
Beyond Metric Embedding: Approximating Group Steiner Trees on Bounded
Treewidth Graphs

Parinya Chalermsook∗ Syamantak Das† Bundit Laekhanukit‡ Daniel Vaz§

November 7, 2016

Abstract
The Group Steiner Tree (GST) problem is a classical prob-
lem in combinatorial optimization and theoretical computer
science. In the Edge-Weighted Group Steiner Tree (EW-
GST) problem, we are given an undirected graph G = (V,E)
on n vertices with edge costs c : E → R≥0, a source ver-
tex s and a collection of subsets of vertices, called groups,
S1, . . . , Sk ⊆ V . The goal is to find a minimum-cost tree
H ⊆ G that connects s to some vertex from each group
Si, for all i = 1, 2, . . . , k. The Node-Weighted Group Steiner
Tree (NW-GST) problem has the same setting, but the costs
are associated with nodes. The goal is to find a minimum-
cost node set X ⊆ V such that G[X] connects every group
to the source.

When G is a tree, both EW-GST and NW-GST ad-
mit a polynomial-time O(logn log k) approximation algo-
rithm due to the seminal result of [Garg et al., SODA’98

and J. Algorithm]. The matching hardness of log2−ε n is
known even for tree instances of EW-GST and NW-GST
[Halperin and Krauthgamer STOC’03]. In general graphs,
most of polynomial-time approximation algorithms for EW-
GST reduce the problem to a tree instance using the metric-
tree embedding, incurring a loss of O(logn) on the ap-
proximation factor [Bartal, FOCS’96; Fakcharoenphol et al.,
FOCS’03 and JCSS]. This yields an approximation ratio of

O(log2 n log k) for EW-GST. Using metric-tree embedding,
this factor cannot be improved: The loss of Ω(logn) is nec-
essary on some input graphs (e.g., grids and expanders).
There are alternative approaches that avoid metric-tree em-
bedding, e.g., the algorithm of [Chekuri and Pal, FOCS’05],
which gives a tight approximation ratio, but none of which
achieves polylogarithmic approximation in polynomial-time.
This state of the art shows a clear lack of understanding of
GST in general graphs beyond the metric-tree embedding
technique. For NW-GST (for which the metric-tree embed-
ding does not apply), not even a polynomial-time polyloga-
rithmic approximation algorithm is known.

In this paper, we present O(logn log k) approximation

algorithms that run in time nÕ(tw(G)2) for both NW-GST

∗Aalto University, Finland. Work partially done while
at Max-Planck-Institut für Informatik, Germany, email:

parinya.chalermsook@aalto.fi
†Universität Bremen, Germany. Work done while

at Max-Planck-Institut für Informatik, Germany, email:

syamanta@uni-bremen.de
‡The Weizmann Institute of Science, Israel, email:

bundit.laekhanukit@weizmann.ac.il. Partially supported by
the ISF grant 621/12 and I-CORE grant No. 4/11.
§Max-Planck-Institut für Informatik, Germany and Gradu-

ate School of Computer Science, Saarland University, Germany,
email: ramosvaz@mpi-inf.mpg.de

and EW-GST1, where tw(G) denotes the treewidth of graph

G. The key to both results is a different type of “tree-

embedding” that produces a tree of much bigger size,

but does not cause any loss on the approximation factor.

Our embedding is inspired by dynamic programming, a

technique which is typically not applicable to Group Steiner

problems.

1 Introduction

The Group Steiner Tree (GST) problem is a cornerstone
problem in Combinatorial Optimization and Theoretical
Computer Science that has received a lot of attention
over the past two decades [15, 13, 11, 4, 21, 19, 20, 17,
10]. In this problem, we are given an undirected graph
G = (V,E) on n vertices and m edges with node or
edge costs, a root vertex r and a collection of subset of
vertices, called groups, S1, . . . , Sk ⊆ V . The goal is to
find a minimum-cost tree that connects r to some vertex
from each group Si, for i = 1, 2, . . . , k.

The Edge-Weighted Group Steiner Tree (EW-GST)
problem, where costs are on edges, admits polynomial-
time O(log n log k)-approximation algorithms on trees
and O(log2 n log k) on general graphs due to the sem-
inal result of Garg, Konjevod and Ravi [15] together
with the Bartal’s metric-tree embedding [2, 14] and
admits quasi-polynomial-time O(log2 k)-approximation
algorithm on general graphs by the result of Chekuri
and Pal [11]. The algorithm of Garg et al. and
that of Chekuri and Pal also works for the node-
weighted case, i.e., the Node-Weighted Group Steiner
Tree (NW-GST) problem. Thus, NW-GST admits
polynomial-time O(log n log k)-approximation on trees
and quasipolynomial-time O(log2 k)-approximation on
general graphs. Nevertheless, due to the absence of
metric-tree embedding that works for “node distances”,
there is a huge gap in the approximation ratios obtained
by polynomial and quasi-polynomial time algorithms
for NW-GST. The best known approximation ratio one
could obtain in polynomial-time is O(kε), for any ε > 0,

1The Õ notation hides logarithmic factors, i.e., Õ(x) =

O(x polylog(x))

[7, 19, 11].
Hence, both EW-GST and NW-GST admit

O(log2 k)-approximation algorithms in quasi-
polynomial-time, which match the best-known ap-
proximation lower bounds of log2−ε k, for any ε > 0, by
Halperin and Krauthgamer [18], which holds under the
assumption NP 6⊆ DTIME(2polylog(n)). However, the
questions remain open for polynomial-time algorithms.
Is there a polynomial-time algorithm that achieves
O(log2 k)-approximation guarantee for EW-GST? Is it
possible to get a polylogarithmic approximation ratio
for NW-GST? These two problems have been long
standing open problems in the area of Network Design.

Previous Techniques and Barriers. Over the
decades, many techniques have been developed to ap-
proximate EW-GST and NW-GST. There are two types
of approaches in approximating EW-GST. The first is
the Recursive Greedy algorithm [7, 19, 11], which is a
combinatorial algorithm. These algorithms do not re-
quire any kind of tree-embedding and eventually leads
to a tight O(log2 k)-approximation algorithm for both
EW-GST and NW-GST. Nevertheless, these algorithms
could not accomplish polylogarithmic approximation in
polynomial-time.

The second type is the Embedding-into-Tree tech-
nique. Garg et al. [15] apply the metric-tree embed-
ding technique to reduce an instance of EW-GST on
general graphs to a tree instance. Then they devise
an LP-based algorithm for EW-GST on trees. This
yields the best known polynomial-time O(log2 n log k)-
approximation algorithm for EW-GST. However, this
technique is not applicable to NW-GST because there
is no known metric-tree embedding for node-distances.
Alternatively, there is a well-known reduction from GST
on general graphs to a tree instance, which is given im-
plicitly in the work of Zelikovsky [23]. This gives an
O(i3·k1/i)-approximation algorithm in time O(ni). This
method is applicable to both EW-GST and NW-GST,
but again, could not yield a polynomial-time polyloga-
rithmic approximation algorithm (See, e.g., [20, 9]).

The barrier to obtain a better approximation algo-
rithm for EW-GST is due to the stretch of the embedding
and for NW-GST is due to the absence of node-distance
metric-tree embedding.

Metric-Tree Embedding Barrier and Rela-
tion to Treewidth. Metric-tree embedding is a pow-
erful tool in the design of approximation algorithms. It
allows to transform any graph distance metric into a tree
metric while approximately preserving the distance to
within anO(log n) factor [14]. Thus, many difficult opti-
mization problems on general graphs turn into amenable
tree instances, which are easy to deal with, by paying
a factor O(log n) in approximation ratio. This O(log n)

loss here cannot be removed in general. Any metric-tree
embedding of square-grid graphs and expanders incurs
a factor of Ω(log n) [2]. See [1] and references therein.

For GST, there is no known tool that could cope
with general graphs beside the metric-tree embed-
ding (unless we allow the algorithm to run in quasi-
polynomial-time). A straightforward step in attacking
EW-GST and NW-GST is clearly to develop an approxi-
mation algorithm for the case of square-grids and ex-
panders. For the latter case, there is a known tool
[3] available that yields a tight approximation factor
for EW-GST (but again not for NW-GST). However, we
still have no tools even for graphs that contain no large
square-grids or square-grid minors.

At this point, readers who are familiar with Graph
Minor Theorems may observe that the difficult instances
of GST are indeed instances with “large treewidth”. It
is known as the Grid Minor Theorem [22] that any graph
with treewidth w contains a square-grid minor of size
f(w), which is now known to be polynomial on w [8].
Keeping this observation in mind, a small step toward
breaking the metric-tree embedding barrier is to develop
an algorithm that works at least for graphs with small
treewidth, which are more general than trees but still
have no large square-grid minor.

