there is a solution tree X in H

such that cost(F) = cost(X) and they visit the same set of points in P .
Similarly, for any solution tree X ⊂H, there is an (m, r)-light tour F of the same cost,

which visits the same points in P .

Proof. Given an (m, r)-light tour F , we can define a solution tree X by choosing its
subproblem nodes. We show that if the subproblem nodes are chosen consistently, then the
corresponding combination nodes and the edges connecting all of the subproblem nodes exist
in the graph, and thus we obtain a solution tree. For every non-leaf cell C, we choose the
subproblem t[C, A] such that A describes the portals used by F on the boundary of C, as
well as how they are pairing. For every leaf cell C, we choose the subproblem t[C, A, b] such
that A is as described above and b is set to True if the point in C is visited by F and False
otherwise. By definition, the portal pairings of a non-leaf cell C are consistent with the
portal pairings of the children cells (as they describe the portals used by F). Therefore, there
is a combination node for every node t[C, A] above, connecting it to the nodes corresponding
to the children cells.

As to the cost, notice that the cost of F equals the sum of the costs of F on each of the
leaf cells. Similarly, the cost of a solution tree X is the sum of the costs of the edges entering
leaf nodes t[C, A, b]. Since F restricted to a leaf cell C is a solution to the (m, r)-multipath
subproblem encoded by t[C, A, b], the cost of F restricted to C must be at least as much as
the optimum to that subproblem, which is the cost of the edge entering t[C, A, b]. Taking
into account that all other edges have cost 0, and that each leaf node t[C, A, b] of the solution
tree corresponds to a part of F whose cost is at least as much as the cost of the edge entering
t[C, A, b], we conclude that cost(X) ≤ cost(F).

For the second part of the proof, let X be a given solution tree. We construct F by taking
the union of the optimum solutions to the (m, r)-multipath subproblems corresponding to the
leaf nodes t[C, A, b] of solution tree X. The cost of X is the sum of the costs of edges entering

A. Antoniadis, S. Kisfaludi-Bak, B. Laekhanukit, D. Vaz 25

such leaf nodes, each of which is the optimum cost of the corresponding (m, r)-multipath
subproblem, which is the cost of that part of F . Since all cell leaves are disjoint, we conclude
that cost(F) = cost(X).

To complete the proof, we need to show that F is a circuit. We start by showing that any
path between two portals must have a continuation, that is, the number of paths incident
on each portal is even. Then we show that the solution must be connected, and thus forms
a single circuit. Let q be a portal contained in F , and C be the smallest cell such that q

is contained in C but is not one of its portals. C must exist, since no portal of the cell
corresponding to the bounding box can be used. By minimality of C, two or more children
cells of C contain q. As part of the recursion rules of Arora’s dynamic program, each solution
to an (m, r)-multipath subproblem must contain paths between portals of C or a single
circuit. Therefore, the degree at q must be even.

Similarly, the solution cannot be the disjoint union of multiple circuits. Assume otherwise.
Then, there is a smallest cell C containing two circuits or a circuit and some other paths. By
minimality of C, either one of the children cells contains a circuit of F , and the recursion
rules of Arora’s dynamic program prevent any other child cell from containing a part of the
solution, or the portal pairings themselves induce two circuits or a circuit and some other
paths, which would not be permitted by Arora’s algorithm. ◀

C.2.2 Obtaining an O(log2 n)-approximation

We will now show how to use Theorem 19 and Lemma 24 to obtain an O(log N log n)-
approximation for the TSPN problem on discrete neighborhoods, and hence prove Theorem 16.

We start by guessing a vertex v0 to be the starting point of our solution. For every
vertex v0 ∈ P , we compute the minimum radius R0 such that every neighborhood contains a
point at distance at most R0 from v0. Next, we guess R, an approximation for OPT, in the
range [R0, 4nR0]. For the powers R = 2i, i ∈ Z, R0 ≤ R ≤ 4nR0, we can now preprocess the
instance according to the perturbation step of Arora’s algorithm. (Appendix C.1.1). Next,
we enumerate the shift a = (a1, . . . , ad) ∈ {0, . . . , L − 1}d, and construct the shifted tree as in
Arora’s algorithm (Appendix C.1.2). Finally, we construct the DAG H based on the dynamic
programming table, as specified in Appendix C.2.1. We recall that the height of the tree, as
well as of DAG H is O(log N).

We now use Theorem 19 repeatedly to obtain solution trees X1, . . . , Xℓ, where ℓ =

c log n log N , and c is a large constant. Then, we use Lemma 24 to convert each solution tree
Xi into a tour Fi, and finally take the union of all these tours to obtain a solution F . While
F is not necessarily a tour, it is simple enough to remove crossings. For every neighborhood
Pi that is not visited by F , we add a detour visiting the closest point in Pi. We denote by
F ∗ the minimum-cost solution among all solutions F for all the enumerated values of v0, R0,
and a.

By construction, F ∗ is a feasible solution, as it is a tour that visits every group. To
prove that it is O(log N log n)-approximate, consider the solution F ′ that we obtained for the
correct values of v0, R0, and a, that is, for a vertex v0 in an optimum solution, R0 such that
R0/2 ≤ OPT ≤ R0, and a shift a for which an (m, r)-light tour exists. By Theorem 19, each
of the solution trees X ′i obtained has expected cost at most OPT, and by Lemma 24, the
corresponding tour F ′i also has expected cost at most OPT. Therefore, the union of all tours
F ′i costs at most O(log N log n OPT) in expectation. The probability that a neighborhood is

26 On the Approximability of TSP with Line Neighborhoods

not visited, and hence that we must add a detour, is (for sufficiently large c)

Pr[⋂
j

∣Si ∩Xj ∣ = 0] ≤ (1 − 1
α height(H)

)

ℓ

≤ e−O(log n)

≤
1
n3

We conclude that the expected cost of F ′ is at most O(log N log n OPT), and since, by
Lemma 24, cost(F ∗) ≤ cost(F ′), F ∗ is O(log N log n)-approximate in expectation. By The-
orem 19, the running time of our algorithm is

NO(d)
(log N)O(d)

(d−1)/2)O(log N)
= NO(d)(d−1)/2 log log N .

This completes the proof of Theorem 16.

	1 Introduction
	1.1 Our Contribution

	2 Inapproximability in 3 dimensions
	2.1 The construction
	2.2 The Reduction

	3 No (2-e)-approximation Algorithm
	3.1 Reduction: Vertex Cover to TSP with Line Neighborhoods

	4 A Superpolynomial-Time Approximation Algorithm
	4.1 Arora's Algorithm
	4.2 Approximating TSPN using the framework by Chalermsook et al.

	5 Conclusion
	A Detailed Proofs from Section 2
	B Detailed Proofs from Section 3
	C Details of Section 4
	C.1 Arora's Algorithm
	C.1.1 Perturbation
	C.1.2 Construction of a shifted quadtree
	C.1.3 Dynamic Program

	C.2 Approximating TSPN using the framework by Chalermsook et al.
	C.2.1 Formulating discrete TSPN as an instance of STGST
	C.2.2 Obtaining an O(log2 n)-approximation