1.1 Our Contributions. The main purpose of this
paper is to initiate the study of techniques that have a
potential to get around the metric embedding barriers.
Our technique still relies on (a slightly different kind
of) “tree embedding”, but is more problem-dependent,
in that it works specifically for GST.

In particular, we define the following notion. Given
a EW-GST instance I = (G, {Si}ki=1, r), an EW-GST-
tree-sparsifier 2 for I is a “generalized” GST instance 3

J = (T, {S′i}ki=1, r
′) where T is a tree of height O(log n),

S′i ⊆ V (T), and r′ ∈ V (T). Roughly, we say that J is
an (α, β) GST-tree-sparsifier for I if opt(I) ≤ opt(J) ≤
αopt(I) and |V (T)| = O(β). The factor α and β are
referred to as distortion and size respectively.

The following (simple) theorem follows almost di-
rectly.

Theorem 1.1. If there is an efficient algorithm for
constructing (α, β) EW-GST-tree-sparsifier, then there
is an O(α log n log k) approximation algorithm for EW-
GST that runs in time βO(1).

We remark that the metric tree embedding
result [14] gives (O(log n),poly(n)) EW-GST-tree-

2Analogously, one can define this for NW-GST.
3To be defined formally later. For now, the readers only need

to know that the generalized GST problem admits O(logn log k)
approximation.

sparsifier trivially, and that in order to improve the long-
standing ratio, it suffices to design a (log1−ε n, poly(n))
EW-GST-tree-sparsifier.

In this paper, we are interested in a tree sparsifier
of potentially bigger size but smaller distortion. Our
main result shows that this is indeed possible. We show
a sparsifier with distortion 1, and with size depending
on the treewidth of graph G. This result is summarized
in the following theorem.

Theorem 1.2. For any instance I = (G, {Si}, r) of
EW-GST, there is an efficient algorithm running in time

nO(tw(G))2 that constructs a (1, nO(tw(G))2) EW-GST-
tree-sparsifier for I. The same holds for NW-GST.

Corollary 1.1. There are O(log n log k) approxima-
tion algorithms for EW-GST and NW-GST, running in

time nO(tw(G)2). In particular, there exist polynomial-
time O(log n log k)-approximation algorithms for EW-
GST and NW-GST on bounded treewidth graphs.

We remark that, for NW-GST, this is the first
poly-logarithmic approximation algorithm that runs in
polynomial time for a graph class more general than
trees.

We believe that our new concept of GST-sparsifiers
will open up some new directions to attack both EW-
GST and NW-GST. The most interesting open question
is whether there exists (O(1),poly(n)) GST-sparsifier
(which would settle the long-standing open problem.)
We leave this as an open problem.

1.2 Overview of Our Techniques. Here we give an
overview of our techniques and the intuition on how we
construct the sparsifier.

To that end, it would be helpful to think of EW-
GST on trees as a problem with local and global
constraints: we have local constraints corresponding to
the choice of edges, and global constraints that ensure
the groups are covered. The local constraints would
allow, in principle, a decomposition of the problem into
subproblems, corresponding to distinct subtrees. On
the other hand, the global constraints are not suitable
to this kind of decomposition.

Consider an algorithm that does the following: for
each child of the root, it decides whether the edge con-
necting it to the root is included in the solution; then,
it recurses on the children of the root corresponding to
the edges that were chosen. If the algorithm guesses
the edges to add correctly, then it will solve the prob-
lem, but it is not easy to do this. The other possibility
would be to enumerate all the possible subsets of edges
incident to each node, which makes the algorithm find
the correct solution, but the running time will be ex-
ponential. We can also look at the rounding algorithm

proposed by Garg et al. [15] (from now on referred to
as GKR rounding) in this perspective. By using the
solution to the Linear Program, it guides the choice of
edges at each node, in a way that is consistent (with
some probability) with the global constraints.

Now let us get back to general graphs. The basic
picture does not change much. Instead of considering
one node at a time (every node in a tree is a separator),
we consider a vertex cut S that splits the graph into
multiple connected components. Now the algorithm
must decide, first, which edges inside S to take, and
then, which edges to take that connect S to each of the
connected components of G−S. There is, however, one
big difference between trees and general graphs: there
are now multiple paths between two nodes. Therefore,
it may happen that a path crosses S several times to
use edges of different subproblems.

We solve this issue by using the concept of implied
connections: for each subproblem, we additionally as-
sociate it with a set of connections Γ that its solution
must implement. In other words, for each subproblem,
there is a set Γ of pairs of nodes that it must connect in
its solution.

Using these ideas, we can recursively decompose the
problem into subproblems. However, it is still not clear
how to choose, for each subproblem, both the set of
edges that connect to it and the set of connections Γ
that it must implement. The naive way would be to
enumerate all such possibilities, which would run in time
exponential in n. The other possibility, inspired by the
problem on trees, is to use GKR rounding to guide the
choices of the algorithm.

We can think of the subproblems as being organized
in a tree, i.e., a problem is the parent of the subproblems
it recurses into. If tw(G) = w, by standard facts, we
are guaranteed to have a balanced vertex cut S of size
|S| = O(w) in every induced subgraph of G. Therefore,

the process generates a tree T̂ of height O(log n) (by
successively dividing each subgraph into two using a
balanced vertex cut.)

Let P be a subproblem and Q and R be the
subproblems obtained by removing the vertex cut S
from P . As mentioned above, for every subproblem P ,
we shall also associate all possible connections that are
potentially implemented by P . Let us denote this set of
connections by Γ ⊆ S × S which is a set of vertex pairs
(u, v) ∈ S. It is, however, important to realize that
the actual path between a vertex pair (u, v) ∈ Γ might
be constructed as we recurse into the subproblems. In
some sense, the inclusion of (u, v) in Γ gives a guarantee
that either this path is already constructed by the edges
that are bought in the parent subproblem or it would
be constructed in a children or sibling subproblem. We

encode all the above information by introducing a node
in T̂ , denoted by x(P,Γp) where Γp is a connection set
that P inherits from its parents. At P , corresponding
to each possible choice of Γ, we now make one child
of x(P,Γp), denoted by z(P,Γp,Γ). Note that there

can be only 2|S|
2

possible choices of Γ and hence only
those number of children for x(P,Γp). The root of T̂
corresponds to a solution to the whole problem. Each
z(P,Γp,Γ) has two children x(Q,Γp,Γ) and x(R,Γp,Γ)
corresponding to solving the subproblems at Q and
R respectively and these solutions are allowed to use
connections that are implied by Γp ∪ Γ. When the
algorithm solves the subproblem (Q,Γp,Γ), it goes
through similar steps: find some vertex cut S′ ⊆ G[Q]
and then enumerate over all the possible “connections”
Γ′ of pairs of vertices in S′.

This process then creates the children
{z(Q,Γp,Γ,Γ′)}Γ′⊆S′×S′ for subproblem (Q,Γp,Γ),
and again each such z(Q,Γp,Γ,Γ

′) has two chil-
dren corresponding to vertices in the components of
G[Q− S′].

A subtree H of T̂ is said to be canonical if each ver-
tex of the form x(V ′,Γ1, . . . ,Γ`) has exactly one child,
and each vertex of the form z(Γ1, . . . ,Γ`) has exactly
two children. Roughly, the above conditions ensure that
canonical subtree of T̂ corresponds to a solution to the

original GST instance and vice versa. There are 2O(w2)

potential choices of Γ at every subproblem, so the size

of T̂ is 2Õ(w2) logn = nÕ(w2). Finally, we show that the
optimization problem of finding a canonical solution in
T̂ can be done by GKR rounding, giving an approxima-
tion factor of O(h(T̂) log k).

The technical heart of the paper lies in constructing
the sparsifier T̂ starting with a tree decomposition of
the given graph G. We face several hurdles in the
process and one of the more difficult ones is to handle
dependency of subproblems on each other. To be more
specific, consider a node x(P), a connection set Γ and its
descendants x(Q,Γ) and x(R,Γ). Now, when we solve
the subproblem at x(Q,Γ), some connection implied in
x(Q,Γ) might try to use some other connections implied
in x(P) or x(R,Γ) and vice versa. This potentially
creates circular dependencies leading to an infeasible
solution if both the connections are selected. In order to
avoid this scenario, we need to enforce a partial order
on the connections and ensure that the partial orders
are consistent between parent and children nodes in
the sparsifier tree T̂ . We show that the existence of a
consistent partial order is guaranteed by the properties
of tree decomposition.

1.3 Further related work. Group Steiner Trees
on Special Graph Classes. Special cases of group
Steiner trees have also received attention. In particular,
Demaine et al. [13] and Bateni et al. [4] studied the GST
problem when each face can only contain one group,
culminating in a recent PTAS for this special case.

Approximation Algorithms on Graphs of
Bounded Treewidth. There has been several results
on approximating graph problems for graphs that have
bounded treewidth. In particular, there are several in-
stances where restrictions to the class of graphs with low
treewidth yields a better approximation factor in run-
ning time that is dependent on the treewidth. Bateni
et al. [5] give approximation schemes for the classical
Steiner Forest Problem on bounded treewidth graphs.
Gupta et al. [16] show a constant factor approxima-
tion for the sparsest cut problem on graphs of constant
treewidth that runs in time nO(tw(G)), while Czumaj et
al. [12] study the maximum independent set problem on
graphs with low treewidth.

2 Preliminaries

Tree Decomposition. Let G be an input graph.
A tree decomposition for G is given by a tree T and a
collection of bags {Xt}t∈V (T), where Xt ⊆ V (G), that
satisfy the following properties:

• V (G) =
⋃

t∈V (T)

Xt

• For any edge uv ∈ E(G), there is a bag Xt such
that u, v ∈ Xt.

• For each vertex v ∈ V (G), the nodes t for which Xt

contains v form a connected subgraph of T .

The treewidth of G, denoted by tw(G), is the min-
imum integer k for which there exists a tree decompo-
sition (T , {Xt}t∈V (T)), such that max |Xt| ≤ k + 1.

We will use the following result, which shows the ex-
istence of an O(log n)-height binary tree decomposition
of treewidth O(tw(G)).

Theorem 2.1. ([6]) Let G be any graph. There is a
tree decomposition (T , {Xt}t∈V (T)) such that (i) The
tree T has height at most O(log n) and degree at most
three, and (ii) Each bag Xt satisfies |Xt| ≤ O(tw(G)).

Fix a tree decomposition (T , {Xt}). For each node
t ∈ V (T), denote by Tt the subtree of T rooted at
t. Also we can define an induced subgraph Gt =

G

[⋃
t′∈Tt

Xt′

]
.

For each t ∈ V (T), we say that an edge uv ∈ E(G)
appears in the bag t if u, v ∈ Xt. We will assume w.l.o.g.

that each edge uv ∈ E(G) appears only in the topmost
bag, i.e., the topmost node t such that Xt contains both
u and v. Denote by Et the edges that appear in bag Xt.

3 Constructing the sparsifiers

First, we define the notion of GST-tree-sparsifier for-
mally. Given an instance I = (G, {Si}ki=1, r) of EW-
GST, an (α, β) EW-GST-tree-sparsifier for I is a GST
instance with degree constraints: J = (T, {S′i}ki=1, r

′, φ)
where T is a tree of height O(log n), S′i ⊆ V (G),
r′ ∈ V (T), and φ : V (T) → {1, . . . , n} is a degree con-
straint function, satisfying the following properties:

• (Completeness:) For any subgraph H ⊆ G, there is
a canonical subgraph (defined below) H ′ ⊆ T with
c(H ′) ≤ αc(H) and for any i ∈ [k], r is connected
to Si in H if and only if r′ is connected to S′i in H ′.

• (Soundness:) For any canonical subgraph H ′ ⊆ T ,
there is a subgraph H ⊆ G with c(H) ≤ c(H ′) and
for any i ∈ [k], the root r is connected to Si in H
if and only if r′ is connected to S′i in H ′.

• (Size:) |V (T)| = β.

Our construction presented above result in an in-
stance of EW-GST with degree constraints, which we
call Degree-Constrained Group Steiner Tree (DC-GST),
which is an instance of EW-GST plus a degree constraint
function φ : V (T) → {1, . . . , n}. The goal of DC-GST
is to find a subgraph H ′ ⊆ T so that every vertex v
appearing in H ′ must have degree “exactly” φ(v) (i.e.,
degH′(v) = φ(v) for all v ∈ V (H)). From now on, we
will call a subgraph H ′ of T that satisfies the degree con-
straints a canonical subgraph. Our task, thus, reduces
to solving an instance of the DC-GST on a tree.

Now we proceed to describe the construction of our
sparsifier. Let G be an input graph with tw(G) = w and
(T , {Xt}t∈V (T)) be a tree decomposition of G given by
the following lemma. Also, let S1, . . . , Sk ⊆ V (G) be
the groups.

Lemma 3.1. Let G be an input graph with tw(G) = w.
There is a tree decomposition (T , {Xt}t∈V (T)) with the
following properties:

1. The height of T is at most O(log n)

2. Each bag Xt satisfies |Xt| ≤ O(w)

3. The root node r is in every bag

4. Every leaf bag has no edges, (Et = ∅ for leaf t ∈ T)

5. Every non-leaf has exactly 2 children

Proof. Let (T , {Xt}t∈V (T)) be a tree decomposition of
G given by Theorem 2.1. This satisfies properties 1 and
2. In order to satisfy Property 3, simply add the root
node to every bag, which increases the sizes of the bags
by 1. Property 4 can be satisfied by making a copy of
the leaf node and adding it as its own child, which will
cause the new leaf to have no edges.

Regarding Property 5, in the decomposition of
Theorem 2.1, every node of T has degree at most 3.
By picking the root node of the decomposition to be a
node of degree at most 2, we make sure that every node
has at most 2 children. Finally, for every node with only
1 child, we make a copy of the entire subtree rooted at
the child, so that the node now has 2 children.

We remark that none of the proofs affects the
previous properties, and so the proof is completed. �

3.1 Configuration Gadgets. Let t ∈ V (T). A
connection set for t is a subset Γ ⊆ Xt × Xt. Each
element (u, v) ∈ Γ is referred to as a Γ-connection or
simply a connection when Γ is clear from context.

Let Σ be a connection set and � be a partial order
on the elements of Σ. We use the notation (a, b) ≺ (u, v)
to represent (a, b) � (u, v) and (a, b) 6= (u, v). For
(u, v) ∈ Σ, we write Σ≺(u,v) (Σ�(u,v) resp.) to denote
the set of connections (a, b) ∈ Σ such that (a, b) ≺ (u, v)
((a, b) � (u, v) resp.), that is, the connections in Σ that
are ranked below (u, v) by the partial order �. Two
partial orderings � and �′ defined respectively on the
sets Σ and Σ′ are consistent if and only if for any pair
of connections {(u, v), (u′v′)} ∈ Σ ∩ Σ′, (u, v) � (u′, v′)
if and only if (u, v) �′ (u′, v′).

Definition 1. Given two connection sets Γ,Σ ⊆ Xt ×
Xt, we say that a connection (u, v) ∈ Γ is implied by
Σ in Xt if there is a sequence u = w0, w1, . . . , wα = v
such that (wβ , wβ+1) ∈ Σ for all β = 0, . . . , α− 1.

The key idea is that we will have a node correspond-
ing to the subproblem of connecting some pairs of nodes
in the subtree of T rooted at bag t (denoted by Tt). We
will maintain three sets of connections inside the bag
Xt:

• Connection set Γ ⊆ Xt × Xt represents the pairs
(u, v) that shall be connected in the subtree Tt, that
is, in the subtree, we buy some edges to make sure
that u and v are connected.

• Connection set Π ⊆ Xt × Xt represents the pairs
(u, v) that are implied by parent(t).

• Connection set Σ ⊆ Xt × Xt contains the pairs
(u, v) that shall be connected by the “sibling”
subproblem Tt′ where t′ is the sibling of t.

We intuitively think of the subproblem φ =
(t,Γ,Π,Σ,�) as follows: Find the minimum-cost sub-
graph that connects all pairs (u, v) ∈ Γ, subject to the
fact that all pairs in Π∪Σ≺(u,v) have already been con-
nected.

Definition 2. Let Γ1,Γ2 ⊆ Xt×Xt, and � be a partial
order on Γ. We say that a triple (Γ1,Γ2,�) is a feasible
division of Γ via Σ if every connection (u, v) ∈ Γ is

implied by Γ
�(u,v)
1 ∪ Γ

�(u,v)
2 ∪ Σ.

Consider any node t ∈ V (T), with children t′ and t′′

in T , any subset Γ,Π,Σ ⊆ Xt ×Xt. The configuration
gadget H(t,Γ,Π,Σ,�) is a tree constructed in the
following manner:

• The root of H(t,Γ,Π,Σ,�) is denoted by
r(t,Γ,Π,Σ,�).

• For each Y ⊆ Et, we create a vertex p(t,Γ,Π,Σ,�
, Y), which is a child of r(t,Γ,Π,Σ,�); the cost of
such connecting edge is c(Y). Denote by ΓY the
set of Γ-connections (u, v) that are not implied by
Π∪Σ≺(u,v)∪Y . Also, denote by ΠY the set of pairs
(u, v) ∈ Xt×Xt that are implied by Π∪Σ≺(u,v)∪Y .

• Now consider a vertex p(t,Γ,Π,Σ,�, Y). For
each feasible division ρ = (Γ1,Γ2,�′) of Γ via
ΠY such that Γ1 ⊆ (Xt′ ∩ Xt)

2 and Γ2 ⊆
(Xt′′ ∩ Xt)

2, and partial order �′ is consistent
with � on Γ1 ∪ Γ2, we create the following
vertices: (i) a vertex q(t,Γ,Π,Σ, Y,�, ρ) which
is a child of p(t,Γ,Π,Σ,�, Y) and two vertices
{qi(t,Γ,Π,Σ,�, Y, ρ)}i=1,2, which are the two chil-
dren of q(t,Γ,Π,Σ,�, Y, ρ). The costs of all these
edges are zero.

We remove all vertices of the form p(t,Γ,Π,Σ,�, Y)
that do not have children. If the root does not have
any child after such removal, we declare the gadget
H(t,Γ,Π,Σ,�) unusable. Otherwise, the gadget is
usable. The leaf gadgets H(t,Γ,Π,Σ,�), i.e., when t is
a leaf of T , only contain the root node r(t,Γ,Π,Σ,�),
and must satisfy Γ = ∅ (otherwise they are removed).

Interpretation of our gadget: We will briefly
explain the meaning of our gadget. Consider a set of
edges Y . After we purchase the edges in Y , there are
some connections that could not be realized by these
edges. The pairs in the set ΓY are the connections that
(possibly) remain unconnected, and we wish to connect
them in descendant gadgets. The pairs in the set ΠY are
the connections that need to be realized, but we leave
the task of connecting them to other subproblems on
parent or sibling gadgets. The set ΓY and ΠY provide
information on the connections to children gadgets.

3.2 Gluing the gadgets. We will be using the struc-
ture of T to connect the gadgets created in the last sec-
tion to form a final tree T̂ . The gluing process starts
by processing nodes in the tree T , ordered by their dis-
tances to the root (the root is processed first). When

processing the root of T , we create a root root(T̂) and
connect it to all gadgets H(root(T),Γ,Π,Σ,�) where
Π = Σ = ∅.

Now, consider any node t ∈ V (T) and its children
t′, t′′ ∈ V (T). We define how their gadgets are
connected. Focus on gadgets H(t,Γ,Π,Σ,�) that are
usable, i.e., there is Y ⊆ Et and there are ρ =
(Γ1,Γ2,�∗) that form a feasible division of Γ via ΠY .
We say that a vertex q1(t,Γ,Π,Σ,�, Y, ρ) is consistent
with r(t′,Γ′,Π′,Σ′,�′) if the following conditions are
met:

• Π′ ⊆ {(u, v) ∈ X2
t′ : (u, v) is implied by ΠY }.

• Γ1 ⊆ Γ′ ∪Π′

• Σ′ ⊆ Γ2

• �′ is consistent with �∗

The conditions for q2(t,Γ,Π,Σ,�, Y, ρ) being con-
sistent with r(t′′,Γ′′,Π′′,Σ′′,�′′) are analogous. We
connect the consistent nodes together by making the
vertex r(t′,Γ′,Π′,Σ′,�′) a child of either q1 or q2. In
case there is more than one vertex consistent with
q1(t,Γ,Σ, Y,Γ1,Γ2,�), we make the same number of
copies of the gadget H(t′,Γ′,Π′,Σ′,�′) so that each
gadget’s root is only connected to one such consistent
vertex above it.

The leaf gadgets will not have any children. All
these connecting edges have cost zero.

Size of the instance: The following proposition

shows that the size of T̂ is 2O(w2 logw logn)

Proposition 3.1. T̂ uses at most 2O(w2 logw logn) gad-

gets, each of them containing at most 2O(w2 logw) nodes.

As a consequence, the size of T̂ is 2O(w2 logw logn).

Proof. Let us start by proving that each gadget

H(t,Γ,Π,Σ,�) has at most 2O(w2 logw) nodes.

Since Y ⊆ X2
t , there are at most 2w

2

choices for
Y . Therefore, the root node of the gadget has at most

2O(w2) children. Each of these nodes pY has a child for
each feasible division of Γ via ΠY .

A feasible division is a triple (Γ1,Γ2,�). The

number of possibilities for Γ1, Γ2 is at most 2w
2

, as they
are subsets of X2

t , which has size at most w2. We can see
� as a subset of a total ordering of X2

t , and there are

at most (w2)! ≤ 22w2 logw such total orderings. Since

p

q

r

q
1
q
2

Y

cost(Y)

Figure 1: Structure of a gadget. Red edges have positive cost and represent subsets of edges in G

each total ordering has at most 2w
2

subsets, we have

at most 2O(w2 logw) possibilities for a partial order and,

therefore, we have in total at most 2O(w2 logw) choices
for a feasible division. This, together with the two

children of each node qρ makes for at most 2O(w2 logw)

nodes inside the gadget.
The proof follows by showing that each gadget has

at most 2O(w2 logw) children. root(T̂) has at most 2O(w2)

children, since Γ ⊆ X2
r , and Xr = O(w). Therefore, the

number of subsets Γ is bounded by 2O(w2). Now, each

gadget also has at most 2O(w2 logw) children, since there

are at most 2O(w2) ways to choose Γ′, Π′, Σ′ and at

most 2O(w2 logw) ways to choose �′ for the child t′ of
t. This also implies that, if T̂ has height O(log n), then

the number of gadgets is in total 2O(w2 logw logn). �

Groups: For each leaf node t ∈ V (T), we add the

node r(t,Γ,Π,Σ,�) into the group Ŝi if and only if there
is an ancestor r(t′,Γ′,Π′,Σ′,�′) such that vertex u ∈ Si
and (s, u) ∈ Π′ ∪ Γ′�(s,u) ∪ Σ′≺(s,u).

Feasible Solution for T̂ : We shall define a GST
instance on the configuration tree T̂ . However, we also
enforce degree bounds on certain nodes in a feasible
solution. This is required to ensure that all feasible GST
solutions to the original problem are embedded in the
configuration tree. On the other hand, given a solution
to the new instance, we can construct a feasible solution
to the original problem with same cost.

A subtree Q̂ is a feasible solution to DC-GST on T̂
if the following hold:

• The root gadget is in Q̂.

• Every group Ŝi is reachable from the root gadget.

• For a non-leaf gadget, a node of type q(t,Γ,Π,Σ,�
, Y, ρ) has 2 children (degree 3).

• All other non-leaf node have exactly 1 child
(root(T̂) has degree 1, all others have degree 2).

In Section 4, we show how to modify the GKR
rounding algorithm in order to accommodate these
additional constraints.

Now we proceed to prove the correctness of our
construction. Specifically, we show that given any
feasible GST solution to the original problem, there
exists a feasible solution Q̂ to DC-GST on T̂ of the
same cost - we call this the completeness property of
our construction. On the other hand, given a feasible
solution to DC-GST on T̂ , we demonstrate a polynomial
time construction of a solution to GST of the original
instance with the same cost - we refer to this as the
soundness property.

3.3 Completeness. We devote this section to prove
the following lemma, which shows the existence of a
feasible solution to DC-GST on T̂ that has the same cost
as an optimal solution to the original GST instance.

Lemma 3.2. Any feasible solution E′ ⊆ E(G) for the
original GST problem can be turned into a feasible
solution F ⊂ E(T̂) for the new problem on T̂ such that
c(F) = c(E′).

To prove the lemma, we will show that we can
choose, for each node t ∈ T , a configuration gadget
H(t) for t such that all groups are covered. We also
argue that the total cost incurred is at most c(E′).

Let us first introduce a structural lemma that we
need for the proofs in this section.

Lemma 3.3. (Monochromatic Lemma) Let G be
any graph and T̂ be a tree decomposition of G. Consider
any bag v̂ ∈ V (T̂) and a pair of vertices x, y ∈ Xv̂.
Suppose G has an x, y-path P of length at least 2 such
that no vertex z ∈ V (P)− {x, y} is in the bag v̂. Then

Figure 2: Gluing the gadgets: ovals represent individual gadgets, connected by bold lines. The leftmost three
gadgets and the rightmost three gadgets correspond to the left and right children of the node in T associated
with the center gadget.

there is a tree T̂ ′ in T̂ − v̂ such that, for any edge
ab ∈ E(P), T̂ ′ has a bag û that contains both a and b.
That is, every edge ab ∈ E(P) appears in T̂ ′.

Proof. We will prove a stronger statement: for any sub-
path (a, z, b) of P , any (maximal) connected component
T̂ ′ in T̂ − v̂ that has a bag û containing both a and z
must have a bag containing both z and b. (Note that P
has such subpath (a, z, b) because it has length at least
2.)

We prove this statement by contradiction. Assume
that T̂ ′ is a component that contradicts the claim. Then
T̂ ′ has a bag û containing both a and z but has no
bag containing both z and b. By the definition of tree
decomposition, there must be a bag ŵ that contains
both z and b, and ŵ 6= v̂ because z 6∈ Bag(v̂) by
our assumption on P . So, there exists a (maximal)
connected component T̂ ′′ in T̂ − v̂ distinct from T̂ ′ that
contains ŵ. Observe that both bags û and ŵ contain
z. By the property of tree decomposition, the set of all
bags containing z induces a connected component in T̂ ,
but this is not possible because T̂ ′ and T̂ ′′ are distinct
components in T̂ − v̂ and z 6∈ Xv̂. Thus, we have a
contradiction.

Therefore, any connected component T̂ ′ that has a
bag û containing both a and z, for some edge az ∈ E(P),
must have a bag containing p and q for any edge
pq ∈ E(P), and the lemma follows. �

Choosing the gadgets:

We start by defining a partial ordering �E
′

over
V (G)2 (more specifically, over E′). This way, we
can easily define the required partial orderings on the
gadgets as restrictions of �E

′
to the relevant subsets.

Let Puv ⊆ E′ be the simple path between u and v
in E′. We define (u1, v1) �E

′
(u2, v2) if Pu1v1 ⊆ Pu2v2 .

Let us now fix some t ∈ T and let t′ ∈ T be the
sibling of t. If t has no sibling (i. e. t is the root), then
Π = Σ = ∅. Otherwise, consider the partition of T into
Tt, Tt′ and T − (Tt ∪ Tt′). We will define Γ, Σ, and Π
according to the connectivity in each of these partitions.
More specifically:

Π = {(u, v) ∈ X2
t : u, v are connected in

E′ ∩G[T − (Tt ∪ Tt′)]}
Γ = {(u, v) ∈ X2

t : u, v are connected in

E′ ∩G[Tt]} −Π

Σ = {(u, v) ∈ X2
t : u, v are connected in

E′ ∩G[Tt′]} −Π

These sets along with the restriction � of �E
′

to
Γ ∪ Σ, specify the gadget H(t) = H(t,Γ,Π,Σ,�) that
we choose. We now specify the edges in the gadget that
belong to our solution F .

First, let Y = Et ∩ E′. We add to F the edge that
connects r(t,Γ,Π,Σ,�) to p := p(t,Γ,Π,Σ,�, Y). Such
a node must exist since Y ⊆ Et.

Next, we define ρ = (Γ1,Γ2,�′), and prove it is

a feasible division of Γ via ΠY . This implies that the
node q = q(t,Γ,Π,Σ,�, Y, ρ) exists, and thus we add to
F edge (p, q), as well as the edges connecting q to its

children. As before, we define �′ as a restriction of �E
′

to Γ1 ∪ Γ2.
Let t1, t2 be the children of t in T . We define Γ1,

Γ2 as follows:

Γi = {(u, v) ∈ (Xt ∩Xti)
2 : u, v are connected in

E′ ∩G[Tti]} −Π

The following claim implies that ρ is a feasible
division of Γ via ΠY .

Claim 1. For any (u, v) ∈ Γ, (u, v) is implied by

Γ
�(u,v)
1 ∪ Γ

�(u,v)
2 ∪ΠY

Proof. Let P be the path between u and v in E′. Since
(u, v) ∈ Γ, then this path must exist in G[Tt]. Let
u = w1, w2, . . . , wk = v be all the vertices in P ∩ Xt,
in the order that they appear in P . Now, for each pair
(wi, wi+1) there are two possibilities:

• (wi, wi+1) is an edge in G[Xt]. In this case,
then either (wi, wi+1) ∈ Et, which implies that
(wi, wi+1) ∈ Y , or (wi, wi+1) 6∈ Et, in which case
the edge must be in some ancestor bag of t, which
implies that (wi, wi+1) ∈ Π.

• (wi, wi+1) represents a path of length at least 2
in the graph G[Tt]. In this case, since there is no
vertex z ∈ Xt − {wi, wi+1} in the path, then by
Lemma 3.3, the path between wi and wi+1 in E′

is fully contained in either G[Tt1] or G[Tt2]. In any
case, (wi, wi+1) ∈ Γ1 ∪Π or (wi, wi+1) ∈ Γ2 ∪ Pi.

We conclude that, since (wi, wi+1) � (u, v) for all

i ∈ [k−1], then (u, v) is implied by Γ
�(u,v)
1 ∪Γ

�(u,v)
2 ∪ΠY

(through path P). �

Let Yt be the chosen Y for gadget H(t). Notice

that, since the only edges in T̂ with positive cost are
those connecting p to the root of the gadget, the total
cost of this solution is:∑

t∈V (T)

c(Yt) =
∑

t∈V (T)

c(Et ∩ E′)

=
∑
e∈E′

c(e) = c(E′)

The second equality comes from the fact that each
edge is in exactly one bag t ∈ T . We conclude that
c(F) = c(E′).

Connecting the gadgets:
Let t, t′, t′′ ∈ V (T) such that t′, t′′ are the children

of t. We show that the edges connecting H(t) to
H(t′) and H(t′′) exist, and add them to F . Let
H(t) = H(t,Γ,Π,Σ,�), H(t′) = H(t′,Γ′,Π′,Σ′,�′
) and H(t′′) = H(t′′,Γ′′,Π′′,Σ′′,�′′) be the chosen
gadgets for t, t′, and t′′.

We show that, for the choices presented for Y and
ρ = (Γ1,Γ2,�) in H(t), we satisfy all the properties for
the connection of the gadgets, and therefore the desired
edges exist. We now prove the properties for t′. The
properties for t′′ are proved analogously.

It is clear that �′ is consistent with �∗, as both
these partial orders are restrictions of the same partial
order �E

′
.

Let us recall the definitions of Σ′ and Γ2.

Σ′ = {(u, v) ∈ X2
t′ : u, v are connected in

E′ ∩G[Tt′′]} −Π′

Γ2 = {(u, v) ∈ (Xt ∩Xt′′)
2 : u, v are connected in

E′ ∩G[Tt′′]} −Π

From these definitions, we can see that Σ′ ⊆ Γ2,
since Π ∩X2

t′ ⊆ Π′, and for every (u, v) ∈ Σ′,

u, v ∈ Xt′ ∩G[Tt′′] = Xt′ ∩Xt′′ ⊆ Xt ∩Xt′′

Similarly, we can deduce that Γ1 ⊆ Γ′∪Π′ from the
definitions of Γ1 and Γ′.

Finally, we need to prove that

Π′ ⊆ {(u, v) ∈ X2
t′ : (u, v) is implied by ΠY }

Recall that ΠY = {(u, v) :
(u, v) is implied by Π ∪ Y ∪ Σ≺(u,v)}. The follow-

ing claim implies the property.

Claim 2. If (u, v) ∈ Π′, then (u, v) is implied by
Π ∪ Y ∪ Σ≺(u,v).

Proof. Let P be the path between u and v in E′, t̂
be the sibling of t, and p(t) the parent node of t.
Since (u, v) ∈ Π′, then P must be contained in G′ :=
G[T − (Tt′ ∪ Tt′′)]. Let w1, . . . , wk be all the vertices in
P ∩Xp(t), in the order that they appear in P .

If P ∩Xp(t) = ∅, then u and v must be connected in
Et −Ep(t), by the properties of the tree decomposition.
Then, P ⊆ Y . Otherwise, the edges of P connecting
u to w1 and wk to v are contained in Et − Ep(t), and
therefore are contained in Y .

Now, for each pair (wi, wi+1) there are two possi-
bilities:

• (wi, wi+1) is an edge in G[Xp(t)]. In this case, then
(wi, wi+1) is either in Ep(t) or in the bag of some
ancestor of p(t). In any case, this implies that
(wi, wi+1) ∈ Π.

• (wi, wi+1) represents a path of length at least 2 in
the graph G′. In this case, since there is no vertex
z ∈ Xp(t)−{wi, wi+1} in the path, then by Lemma
3.3, the path between wi and wi+1 in E′ is fully
contained in either G[T − Tp(t)], G[Tt̂], or G[Xt].

In the first and second cases, this implies (wi, wi+1)
is in Π or Σ∪Π, respectively. If (wi, wi+1) ∈ G[Xt],
then either it is in Et or in the bag of some ancestor,
which implies it is either contained in Y or in Π.

In any of the previous cases, (wi, wi+1) is con-
tained in either Y , Π, or Σ. We conclude that, since
(wi, wi+1) ≺ (u, v) for all i ∈ [k − 1], as well as
(u,w1) ≺ (u, v) and (wk, v) ≺ (u, v), then (u, v) is im-
plied by Π ∪ Y ∪ Σ≺(u,v) (through path P). �

Covering the groups:
We will now show that the solution F covers all the

groups of the instance. We first observe that each leaf
of F corresponds to the gadget chosen for a leaf t of T ,
with Γ = ∅.

Now, let us consider, for any group Si, the vertex
u ∈ Si connected by E′ to s. Take any bag t such that
u ∈ Xt and u 6∈ Xp(t) (or t is the root). Now, consider
the path P between s and u in E′. Let t′ be the sibling
of t, and p(t) the parent node of t. Let s = w1, . . . , wk
be all the vertices in P ∩ Xp(t), in the order that they
appear in P .

Notice that, by the properties of the tree decompo-
sition, we get that (wk, u) ∈ Γ, because the edges of P
connecting wk to u are contained in

G

⋃
t̂∈Tt

Xt̂ −Xp(t)

 ∪ wk

Now, for each pair (wi, wi+1) there are two possi-
bilities:

• (wi, wi+1) is an edge in G[Xp(t)]. In this case, then
(wi, wi+1) ∈ Π.

• (wi, wi+1) represents a path of length at least 2 in
the graph G′. In this case, since there is no vertex
z ∈ Xp(t)−{wi, wi+1} in the path, then by Lemma
3.3, the path between wi and wi+1 in E′ is fully
contained in either G[T − Tp(t)], G[Tt′], or G[Xt].
This implies that (wi, wi+1) is in Π, Σ∪Π, or Γ∪Π,
respectively.

In any of the previous cases, (wi, wi+1) is con-
tained in either Π, Γ or Σ. We conclude that, since
(wi, wi+1) ≺ (s, u) for all i ∈ [k−1] and (wk, u) � (s, u),
then (u, v) is implied by Π ∪ Γ�(s,u) ∪Σ≺(s,u) (through
path P).

3.4 Soundness. We argue that, given any feasible
solution Q̂ to DC-GST on T̂ , we can construct a solution
to the GST problem on graph G with groups Si, i =
1, 2, . . . , k and source node s.

We say that a gadget H(t,Γ,Π,Σ,�) is active if

r(t,Γ,Π,Σ,�) is connected to the root gadget in Q̂.
Now we define E′ ⊆ E(G) in the original input

graph as follows: For each active gadget for t ∈ V (T),
let Y ⊆ E(G[Xt]) be the subset of edges bought inside

this gadget. We add Y to E′. Notice that c(E′) ≤ c(Q̂).
For each t ∈ V (T), define E′t to include all edges in E′

that appear in some bag node of the subtree Tt.
The next lemma guarantees the connectivity be-

tween a pair of vertices u, v.

Lemma 3.4. For any active gadget H(t,Γ,Π,Σ,�), if
(u, v) ∈ Γ�(u,v)∪Π∪Σ≺(u,v), then u and v are connected
in E′.

We defer the proof of Lemma 3.4 to Section 3.5.
Given Lemma 3.4, we show that the chosen edges form
a feasible solution to GST, i.e., there is a path from the
source s to every group Si.

Corollary 3.1. Every group Si is connected to source
s in E′ .

Proof. Since Q̂ is a feasible solution of DC-GST to T̂ ,
there exists an active leaf gadget H(t,Γ,Π,Σ,�) in Q̂
such that H ∈ Ŝi. Moreover, by definition of a group
node and the fact that source s is part of every bag t,
H must have an ancestor r(t′,Γ′,Π′,Σ′,�′) such that
∃u ∈ Si and (s, u) ∈ Π′ ∪ Γ′�(s,u) ∪ Σ′≺(s,u). Applying
Lemma 3.4 at gadget root r(t′,Γ′,Π′,Σ′,�′), (s, u) are
connected in E′. �

3.5 Proof of Lemma 3.4.

Lemma 3.5. (Γ-Lemma) The following statement
holds for all active gadgets H(t,Γ,Π,Σ,�):

(∀(u, v) ∈ Γ)(u, v) is implied by E′t ∪Π ∪ Σ≺(u,v)

Proof. We will prove that the statement holds for all
(u, v) ∈ Γ by induction from leaf to root. At the leaf,
we have Γ = ∅, so the statement trivially holds.

Now consider any node r(t,Γ,Π,Σ,�) that has
r(t′,Γ′,Π′,Σ′,�′) and r(t′′,Γ′′,Π′′,Σ′′,�′′) as descen-
dants for which the induction hypothesis holds. Note
that due to enforcement of degree bounds in the solu-
tion Q̂, the descendant nodes are part of active gadgets.
Consider any (u, v) ∈ Γ. If (u, v) 6∈ ΓY , we are immedi-
ately done, since (u, v) is implied by Y ∪Σ≺(u,v) ∪Π ⊆
E′t ∪ Σ≺(u,v) ∪Π.

So, we assume that (u, v) ∈ ΓY . Then u =
w0, . . . , w` = v such that, for all α, we have one of the
following cases:

• (wα, wα+1) ∈ Π∪Σ≺(u,v) ∪Y , in which case we are
again done.

• (wα, wα+1) ∈ Γ
�(u,v)
1 . By the properties of connec-

tions in the configuration tree T , (wα, wα+1) ∈ Γ1

is implied by Γ′ ∪Π′.

We can then write wα = v0, v1, . . . , v`′ = wα+1,
such that one of the following happens:

1. (vβ , vβ+1) ∈ Π′. Then we would be done, since
Π′ can be implied by ΠY , which is implied by
Π∪Y ∪Σ≺(vβ ,vβ+1); remark that (vβ , vβ+1) �
(u, v).

2. (vβ , vβ+1) ∈ Γ′.

We prove this via Claim 3.

• (wα, wα+1) ∈ Γ
�(u,v)
2 A similar proof follows for

this case.

Claim 3. Any (x, y) ∈ Γ′∪Γ′′ is implied by E′t′ ∪E′t′′ ∪
Π′ ∪Π′′.

Proof. We need a definition in order to apply induction.

Definition 3. The rank R of a connection (x, y) ∈ Γ′

is recursively defined as,

R(x, y) = 0 if Σ′≺
′(x,y) = ∅

= 1 + max
(u,v)∈Σ′≺′(x,y)

R(u, v)

We define R(x, y) for (x, y) ∈ Γ′′ in a similar fashion
replacing Σ′ with Σ′′ and �′ with �′′.

Proposition 3.2. The rank function R is well defined.

The rank function is defined for all connections in
Σ′ ∪ Σ′′. Indeed this is the case since Σ′ ⊆ Γ′′ and
Σ′′ ⊆ Γ′. Moreover, the two partial orders �′,�′′ are
consistent by definition.

Now we prove the claim by induction on rank
of (x, y). Assume first that (x, y) ∈ Γ′. Applying
the induction hypothesis of Lemma 3.5 on the node
r(t′,Γ′,Π′,Σ′,�′), we get that (x, y) is implied by

E′t′ ∪ Π′ ∪ Σ′≺
′(x,y). Now we use induction on R(x, y).

The base case if R(x, y) = 0, in which case Σ′≺
′(x,y)

is empty and we are done. Assume the statement
holds for all connections (x′, y′) with R(x′, y′) ≤ m.
Let R(x, y) = m + 1. (x, y) is implied by a sequence
x = u0, u1, · · · , ul = y such that R(ui, ui+1) ≤ m and

(ui, ui+1 ∈ E′t′ ∪ Π′ ∪ Σ′≺
′(x,y). The only non-trivial

case is (ui, ui+1 ∈ Σ′≺
′(x,y). By definition of edges in

the configuration tree T̂ , (ui, ui+1 ∈ Γ′′ ∪ Π′′. Again,
we are done if (ui, ui+1) ∈ Π′′. If (ui, ui+1) ∈ Γ′′, then
we can apply induction hypothesis on R(ui, ui+1) and
hence (ui, ui+1) is implied by E′t′ ∪E′t′′ ∪Π′ ∪Π′′ which
gives us that (x, y) is implied by E′t′ ∪ E′t′′ ∪Π′ ∪Π′′.

This gives us the proof for Γ-Lemma.

Now we proceed to prove a second lemma which will
directly give us a proof to Lemma 3.4.

Lemma 3.6. (Π-Lemma) The following statement
holds for all active gadget roots r(t,Γ,Π,Σ,�):

(∀(u, v) ∈ Π∪Σ) (u, v) is connected by some path in E′

Proof. We show this by induction from root-to-leaf. At
the root, Σ ∪Π = ∅, so the statement holds trivially.

Now consider a node r(t,Γ,Π,Σ,�) for which the
statement holds. We will show that it also holds for
both r(t′,Γ′,Π′,Σ′,�′) and r(t′′,Γ′′,Π′′,Σ′′,�′′) where
t′, t′′ are the children of t in T .

Consider (u, v) ∈ Π′, so (u, v) is implied by

ΠY = {(a, b) : (a, b) is implied by Π ∪ Y ∪ Σ≺(a,b)}

So u = w0, . . . , w` = v where (wi, wi+1) belongs to one
of the following cases:

• (wi, wi+1) ∈ Π, we would be done by induction
hypothesis.

• (wi, wi+1) ∈ Y , we would be done because Y ⊆
E′ − E′t.

• (wi, wi+1) ∈ Σ, we are also done by induction
hypothesis.

Now consider (u, v) ∈ Σ′ ⊆ Γ′′ ∪ Π′′. We apply
the Γ-Lemma to say that (u, v) is implied by E′t ∪Π′′ ∪
Σ′′≺

′′(u,v). This means that u = w0, . . . , w` = v where
(wi, wi+1) is in one of these cases:

• (wi, wi+1) ∈ E′t′′ , and we would be done.

• (wi, wi+1) ∈ Π′′. We do the same analysis as above
and would be done.

• (wi, wi+1) ∈ Σ′′≺
′′(u,v). By definition, (wi, wi+1) ∈

Γ′ ∪ Π′. If (u, v) ∈ Π′, we are again done. If
(wi, wi+1) ∈ Γ′, then by Claim 3, (u, v) is implied
by E′t′∪E′t′′∪Π′∪Π′′. This gives us the lemma since
Π′ ∪Π′′ ⊆ Π and any element in Π is connected by
E′ by induction hypothesis.

It is straightforward to see that the Γ-Lemma and
Π-Lemma together gives a proof for Lemma 3.4. �

3.6 Node-weighted Group Steiner Tree. The
sparsifier for NW-GST can be constructed using simi-
lar ideas and following similar lines of reasoning. We
describe the ideas on how this sparsifier differs from the
one in edge-weighted case.

For each node t ∈ V (T), our gadget has an
additional parameter Z ⊆ Xt, that is, we have
H(t,Γ,Π,Σ,�, Z). Similarly to what is done with the
edge-weighted case, we only allow nodes to be bought
if Xt is the topmost node in T where they appear. The
new parameter Z ⊆ Xt represents the nodes v ∈ Xt

that also appear in Xt′ and have been bought. This
set is needed because the nodes in Z may help connect
some (u, v) ∈ Γ, with lower cost, as they have been
bought already. Another difference is that, we only al-
low Π,Σ ⊆ Z2 (we can only connect things whose end-
points are bought).

We slightly change the definition of connection
(u, v) ∈ Γ being implied by Σ. We say that (u, v)
is implied by Σ in Z if there is a sequence u =
w0, . . . , wα = v such that (wβ , wβ+1) ∈ Σ ∪ E(G) for
every β = 0, . . . , α − 1 and each wβ ∈ Z for every
β = 0, . . . , α.

Now, we construct the gadget H(t,Γ,Π,Σ,�, Z) as
follows:

• The root is denoted by r.

• For each Y ⊆ (Xt −Xp(t)), we create a vertex pY ,
which is a child of r; the cost of the connecting

edge is c(Y) =
∑
v∈Y

c(v). Denote by ΓY the set

of Γ-connections (u, v) that are not implied by
Π ∪ Σ≺(u,v) in Y ∪ Z. Also, denote by ΠY the
set of pairs (u, v) ∈ Xt × Xt that are implied by
Π ∪ Σ≺(u,v) in Y ∪ Z.

• For each vertex pY , consider a feasible partition
ρ = (Γ1,Γ2,�′) of Γ via ΠY in Z ∪ Y . We create
the vertices q(Y, ρ) which are children of pY and
have two children each, q1(Y, ρ) and q2(Y, ρ).

The analysis closely follows the edge-weighted case.
We remark that, using this approach, the problem

solved on the new instance is still edge-weighted.

4 Solving the DC-GST instance via GKR
Rounding

In this section, we describe how to find the solution Q̂
to the instance of DC-GST on T̂ with groups Ŝ1, . . . Ŝk.

In a feasible solution for DC-GST, every non-leaf
node has either degree 1 (root), 3 (q-nodes), or 2. We
will state this in a slightly different way by saying that
every q-node is fully connected, that is, if it is in the

solution, then all its children are as well, while for the
other non-leaf nodes, if they are in the solution, exactly
one of their children is in the solution as well.

Therefore, we can abstract this tree instance as a
special case of DC-GST on trees with two sets of special
nodes: Vone, the set of pick-one nodes, and Vall, the set
of pick-all nodes.

Let Cv be the set of children of a node v. For every
v ∈ Vall, if the edge (p(v), v) is picked, then all the edges
(v, u) are picked as well, for u ∈ Cv. For v ∈ Vone, if the
edge (p(v), v) is picked, exactly one of the edges (v, u)
is picked, for u ∈ Cv.

This implies modifications both in the LP and the
rounding used for this tree instance. Regarding the LP,
it is sufficient to add constraints (1), (2). The LP for
this problem is presented in Figure 3.

As to the rounding, the added LP constraints for
vertices v ∈ Vall ensure that all children edges will be
picked if (p(v), v) is picked. On the other hand, the
rounding must be modified for edges of the form (v, u),
with v ∈ Vone, u ∈ Cv, so as to pick exactly one of these
edges.

We modify rounding so that, if v ∈ Vone and
(p(v), v) is in the solution, it picks exactly one of the
edges (v, u), u ∈ Cv, with probabilities given by p(v,u) =
x(v,u)/x(p(v),v). If (p(v), v) is not in the solution, then
no children edge is picked, as before.

We now prove two lemmas necessary for the analysis
of GKR rounding to apply: first, we prove that, in
expectation, the cost of a solution rounded in this
way is the optimal cost of the LP; and second, we
prove that if we replace the vertices in Vone by normal
vertices, then the probability of connecting a fixed group
decreases. As a consequence, the lower bounds for such
probabilities in the usual GKR rounding are still valid
for our modified rounding.

One last consideration is needed to prove that this
results in a O(log n log k)-approximation for the gen-
eral problem. We remark that, since our instance has

size N = nO(w2 logw), a naive approach would result
in a O(logN log k) = O(w2 logw log n log k) approxi-
mation. However, GKR rounding actually has an ap-
proximation ratio of O(h log k), where h is the height
of the tree. Since, in general, h = O(n), the analy-
sis includes a transformation that reduces the height
to O(log n). However, in our case, we know already
that h = O(log n), and thus the approximation ratio is
O(log n log k).

Lemma 4.1. The expected cost of the solution S ob-
tained by the modified rounding is opt, the cost of the
LP.

Proof. It is sufficient to prove that each edge e is added

min
∑
e∈E

cexe

s. t.
∑
e∈δ(S)

xe ≥ 1 ∀S ⊆ V : r ∈ S, S ∩ Si = ∅ for some i

x(p(v),v) = x(v,u) ∀ v ∈ Vall, u ∈ Cv(1)

x(p(v),v) =
∑
u∈Cv

x(v,u) ∀ v ∈ Vone(2)

Figure 3: Linear Program for DC-EW-GST

to the solution with probability xe, which implies the
lemma by linearity of expectation.

We remark that an edge e is only added to the
solution if its parent is also in the solution. Using this
fact, coupled with a simple induction argument, we get
the desired result. First, remark that edges e incident
to the root are added with probability xe.

By induction on the depth of the edges, the proba-
bility of an edge e at depth h being picked is:

P [e ∈ S] = P [e ∈ S | p(e) ∈ S]P [p(e) ∈ S]

=
xe
xp(e)

xp(e) = xe

�

Lemma 4.2. Let S be a solution obtained by rounding
with the modified procedure, and S′ be a solution ob-
tained by rounding according to GKR (with no consid-
eration for pick-one nodes). Then, for any group g,

P [S does not connect r to g]

≤ P [S′ does not connect r to g]

Proof. Let us first fix an arbitrary group g. It is
sufficient to prove that the result holds if S and S′ are
rounded similarly, except on exactly one pick-one node
v ∈ Vone, for which the edges (v, u) are rounded using
GKR on S′ and using the modified procedure in S. We
can then apply this simpler result successively for each
node in Vone to obtain the lemma.

Let e = (p(v), v) and Se, S
′
e be the solutions S, S′

restricted to the sub-tree consisting of e and descendant
edges. We now prove that, given that p(e) is picked, the
result follows in Se and S′e. This implies the result for
the entire tree, as probabilities for other parts of the
solution are not changed.

We define F (X) as the event that X ∩ g = ∅, that
is, group g is not connected in X. Then

P [F (Se) | p(e) ∈ S]

=

(
1−

xe

xp(e)

)
+

xe

xp(e)
P [F (Se) | e ∈ S]

=

(
1−

xe

xp(e)

)
+

xe

xp(e)

(
1−

∑
c child of e

xc

xe
P [F̄ (Sc) | c ∈ S]

)

= 1−
xe

xp(e)

∑
c child of e

xc

xe
(1− P [F (Sc) | c ∈ S])

P [F (S′e) | p(e) ∈ S′]

=

(
1−

xe

xp(e)

)
+

xe

xp(e)
P [F (S′e) | e ∈ S′]

=

(
1−

xe

xp(e)

)
+

xe

xp(e)

∏
c child of e

(
1−

xc

xe
+

xc

xe
P [F̄ (S′c) | c ∈ S]

)

= 1−
xe

xp(e)

(
1−

∏
c child of e

(
1−

xc

xe

(
1− P [F̄ (S′c) | c ∈ S]

)))

Let fc = 1−P [F̄ (Sc) | c ∈ S]. As the only difference
between S and S′ is the sampling of the children edges
of e, then we also have that 1− P [F̄ (S′c) | c ∈ S] = fc.

The final result that we need in order to prove
the lemma is the following generalization of Bernoulli’s
inequality.

Claim 4. Let ai ∈ [0, 1], i ∈ [n]. Then,

∏
i∈[n]

(1− ai) ≥ 1−
∑
i∈[n]

ai

Proof. We prove the claim by simple induction. When
n = 1, the inequality holds trivially. Now, assume it
holds for n′ < n. Then,

∏
i∈[n]

(1− ai) = (1− an)
∏

i∈[n−1]

(1− ai)

≥ (1− an)

1−
∑

i∈[n−1]

ai

(By IH)

= 1− an −
∑

i∈[n−1]

ai + an
∑

i∈[n−1]

ai

≥ 1−
∑
i∈[n]

ai

�

Since xcfc/xe ∈ [0, 1], we can use this claim and get
that:

P [F (S′e) | p(e) ∈ S′]

= 1− xe
xp(e)

(
1−

∏
c child of e

(
1− xc

xe
fc

))

≥ 1− xe
xp(e)

(
1−

(
1−

∑
c child of e

xc
xe
fc

))
= 1− xe

xp(e)

∑
cchild of e

xc
xe
fc

= P [F (Se) | p(e) ∈ S]

�

References

[1] Ittai Abraham, Yair Bartal, and Ofer Neiman. Ad-
vances in metric embedding theory. In Jon M. Klein-
berg, editor, Proceedings of the 38th Annual ACM Sym-
posium on Theory of Computing, Seattle, WA, USA,
May 21-23, 2006, pages 271–286. ACM, 2006.

[2] Yair Bartal. Probabilistic approximations of metric
spaces and its algorithmic applications. In 37th An-
nual Symposium on Foundations of Computer Science,
FOCS ’96, Burlington, Vermont, USA, 14-16 October,
1996, pages 184–193, 1996.

[3] Yair Bartal and Manor Mendel. Multiembedding of
metric spaces. SIAM J. Comput., 34(1):248–259, 2004.
Preliminary version in SODA’03.

[4] MohammadHossein Bateni, Erik D. Demaine, Moham-
madTaghi Hajiaghayi, and Dániel Marx. A PTAS
for planar group steiner tree via spanner bootstrap-
ping and prize collecting. In Daniel Wichs and Yishay
Mansour, editors, Proceedings of the 48th Annual ACM
SIGACT Symposium on Theory of Computing, STOC
2016, Cambridge, MA, USA, June 18-21, 2016, pages
570–583. ACM, 2016.

[5] MohammadHossein Bateni, Mohammad Taghi Haji-
aghayi, and Dániel Marx. Approximation schemes for
steiner forest on planar graphs and graphs of bounded
treewidth. J. ACM, 58(5):21, 2011.

[6] Hans L. Bodlaender. NC-algorithms for graphs with
small treewidth. In Jan van Leeuwen, editor, Graph-
Theoretic Concepts in Computer Science, 14th Inter-
national Workshop, WG ’88, Amsterdam, The Nether-
lands, June 15-17, 1988, Proceedings, volume 344
of Lecture Notes in Computer Science, pages 1–10.
Springer, 1988.

[7] Moses Charikar, Chandra Chekuri, To-Yat Cheung,
Zuo Dai, Ashish Goel, Sudipto Guha, and Ming Li.
Approximation algorithms for directed steiner prob-
lems. J. Algorithms, 33(1):73–91, 1999. Preliminary
version in SODA’98.

[8] Chandra Chekuri and Julia Chuzhoy. Polynomial
bounds for the grid-minor theorem. In David B.
Shmoys, editor, Symposium on Theory of Computing,
STOC 2014, New York, NY, USA, May 31 - June 03,
2014, pages 60–69. ACM, 2014.

[9] Chandra Chekuri, Guy Even, Anupam Gupta, and
Danny Segev. Set connectivity problems in undirected
graphs and the directed steiner network problem. ACM
Trans. Algorithms, 7(2):18, 2011.

[10] Chandra Chekuri, Guy Even, and Guy Kortsarz. A
greedy approximation algorithm for the group steiner
problem. Discrete Applied Mathematics, 154(1):15–34,
2006.

[11] Chandra Chekuri and Martin Pál. A recursive greedy
algorithm for walks in directed graphs. In 46th Annual
IEEE Symposium on Foundations of Computer Science
(FOCS 2005), 23-25 October 2005, Pittsburgh, PA,
USA, Proceedings, pages 245–253, 2005.

[12] Artur Czumaj, Magnús M. Halldórsson, Andrzej Lin-
gas, and Johan Nilsson. Approximation algorithms for
optimization problems in graphs with superlogarithmic
treewidth. Inf. Process. Lett., 94(2):49–53, 2005.

[13] Erik D. Demaine, Mohammad Taghi Hajiaghayi, and
Philip N. Klein. Node-weighted steiner tree and group
steiner tree in planar graphs. ACM Trans. Algorithms,
10(3):13:1–13:20, 2014.

[14] Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar.
A tight bound on approximating arbitrary metrics by
tree metrics. J. Comput. Syst. Sci., 69(3):485–497,
2004. Preliminary version in STOC’03.

[15] Naveen Garg, Goran Konjevod, and R. Ravi. A
polylogarithmic approximation algorithm for the group
steiner tree problem. J. Algorithms, 37(1):66–84, 2000.
Preliminary version in SODA’98.

[16] Anupam Gupta, Kunal Talwar, and David Witmer.
Sparsest cut on bounded treewidth graphs: algorithms
and hardness results. In Dan Boneh, Tim Rough-
garden, and Joan Feigenbaum, editors, Symposium
on Theory of Computing Conference, STOC’13, Palo
Alto, CA, USA, June 1-4, 2013, pages 281–290. ACM,
2013.

[17] Eran Halperin, Guy Kortsarz, Robert Krauthgamer,

Aravind Srinivasan, and Nan Wang. Integrality ratio
for group steiner trees and directed steiner trees. SIAM
J. Comput., 36(5):1494–1511, 2007.

[18] Eran Halperin and Robert Krauthgamer. Polylogarith-
mic inapproximability. In Proceedings of the 35th An-
nual ACM Symposium on Theory of Computing, June
9-11, 2003, San Diego, CA, USA, pages 585–594, 2003.

[19] Christopher S. Helvig, Gabriel Robins, and Alexander
Zelikovsky. An improved approximation scheme for the
group steiner problem. Networks, 37(1):8–20, 2001.

[20] Joseph Naor, Debmalya Panigrahi, and Mohit Singh.
Online node-weighted steiner tree and related prob-
lems. In Rafail Ostrovsky, editor, IEEE 52nd An-
nual Symposium on Foundations of Computer Science,
FOCS 2011, Palm Springs, CA, USA, October 22-25,
2011, pages 210–219. IEEE Computer Society, 2011.

[21] Gabriele Reich and Peter Widmayer. Beyond steiner’s
problem: A VLSI oriented generalization. In Manfred
Nagl, editor, Graph-Theoretic Concepts in Computer
Science, 15th International Workshop, WG ’89, Castle
Rolduc, The Netherlands, June 14-16, 1989, Proceed-
ings, volume 411 of Lecture Notes in Computer Science,
pages 196–210. Springer, 1989.

[22] Neil Robertson and Paul D. Seymour. Graph minors.
v. excluding a planar graph. J. Comb. Theory, Ser. B,
41(1):92–114, 1986.

[23] Alexander Zelikovsky. A series of approximation al-
gorithms for the acyclic directed steiner tree problem.
Algorithmica, 18(1):99–110, 1997.

